

A Cost-Effective Interactive Broadcasting Protocol for
Media Streaming

Shu-Zhe Weng Simon Sheu Jun-Yi Li

Computer Science, National Tsing Hua University
Hsinchu, Taiwan 30013, Republic of China

{sjwong, sheu, jylee}@cs.nthu.edu.tw

ABSTRACT
On-demand media streaming can offer users

instantly access of videos. Many Video-on-Demand
(VoD) broadcasting protocols for the popular videos
have been shown to be efficient to reach this ideal.
Unfortunately, these techniques were optimized only
for normal playback. Interactive services, such as
fast-forward or rewind, are left intact as hard options.
To meet this challenge, we propose a novel
broadcasting protocol for the clients with sufficient
disk buffer to enjoy VCR-style services. These users
only need to accumulate three broadcast streams,
while the server merely patches the unavailable
momentarily. With this unique feature, we minimize
the demands on the communication and storage
bandwidths of all clients. As such, cost-effective
interactive VoD services can be easily realized over a
large population of users. We evaluate the overhead
of the proposed scheme analytically, and perform an
intensive emulation over all the situations of
interactive services. Performance study shows that
our scheme can provide the comparable services only
demanding much less client bandwidths.

Keywords: Media streaming, video-on-demand,
VCR services, broadcasting protocols.

1. Introduction
Based on media streaming, VoD is an attractive

network multimedia application that allows users to
play back videos at any time. This objective is
similar to its analog counterparts: pay-per-view (PPV)
and videocassette rentals, which provide educational

 The authors are supported by the National Science Council,
Project No. NSC 89-2213-E-007-125, Taiwan, R.O.C.

and entertaining media contents. To make the digital
transition successful on the marketplace, VoD, the
digital form of PPV, needs to overcome the challenge
of reducing the average service cost. The common
approach of existing techniques employs the
multicast or broadcast facilities to maximize the
extent of media streams sharing. The cost of server
streams can be therefore amortized over many users.
The result of lower per service cost renders a more
economic solution than the conventional PPV.

There are basically two service models to magnify
server streams sharing. The first model is reactive [3]
in the sense that the service streams are set up on
demand according to the user requests. The media
server then intervenes the users requesting for the
same media object to receive the on-going delivery
of common portion of this object [12]. Avoiding the
unnecessary transmission of data is thus achieved.
For instance, User B starts the playback of the video
two minutes after User A. By directing User B to
also receive the data multicast to User A, the media
server needs only to stream the first two minutes of
the video, instead of the entire video, to User B.
However, when the requests arrive too frequently
beyond the server capacity, the server will not be able
to fulfill the requests promptly. To address this
problem, the media server of the second service
model periodically delivers the video preceding the
user requests [5]. Due to the anticipation of the future
requests, this service model is referred to as proactive
[12]. The service latency can be confined within the
period of video delivery, no matter how many users
are requesting the video.

The rationale behind both models to maximize
streams sharing is to take the advantage of the
characteristics of normal video playback. Each video

can be seen as the sequential concatenation of video
segments, one after one. Users playing out the
current segment will continue to play back the next
segment at the same pace. As a result, the last video
segment is most likely the common need of all users
for the same video [5]. Using previous example,
despite two-minute difference in start time, User A
and B commonly demand later video segments.
Consequently, when each segment is delivered on the
shared streams to all demanding users just prior to its
playback, service streams sharing can be optimized
[3, 11].

Unfortunately, when users perform VCR-style
operations, such as fast-forward, forward jump or the
like, the anticipation of common segments needed
among these interactive users become very difficult
[3, 11]. Especially, most efficient broadcasting
protocols try to deliver segments just in time for
regular playback to conserve server bandwidth. An x
times fast-forward operation will lead to x-1 times
shortage of video data. To overcome this problem,
Pâris recently proposed a scheme called Interactive
Pagoda Broadcasting (IPB) protocol to support
forward jump function by segment patching [12].
The idea, like the approach in [3], is to retain all the
received video data locally in each client disk buffer,
while transmitting missing video segments on
demand. Through the disk buffer large enough to
store the entire video, the service cost can be reduced
by at least 50 percent. In this paper, we propose an
alternative broadcasting protocol to achieve the
comparable service cost savings, only utilizing
constant communication bandwidth for each client.
Unlike IPB, the proposed technique only requires
each client to accumulate at most three broadcast
streams. As a result, only a minimal disk storage
bandwidth is required. With more economic client
hardware requirements, cost-effective interactive
VoD services can be easily realized over a large
population of users.

