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ABSTRACT

This paper presents an efficiency-enhanced technique for
generating isosurfaces in volume data. By incorporating a
hierarchical spatial data structure into splitting-box
algorithm, many unnecessary density checking operation
can be avoided. Empirical tests are given to show that the
performance of the proposed algorithm is better than both
the conventional marching-cubes algorithm and the
original splitting-boxes algorithm in the aspects of
computation time and number of triangle patches
generated.

1. INTRODUCTION

Scientific visualization has been studied extensively in
recent years. One of the most interesting and fast growing
techniques in scientific visualization is the volume
visualization. The purpose of volume visualization is to
project a multi-dimensional data set onto a two-
dimensional image plane for gaining an understanding of
the structure contained in the volume data. There are two
major approaches to visualize a set of multi-dimensional
volume data, namely, the direct volume rendering (DVR)
and the surface fitting (SF) method.

Direct Volume Rendering algorithms include approaches
such as ray-casting [1] [2] [3] [4] [5], integration methods,
splatting [6], and V-buffer rendering [7]. The latter two
methods are sometimes called projection methods [8] [9].
A DVR algorithm is characterized by mapping volume
primitives directly into screen space without using
geometric primitives as an intermediate representation.
DVR methods are especially appropriate for creating
images from data sets containing amorphous feature like
clouds, ﬂqids, and gases.

* This research is'supported by National Science Council,
Republic of China under Grant NSC 85-2221-E-001-030.

A Surface Fitting Algorithm 1is characterized by
approximating contour surface in the volume with
geometric primitives such as polygons or patches. It is also
called feature-extraction or iso-surface method. The SF
approach includes contour-connecting {10], marching-
cubes [11], marching-tetrahedra, dividing-cubes [12],
splitting-box [13], and others. After all patches have been
extracted, rendering hardware can be used to render the
surface in real time. Therefore it is suitable for
applications involving frequent change of viewing point.
However, changing threshold in SF is time-consuming
because it requires the revisit of all cells to extract a new
set of surface primitives.

The widely adopted method of surface fitting is the
marching-cubes method [11] [14] [15]. It examines eight
vertices of a voxel. A vertex is assigned the color black
(white) if its scalar value is greater (less) than the given
threshold. A bit is assigned to record the color of every
vertex. Eight bits form a byte-index corresponding to the
eight vertices of a voxel. There are as many as 256
configurations for a cube, however they can be classified
into only 15 basic cases [11]. A look-up table is pre-
calculated for the triangulation of configurations.

The marching-cubes algorithm traverses every cube and
calculates its byte index. Then, it looks up the table
according to the index for the triangulation of each cube.
The isosurface intersects the edges of a cube at the triangle
vertices that are obtained from a list of edges in the table
via linear interpolation of the densities of edge vertices.
The unit normal of each triangle vertex is calculated using
central difference and linear interpolation. Conventional
graphics-rendering algorithms implemented in either
software or hardware can display the resulting
representation with triangle vertices and normals.

There are two major problems with marching-cubes
method. First, the topological ambiguity may occur when a
cube has adjacent vertices with different colors, but
diagonal vertices are in the same color [16]. Some
solutions are available to resolve this problem [17] [18].
Second, in case of large data volume, the time for
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traversing the data set is considerable and the number of
generated triangles is numerous. In order to speed up the
rendering process, many reports [13] [19] [20] [21] [22]
[23] [24] [25] have proposed improved algorithms to
reduce the amount of data created.

To speed up iso-surfaces generation, Jane Wilhelms and
Allen Van Gelder proposed an octree method [21]. They
proposed a variant of octree-like data structure called
BONO tree. It can improve the performance of marching-
cubes algorithm by reducing the amount of data traversed.
In 1993, Heinrich Mueller and Michael Stark presented an
algorithm called " Splitting-box” [13], which reduces
considerable number of triangles generated. Instead of
directly computing the triangles on each cube element,
they identify the contour chains of the isosurface boundary
in a top down fashion and adapt the size of the polygonal
chain according to its shape. It is a good approach to
reduce the number of surface primitives, however in their
algorithm there are many wasted computations for empty
regions. In this study, we incorporate a min-max bisection-
tree data structure to the subdivision process of the
splitting-box algorithm to avoid these unnecessary
checking operations during the generation of contour
chains. Empirical tests are given to demonstrate that this
simple enhancement results in a significant improvement
in computation time.

Section 2 describes briefly the splitting-box algorithm and
the notion of min-max bisection-tree. Then an improved
algorithm is proposed. In section 3, several empirical tests
are presented to demonstrate the performance of the
proposed algorithm. It shows that our algorithm
outperforms both the pure splitting-boxes algorithm and
the marching-cubes algorithm in computation time.

2. ALGORITHMS

First, we briefly introduce the splitting-box algorithm and
the min-max bisection tree (MMBT) structure. Then we
show how to integrate these two notions to form our
improved algorithm.

Let V be a given volume data which consists of a finite
regular 3D grids of scalar values and T be the threshold.
The splitting-boxes algorithm finds a linear approximation
of the isosurface of V with threshold T . Several terms that
will be used later are introduced as follows. A box is a
rectangular sub-volume of V . The edges and the faces of a
box are defined in usual sense, therefore each box has 12
edges and 6 faces. The length of an edge is the number of
" grid points on it. An edge is typed an MC edge if there is
at most one transition of colors among its grid points. A
face is MC if its four edges are all MC edges. Also, a box
is MC if its 12 edges are all MC edges. The splitting-box
algorithm first bisects the given box at its longest edge.
Then the sub-box is checked for MC. If it is not MC, the
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bisection process is repeated recursively until the 2x2x2
sub-boxes are generated. For an MC box, contour chains
are generated and then triangulated to obtain its surface
primitives.

One of the main drawbacks of the splitting-box algorithm
is that the "quality-checking” operations must be
performed down to the unit box (2x2x2 box) size. For a
given threshold value T, a box is found to be empty only if
the values of its vertices are all greater than or less than T.
Figure 2.1 shows an example that a 3x3x3 box must be
split further to avoid the loss of possible surface element.
There are totally 14 sub-boxes generated by the splitting-
box procedure from 3x3x3 box size to 2x2x2 box size. In
other words, the "quality-checking” operations for the
contour chains in a 3x3x3 box must be processed 14 times.
Even for an empty 3x3x3 box without any surface element,
the 14 times "quality-checking" operations are still needed
to guarantee that nothing is in the box. These time wasting
procedures slow down the splitting-box algorithm. To cope
with this problem, we incorporate a min-max bisection
tree into the algorithm to avoid unnecessary subdivisions.

3x3x3 "non-empty” box 3x3x3 "empty" box

Figure 2.1:Two cases of 3x3x3 boxes

According to the notion of [21], if there is a min-max
hierarchical data structure, then those boxes containing no
threshold value T require no further subdivision. In order
to adapt to the greedy-partition criterion of the splitting-
box algorithm, a hierarchical data structure called min-
max bisection tree (MMBT) is introduced as follows. A
min-max bisection tree is a hierarchical data structure
based on decomposition of volume space. A volume space
is recursively subdivided according to the MC criterion in
the splitting-box algorithm. Each node of the tree
corresponds to a box in the volume space. In the min-max
bisection tree, two extra fields, namely, the maximum
value and minimum value in the box are added to each
node. For completeness, the construction algorithm of
MMBT is given in the following.
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PROCEDURE subdivide(box,subbox1,subbox2)

BEGIN
Subdivide the box at its longest edge into two subboxes;
Record subdividing direction into box-node;

END

PROCEDURE MMBT (level,box)
BEGIN
IF( level is 2x2x2 leaf level )
BEGIN
Compute the min,max value of box;
Record the min,max values into box-node;
Return box-node;
END
ELSE
BEGIN
subdivide (box , box1, box2);
MMBT( level+1, box1);
MMBT( level+1, box2);
Get summary min,max of box from box1, box2;
Record the min,max values into box-node;
Return box-node;
END
END

MMBT construction algorithm

The root of MMBT is the given volume V itself. There are
two important fields in each node, namely, the minimum
and the maximum, which respectively record the minimum
and the maximum density values of the box. The
procedure subdivide() is to subdivide the volume data at
the edges of the same direction sequences as that of the
splitting-box algorithm. Our improved splitting-boxes
algorithm first call the procedure MMBT to build the min-
max bisection tree (MMBT) which is used to summaries
the scope of density values of the grid points in each box.
The following process is similar to that of the splitting-
boxes algorithm except that a box is subdivided not only
because it is not MC but also because the threshold value
lies between the minimum and maximum values of the
corresponding box-node in the MMBT.

Notice that in the conventional min-max octree [21], the
subdivision is performed cyclically along x, y, and z-axis.
However, this subdivision rule does not fit the greedy
subdivision of splitting-box algorithm. Therefore our
subdivision strategy is based on subdividing the longest
edge to adapt to the splitting-box algorithm. Accordingly,
only a part of the splitting-box algorithm needs change.