The rest of this paper is organized as follows.
Section 2 discusses the previous related work to
make the paper self-contained. Section 3 presents the
proposed broadcasting technique in further details.
We perform the performance investigation in Section
4. Finally, Section 5 gives our concluding remarks
and discusses future works.

2. Related Work

Broadcasting protocols for video-on-demand can
be roughly classified into three groups. Protocols in
the first group partition each video into fixed-size
segments and use channels with different bandwidth
to transmit them. Protocols in this category includes:
Harmonic Broadcasting [7] and its variations:
Cautious Harmonic Broadcasting, Quasi Harmonic
Broadcasting [16], and Polyharmonic Broadcasting
[15]. Protocols in second group partition the video
into segments with increasing size, and use fixed
bandwidth channels to transmit these segments. This
category includes: Pyramid Broadcasting [20], Fast
Broadcasting (FB) [6], Skyscraper Broadcasting [5],
and Mayan Temple Broadcasting [17]. Some
protocols use hybrid approach such that they
partition each video into fixed size segments, and
transmit them in fixed bandwidth channels by time
division multiplexing. This category includes:
Pagoda Broadcasting (PB) [14], New Pagoda
Broadcasting [13]. However, these VoD protocols
can only support normal playback of the video
without offering VCR-like functions, for example,
forward jump or rewind. They were optimized to take
the advantage of regular video playback.

Several researches achieve interactive services for
VoD transmitting MPEG coded videos. Chen et al.
employ a P frame to I frame conversion [2] technique
to support smooth reverse play. However, the
conversion can only take place after the whole video
has been downloaded. Lin et al. propose a
dual-bit-stream method to support VCR functionality
[9, 10]. This interesting technique requires two
different copies for each video. Backward and
forward plays are done through switching these two
versions of video copies through the dedicated
channel to the client. Vasudev designed in [19] a
compressed domain MPEG transcoder that can be
used to support reverse play. This technique also
requires the server to store the normal and the reverse
versions of the video.

Recently, Pâris proposed a technique called
Interactive Pagoda Broadcasting (IPB) protocol [12]
by extending their Pagoda Broadcasting (PB)
protocol. This approach suggests to equip each
interactive user with a disk buffer large enough to

cache the entire video. Regular video playback is
supported through receiving all the broadcast
segments as usual. To enjoy interactive services, the
users will preserve any video data received during
the normal playback in the disk buffer. Individual
VCR-like operations can therefore be easily fulfilled
locally through the disk buffer. In case the segments
have not been received during the regular playback,
the media server will uses segment patching to
supplement these missing segments in time. This
interesting protocol is a feasible approach.

Extending from the PB, the drawback of IPB is
high requirements in the communication and storage
bandwidths of clients. In spite of huge aggregate
download speed, there is still a large amount of video
data unavailable during the regular playback. As a
consequence, the number of video segments
delivered by the server through the patching stream is
considerable. The major cause results from the
ill-managed broadcast scheduling such that even each
client receives all the broadcast streams as quickly as
possible, most of loading bandwidth is in fact useless.
To improve the efficiency, we propose in this paper
an alternative solution called Cost-Effective
Broadcasting protocol (CEB) to reduce such high
bandwidths demand. Our technique is built on the top
of the Striping Broadcasting (SB) protocol [18],
which employs a broadcast series {1, 2, 4, 8, …} as
Fast Broadcasting (FB) [6] and Client-Centric
Approach (CCA) [1, 4] do. Noticeably, SB elegantly
defers the different broadcast streams with the proper
phase offset to their broadcast periods. With this
unique design, SB can require only three loaders for
every client to support jitter-free playback. In this
paper, we modify the striping protocol to support
forward jump as IPB. As the performance study will
show, despite much lower downloading rate, the
proposed CEB technique can fully utilize such
capacity to prefetch video segments beforehand.
Compared to IPB, CEB may require less additional
patching bandwidth, while using a significantly less
disk storage bandwidth.

3. The Cost-Effective Broadcasting
Protocol

In this section, we first discuss the design of the
original SB technique. We then present the way to

extend this technique to support the interactive
services, such as forward jump. Subsequently, we
will analyze the server patching bandwidth
requirements, and mathematically compute the
amount of video segments required for the
techniques.

3.1 Original Striping Broadcasting Protocol

The Striping Broadcasting (SB) [18] divides the
server bandwidth B into M sections of equal capacity,
each dedicated for one video title, where M is the
number of video titles to be broadcast. For each
movie, the bandwidth is further partitioned into
multiples of the video consumption rate, each
denoted as a logical channel. In other words, the
number of channels, K, for each video equals

 )1()(/ bMBK ⋅=

where b is the video consumption rate.

Accordingly, every video of length D minutes is
then segmented into K segments of increasing size
with factor two. Therefore, the duration of the first
segment is equal to

)2(.
12221 11 −

=
+++

= − KK
DDD

L

The ith video segment , denoted as Si,
is then periodically broadcast on the dedicated
Channel i.

)Ki(≤≤1

To avoid the worst case (all segments are aligned
as in FB and CCA) that needs to listen to all the
channels simultaneously1 for jitter-free playback, the
striping broadcasting technique introduces the offset
idea to defer the broadcast schedules of the channels
with the proper delays. As shown in Figure 1, Si

 has an offset equal to half of its
broadcast period. Traditional broadcasting protocols,
like FB shown in Figure 1(a), occasionally start the
segment broadcasts at the same time. As a result,
clients need to tune up to all the channels for the
desirable video segments; or, the jitter-free playback

)Ki(≤<1

1 See Figure 1(a) for the example when the user starts to receive
data in time slot 1

cannot be guaranteed. In contrast, SB staggers the
broadcasts of video segments apart, as shown in
Figure 1(b). As a result, no matter how many
simultaneous broadcast streams (namely, K) are,
every client needs only tune to at most three channels
at the same time, as proved in [18]. Comparatively,

or PB [13, 14], need the concurrent reception of all K
broadcast streams to guarantee jitter-free playback.

SB employs in every client three loaders to tak

most of the other broadcasting protocols, like FB [6]

e
tu

re

3. (Note that the tag is now between 0 and 2N-1,

only
ders in our design to reduce the client

co

rns in receiving segment broadcasts. To direct the
access of all segments prior to their playbacks with
only three loaders, SB utilizes one additional marker
called “tag” (an integer between 0 and 2K-1-1) to
indicate the start slot of the last segment. An
algorithm in [18] can derive quickly the tuning
schedule from this tag for each client. Following the
tuning schedule, the three loaders can tune to receive
segment broadcasts in order. We note that each bit in
the binary format of the tag represents one channel
from 2 to K. For instance, if the tag were 6 (110 in
binary), the turning order would be {1, 3, 2, 4}: S1,
S3, S2, & then S4. Figure 2 illustrates such an
example. A user arriving during the sixth time slot
will start to receive segments with tag 6. Following
the tuning order {1, 3, 2, 4}, the shaded segments
will be received, where the numbers inside the
shaded boxes indicate the receive order for this user.

To further minimize the client buffer space
quirement, SB can optionally strip the last K-N

segments (with size bounded at 2N × D1 minutes) into
two sub-segments each. Then, it uses the channels of
half consumption rate to broadcast them with an
offset equal to half their duration, as shown in Figure

indicating the start of the first striped segment). The
disk space overhead in prefetching the last segment
and thus the space requirement can be further
reduced [18].