The worst case time complexity of MMBT generation is
introduced as follows. A box can be bounded by a cube
whose edge length is equal to the longest edge length of
the original box. For sxmpllcny, the longest edge length of
the initial box is n = 2" +1. Then the longest edge is split
into two edges of length 241 ifa bisection is applied.

Two nodes corresponding to sub-boxes are generated and
two comparison operations are performed to compute the
minimum and maximum values. The second bisection
yields four sub-boxes from the two boxes generated by the
first bisection. Then eight Sub-boxes whose longest edge
length is not greater than 2™ +1 are generated by the third
bisection.

Let T(n) be the time required for MMBT generation from
the initial cube, N(m) be the time needed for an cubic box
of egde length 2" +1 , a leaf node of MMBT is mapped to
a box of size 2x2x2, and the computation time for
generating a leaf node is N(1). Then we have the
following.

T(n) = T2™ +1) = N(m)

N(1)=14
N(m)=(2+4+8)+8-N(m-1)
=14+8-N(m-1)

N(m)=14+8-N(m -1)
14+8-(14 + 8- N(m ~ 2))

m-1
=14 3 gk4+gm-1
k=0

—14( )+8m 14

=0(2m +1)°
=o@)

The running time for generating the MMBT is linear with
respect to the size of input data.

3. IMPLEMENTATION AND RESULTS

In order to compare the performance of the following
algorithms, namely, the marching-cubes algorithm, the
splitting-box algorithm, and our improved algorithm, we
implemented all of them on an SGI workstation. By
comparing both the numbers of triangles generated and the
total computation time, it shows that our improved
algorithm is better than the other two algorithms in both
aspects.

The first example is a density function defined by the
distance function

f(x9,2) = J(x —16) + (y =168 +(z ~ 16)°

The isosurface of threshold T is a sphere with center
(16,16,16) and radius T. A hidden line representation of
the results of both marching-cubes and improved splitting-
box approaches are shown in Figure 3.1 and Figure 3.2
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respectively. Table 3.1 shows the numbers of triangles and
their running time. Figure 3.3 shows the relative
frequencies of the empty boxes those do not need further
subdivisions.

The second example is a medical data set, the CThead. It
consists of the cross-section images of the human head : 1
obtained by computer tomography. The data size is 4114 {l A "]

256x256x92, and the range of scalar value is from 0 to 255. % !‘!’l’:lj:,

1!§ )
&l
N7 /ét‘

We chose the threshold 80 for the density of bone. Figure g
3.4 and Figure 3.5 show the results obtained with the R\ 0.8 "'»'L.g 7 j(
marching-cubes algorithm and the proposed algorithm ‘&{ "’,' A

respectively. Table 3.2 shows the numbers of triangles and
their running time. Figure 3.6 shows the relative
frequencies of empty boxes. The labeles are the sizes of
boxes and the numbers of empty boxes. Figure 3.2: Sphere with threshold 80 applying the

proposed algorithm

The data set of the third example is the same as that of the
second example. We chose another threshold 50 for the
density of skin. Figure 3.7 and Figure 3.8 show the results
obtained with the marching-cubes algorithm and the
proposed algorithm respectively. Table 3.3 shows the

numbers of triangles and their running time. Figure 3.9 sohere Marching-cubes solingbos VBT
shows the relative frequencies of empty boxes. N ST s -
#utangles (sec) #uriangles (sec) | #Frriangles U(%
The fourth example is also a medical data set, an MRbrain. MMBT Creadon —_— —_ o.21
It consists of the cross-section images of a human head Surfxce Finding | 482% | 225 a4 44 3484 | 154
obtained by magnetic resonance. The data size is Tomal Excraction 725 | (STOS®ITTgT | (SMOSRIT

- 256x256x109, and the range of scalar value is from 0 to
255. We chose the threshold 50 for presenting the Table 3.1:Experimental results (Sphere)
appearance. Figure 3.10 and Figure 3.11 show the results
obtained with the marching-cubes algorithm and the
proposed algorithm respectively. Table 3.4 shows the
numbers of triangles and their running time. Figure 3.12
shows the relative frequencies of empty boxes. Apparently,
the proposed algorithm avoids a certain number of 10080
unnecessary subdivisions of contour chains.