Protocol
3.2 The Cost-Effective Interactive Broadcasting

We employ the same offset idea of SB using
three loa

mmunication bandwidth requirement from K times
to thrice of the video consumption rate b, where K is
the number of channels or simultaneous segment

S
2

S3

S
4

Channel

1

2

3

4

(a) Fast Broadcasting

S
1

S
2

S3

S
4

Channel

1

2

3

4

(b) Striping Broadcasting

Figure 1. The illustration of the phase offset concept in SB with 4 channels

Time Time

S
1

S1

S
2

S
3

S4

Channel 1

2

3

4

1th

3th

2th

Figure 2. The tags of the SB protocol with 4 channels

tag 4 3 2 1 0 7 6 5 4 3 2 1 0

user arrival

4th

7 6 5 4 3 2 1 0

S1

S
2

S
3

Channel
1

2

3

41

Figure 3. The striping protocol, N = 3, K = 5

tag

4 3 2 1 0 7 6 5 4 3

S4-1

42 S4-2

51 S5-1
52 S5-2

2 1 0 7 6 5 4

broadcasts. Since the goal of our new design is to
support interactive video playback, client disk buffer
needs to keep all the frames as long as needed. The
striping mechanism for buffer size minimization is
out of our concern. Therefore, we do not adopt the
striping approach in the proposed technique. Rather,
we retain the tag markers and its associated tuning
algorithm to determine the jitter-free turning order.
So we can still support normal playback.

We observe that the three loaders in the SB are not
fully active. Sometimes, they may become idle
aw

w

receiving video segments at their earliest possible.

ill ensure
jit

n jump back to a play
po

fer space to store the whole video. Thus,
us

 can be
of

ng duration computation, we
ssume that the VCR requests for each user can only

 assumption is also adopted in
[1

l be received just in time or already stored in
di

aiting the coming-in of the broadcast streams.
That is because the loaders were designed to receive
the segments starting from their beginning. To fully
utilize such receiving capability to facilitate the
forward jump function, we propose to receive any
segment stream segments as early as possible.
Specifically, we plan to utilize the idle time of these
three loaders, which is the main idea of our new
protocol.

Figure 4 illustrates the scenario using the previous
example. Suppose one user arriving at time slot 6

ill wait until the start of the first segment, and then
start to receive data with tag 6. After the computation
of tuning schedule, the turning order is determined as
{1, 3, 2, 4}. In the original SB scheme, this user will
receive segments S1, S3, S2, & then S4, marked as the
shaded boxes in Figure 4(a). It is easy to see from the
figure that Loader 3 for receiving S2 will idle 1 time
slot (time slot 7), while Loader 1 receiving S4 will
idle 5 time slots (time slot 8 to 12). Under the new
approach, this user will receive segments S1, S3, S2, &
S4 as soon as possible. Figure 4(b) shows the scenario
of such earliest reception in terms of shaded boxes.
Notice that these three loaders are now fully active in

This important property will decrease the number of
missing segments during segment patching if the user
would like to perform forward jump later.

With the same turning order, each segment can be
received on time or even earlier, our Cost-Effective
Broadcasting (CEB) protocol can st

ter-free playback. In addition to our best-effort
receiving scheme, we use segment patching to assist
our VCR support - forward jump. The missing
segment data will be delivered from the server to the
requesting client on demand.

We currently consider three types of VCR services:
pause, rewind and forward jump. Specifically, the
rewind signifies that users ca

int that they have already watched. Similarly, the
forward jump means that users can jump forward to a
future playback point and start normal playback
therein.

Like the traditional VoD broadcasting techniques,
we suppose the client set-top box (STB) has enough
disk buf

ers have fully interactive controls over the entire
video. In addition, we also assume that the server
reserves certain amount of server bandwidth to
support user interactive (VCR) requests [8].

The supports for rewind & pause can be easily
achieved from the video data stored earlier in the
client local buffer. Similarly, forward jump

fered from the disk buffer provided the data were
saved during the video session. The server will
supplement the missing data required for the forward
jump operation by patching streams. If users want to
pause, we let the loaders continue downloading
segment data. Once users resume, users will consume
the data already in disk.

3.3 Analytical Study

To simplify the patchi
a
take place once. This

2].
Suppose the user have watched Si, and decides to

jump forward to watch Sj. In IPB, the probability that
Sj wil

sk buffer is

S1

S
2

S
3

S
4

Channel

1

2

3

4

Figure 4. The Best Effort Receive Scheme, tag = 6, turning order: 1 3 2 4

tag

4 3 2 1 0 7 6 5 4 3

Channel

1

2

3

4

tag

4 3 2 1 0 7 6 5 4 3

S
4

2 1 0 7 6 5 4 3

2 1 0 7 6 5 4 3

2 1 0

2 1 0

S
1

S2

S3

)(
)j(s

i 31+

where s(j) is the broadcast period for Sj. The average

atched segments sent for such user who jumps from p
Si to Sj and then stays normal playback till the end is
thus

)4(.1))
)(
1,1min(1(

0
∑

−

=

×
+
++

−
jn

l ljs
li

In the proposed CEB technique, with only three
aders, we cannot receive all channels at the same

tim
lo

e. In case of jumping from Si to Sj, the probability
that Sj will be received just in time or already saved
in disk buffer becomes

)(
)j(s

)j(x 51−

i +

where x(j) is the delay slots of the reception process
or Sj. We note that the period of Sj for CEB is

The average patched segments sent from the server t
e interactive client is then

f

  .)j(log2 112 −+)(6

o
th

 
)7(.1))

2
)(,1min(1(

0
1)1(log2∑

=
−++ ×
+−

−
l

lj

ljx

1−

4. Performance Study

To assess the effectiveness of the proposed CEB
technique, w tion over a
wi

and Interactive Pagoda
Br

b
pe

du
Si

++jn li

e perform intense investiga
de range of system settings. We wrote an

emulation program to compute the correct value of
x(j) used in Formula (5) and (7) for each Sj given
server bandwidth of K broadcast channels through
searching all possible tag values. This program also
computes the average patched segments using
Formula (4) and (7).

Figure 5 compares the initial latency of Fast
Broadcasting (FB)

oadcasting (IPB). The proposed technique CEB

se
in
ch
Ho
ba
di

a

sa
cla
vi
sta
tar
tim
th

10-4 10-3 10-2 10-1 100 101
0

1

2

3

4

5

6

7

8

9

initial latency in video fraction

ba
nd

w
id

th
 in

 c
ha

nn
el

s

FB
IPB
e
rformance as FB. Due to more precise
gment-to-slot mapping, IPB can partition the video
to more segments than FB given the same server
annels, resulting in smaller initial latencies.
wever, the difference is unnoticeable when server

ndwidth is large enough (for example, the
fference is less then 14 seconds given 8 channels).

sed on the SB technique will have the sam

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

skipped minutes (jump from beginning)

av
er

ag
e

pa
tc

he
d

m
in

ut
es

CEB
IPB

Fig. 5: Initial latency comparison of FB and IPB.
g
ration caused by forward jump is shown in Fig. 6.
The comparisons between the average patchin

nce the segment sizes of CEB and IPB are not the
me, we normalized them in unit of minutes to
rify the performance differences, where each

deo is assumed of 120 minutes long. The jumps
rt from the beginning of the video and to different
get segments when the server bandwidth equals 5
es the video consumption rate. We can see from

e figure that our scheme performs slightly better

Fig. 6: Average patching (jump from beginning).

when the jump distance is between 50 and 70
minutes and slightly worse otherwise. Generally
speaking, both schemes perform comparatively.
However, the proposed CEB technique employing
only three loaders can achieve a better patching
requirement, while the IPB demands to receive all
channels, namely, five loaders.