3p1isting-box
T

Spnere ~—

nusber of box

[ se 100 158 208
»ox size

Figure 3.3:Relative frequencies of empty boxes in Sphere
with threshold 80

Figure 3.1: Sphere with threshold 80 applying the
marching-cubes algorithm
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Figure 3.4: CThead with threshold 80 applying the

marching-cubes algorithm

Splitting-son
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Figure 3.6:Relative frequencies of empty boxes in CThead
with threshold 80

Figure 3.5: CThead with threshold 80 applying the

Figure 3.7: CThead with threshold 50 applying the
marching-cubes algorithm

proposed algorithm
CThead Marching-cubes Sphiing-box MMET
256x256x92 I riancies | CPU Gme | #triangles | CPU tme | #uiangles | CPU time
density= 80 _{sec) (sec) (sec)
MMBT Creation —— —_— 30.34
Surface Finding | 634280 [ 455.68 | 374131 [ 72764 | 374131 [ 12857
o Exracdon 45568 | (3898 % 7o ga | (5828 % gy

Table 3.2:Experimental results (CTheadl)

Figure 3.8:CThead with threshold 50 applying the
proposed algorithm
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Figure 3.11:MRbrain with threshold 50 applying the
proposed algorithm

CThead Marching-cubes Spilcing-box MMBT
256x256x92 i iangies | CPU tme | #urfangies | CPU me | #urlangles | CPU time
density= 50 {sec) {sec) (sec}

MMBT Creadon _ _ 30.53

Surface Finding | 389160 [ 367.94 | 218190 [ 702.19 | 218190 [ 79.33

(56.06 %) { 56.06 %)
Total Bxraction 367.94 702.19 109.86
Table 3.3:Experimental results (CThead2)
Splitting~vox
100999 T T T T T T
CThaad~38 ——
10084 H -

; 1999 H «

:

3

g 180 H -

i1 ) b
' [ ] ;‘ 4“ 5‘. o8 l;ﬂ li'. l:ﬂ 160 l;. 209

box size

Figure 3.9:Relative frequencies of empty boxes in CThead

with threshold 50

Figure 3.10: MRbrain with threshold 50 applying the
marching-cubes algorithm

MRbrain Marching-cubes Spilcting-box MMBT
256x256x109 [ les | CPU dme | #ufangles | CPU dme | #uiangles | CPU dme
(sec) (sec) (sec)
MMBT Creatlon _— —_ 36.09
Surface Finding | 1371482 | 553.2% | 1038849 [ 917.96 | 1038849 | 24173
(75.74 %, (75.74%
ol Exracdon 553.24 917.96 277.82
Table 3.4:Experimental results (MRbrain)
Splitting-box
199900 Y T T T T T T T T
MRDPALN
10808 H . -
H
s
s
H
2
199¢ H 4
1o . , , : . , . . :

L] 28 49 (1] L] 190 129 140 160 188 200

box size

Figure 3.12: Relative frequencies of empty boxes in
MRbrain with threshold 50

4. DISCUSSIONS AND CONCLUSION

Table 3 shows that the number of triangles generated by
the splitting-box algorithm can be reduced from 1/2 to 1/3
of that generated by the marching-cubes algorithm. The
running time of the splitting-box algorithm is about 1.5 to
2.0 times of that required by marching-cubes algorithm.

In the proposed (MMBT) algorithm, the number of the
contour chains is the same as that in the pure splitting-box
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algorithm, however the running time, even including the
MMBT construction time, is about 16 % to 40 % of the
original splitting-box algorithm. Moreover, the running
time, including the time for MMBT creation, is about 30
% to 77 % of the running time of the marching-cube
algorithm. If we regard the min-max bisection tree
construction time as the preprocessing time, the actual
polygon creation time is even less.

The marching-cubes algorithm has the disadvantage that
the number of triangles generated is considerably large.
The splitting-box algorithm is a good approach to reduce
the number of surface primitives but have two problems.
First, there still is much computation time wasted for
empty region in volume data. Second, from the splitting-
box algorithm, we know that it must generate two times
contour chains. These time-wasting procedures make the
splitting-box algorithm even slower than the original
marching-cubes algorithm. It is strongly required for an
exact approximation of large contour chains generated
from large boxes. By embedding the min-max bisection
tree into splitting-box algorithm, we obtain an improved
isosurface generation algorithm that is better than
conventional marching-cubes algorithm both in number of
triangles generated and computation time. Finally we give
table 4.1 to show that the BONO tree does not perform
better than the min-max bisection tree as long as the
splitting-box algorithm is concerned.
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