Figure 7 investigates for both CEB and IPB
schemes the average patching duration from different
ju

der various server bandwidth
ca

ideo is encoded using MPEG-2
vi

onventional VoD broadcasting protocols were
optimized t of videos.
Th

fe

mp starting points to all targets given the server
bandwidth of five channels. We assume that the
probability for each segment to become the jump
target is equally likely. As shown in Figure 7, as the
starting point of the jump progresses, the average
patched data drops. The proposed CEB scheme
slightly outperforms IPB. Notice that we only need 3
loaders while IPB needs five. The figure also
indicates that the patched data finally drops to zero.
This is because as soon as all segments have been
received, no additional patching is required. We can
receive all segments in 69 minutes 41 seconds by
three loaders. (The last segment will be received 2
slots later in the worst case. In other words, 18 slots
are needed.) In contrast, IPB needs the average of 73
minutes 29 seconds to finish the download of the
entire video. (The last segment contains 30/49
portion of the video.)

Figure 8 compares the average patching duration
of CEB and IPB un

pacities. The bandwidth varies from 3 to 7
broadcast channels. As shown in the figure, the
bandwidth did not significantly impact the patching
duration for both schemes (the shape of the five
curves are very similar). The patching duration drops
gradually from about 25 minutes to zero. IPB
performs slightly better at higher server bandwidth,
but the curves of CEB drops faster then IPB since we
can receive all segments earlier. (Our last segment is
shorter than the one in pagoda broadcasting.) Notice
that merely with three loaders, our scheme CEB can
compete with IPB.

Table 1 lists the client disk storage bandwidth
needed when the v

deos with the playback rate of 4.5Mbps under
different server bandwidth. Our scheme can achieve
very low constant client storage I/O bandwidth,
namely, 4 * 4.5 Mbps: three for loaders to receive
data, one for the STB to render video. As the server
bandwidth increases, IPB requires clients to have
increasingly higher disk I/O access bandwidths.

5. Concluding Remarks

C
o only support normal playback

eir objectives are to minimize user initial latency,
client STB buffer, etc. However, they did not offer
interactive services, like forward jump or rewind.

We proposed in this paper a cost-effective
broadcasting protocol derived from the unique

atures of the striping broadcasting technique. The
proposed technique merely utilizes the three active
loaders fully to accumulate video segments as early
as possible. We then exploit these segments received
ahead to help the forward jump operation. Compared
to the recently proposed IPB, our scheme can offer
the same level of interactive services, only requiring
significantly less client communication and storage
bandwidths.

Server bandwidth
(channels) 3 4 5 10 15 20 30 40 50

IPB 18 22.5 27 49.5 72 94.5 139.5 184.5 229.5

CEB 18 18 18 18 18 18 18 18 18

0 20 40 60 80 100 120
-5

0

5

10

15

20

25

jump starting point

av
er

ag
e

pa
tc

he
d

m
in

ut
es

CEB
IPB

Fig. 7: Average patching (jump from all segments).

Table 1. Client I/O bandwidth comparison (unit: Mbps)

(a) CEB (b) IPB

Figure 8. Avera er bandwidth.

Refer
A. Hua and S. Sheu, “Leverage Client

[2] and Dilip D. Kandlur, “Stream

[3] cols: A

[4] t

[5] scraper Broadcasting: A

[6] nd

[7]

[8] K. Li, “The split and merge

[9] eongnam Youn, and

[10] ou, Ming-Ting

[11] S.

Streaming with Packet Loss Recovery,” In Proc. Of ACM

SIGCOMM’01, pp. 97-108, San Diego, CA, August

[12]

nternational Performance, Computing, and

[13]

tions and Networks, pp.690-697,

[14]

n Proc. of SPIE Multimedia Computing and

[15]

d,” In Proc. of the Int’l Conf. on Computer

[16]

, Analysis

[17]

[18]

7-248.

, San
Jose, CA, February 1995, pp. 66-77.

ge patched duration comparison of CEB and IPB under different serv

ences
[1] Y. Cai, K.

Bandwidth to Improve Service Latency in a Periodic
Broadcast Environment,” to appear in Journal of Applied
Systems Studies.

 Ming-Syan Chen
Conversion to Support Interactive Video Playout,” IEEE
Multimedia Magazine, 3(2):51-58, Summer 1996.

 Ailan Hu, “Video-on-Demand Broadcasting Proto
Comprehensive Study,” In Proc. Of IEEE Infocom 2001.

 K. A. Hua, Y. Cai, and S. Sheu, “Exploiting Clien
Bandwidth for more Efficient Video Broadcast,” In Proc.
Of Computer Communications and Networks (IC3N’98),
Lafayette, Louisiana, Oct. 1998.

 Kien A. Hua, Simen Sheu, “Sky
New Broadcasting Scheme for Metropolitan
Video-on-Demand Systems,” In Proc. Of ACM
SIGCOMM ’97 Conference, pages 89-100, Sept. 1997.

 L. Juhn and L. Tseng, “Fast data broadcasting a
receiving scheme for popular video service,” IEEE
Transactions on Broadcasting, 44(1):100--105, 1998.

 L. Juhn and L. Tseng, “Harmonic broadcasting for
video-on-demand service,” IEEE Trans. on Broadcasting,
43(3):268--271, Sept. 1997.

 Wanjiun Liao and Victor O.
(SAM) protocol for interactive video-on-demand
systems,” In Proc. of the 16th IEEE INFOCOM'97, Kobe,
Japan, April 1997, pp.1349-1356.

 Chia-Wen Lin, Jian Zhou, J
Ming-Ting Sun, “MPEG video streaming with VCR
functionality,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 11, no. 3, pp. 415-425, Mar. 2001.
(special issue on Internet streaming video)

 Chia-Wen Lin, Jeongnam Youn, Jian Zh
Sun and Iraj Sodagar, “MPEG video streaming with VCR
functionality,” in Proc. of IEEE Int. Symp. Multimedia
Software Eng., pp. 146-153, Dec. 2000, Taipei, Taiwan.

 A. Mahanti, D. L. Eager, M. K. Vernon, and D.
Sundaram-Stukel, “Scalable On-Demand Media

27-31, 2001.
 Jehan-Francois Pâris, “An Interactive Broadcasting
Protocol for Video-on-Demand,” In Proceedings of the
20th IEEE I
Communications Conference (IPCCC 2001), Phoenix. AZ,
April 2001, pp.347-353.

 J. F. Pâris, “A Simple Low-Bandwidth Broadcasting
Protocol for Video-on-Demand,” In Proc. of the first Conf.
on Computer Communica
Oct. 1999.

 Jehan-Francois Pâris, Steven W. Carter, and Darrell D. E.
Long, “A hybrid broadcasting protocol for video on
demand,” I
Networking, pages 317-326, San Jose, California, January
1999.

 J.-F. Pâris, Steven W. Carter, and Darrell D. E. Long, “A
low bandwidth broadcasting protocol for video on
deman
Communications and Networks, October 1998.

 J.-F. Pâris, S. W. Carter, and D. D. E. Long, “Efficient
broadcasting protocols for video on demand,” In Proc. of
the 6th International Symposium on Modeling
and Simulation of Computer and Telecommunication
Systems (MASCOTS '98), pp. 127-132, July 1998.

 Jehan-Francois Pâris, Darrell D. E. Long, Patrick E.
Mantey, “Zero-Delay Broadcasting Protocols for
Video-on-Demand,” In Proc. of the Int’l Conf. ACM
Multimedia, 1999, Orlando, FL, USA, pp. 189-197.

 S. Sheu, K.A. Hua and Y. Cai, “A Novel Broadcast
Technique for Theaters in the air,” In Proc. of WVUME'
2000, pp. 218-225, Chicago, IL, July, 2000.

[19] B. Vasudev, “Compressed-domain reverse play of MPEG
video streams,” In Proc. of SPIE Conf. Multimedia
Systems and Applications, Nov. 1998, pp. 23

[20] S. Viswanathan and T. Imielinski, “Pyramid Broadcasting
for Video-on-Demand Service,” In Proc. of the SPIE
Multimedia Computing and Networking, Vol. 2417

