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ABSTRACT

Volume Rendering is a technology to illustrate the
shape and volumetric property of the objects in the areas
like medical imaging and computational fluid dynamics.
Because volume rendering takes a lot of time to process a
large volume of data, it is very difficult to generate three-
dimensional image in real-time. In this paper, we present
an efficient parallel volume rendering algorithm based on
shear-warp factorization for medical imaging on
distributed memory multiprocessor systems. We first use
a novel data partition method to distribute voxels into each
processor element and to render partial subvolume images
independently. In the reassembling stage, it only requires
merge time to produce the final image. Our parallel
volume rendering algorithm takes less memory space and
rendering time on distributed memory multiprocessor
systems. In our implementation, it can render a medical
dataset of 256 x 256 x 225 voxels at about 75 mini-second
per frame on a 32-processor IBM SP2 distributed memory
multiprocessor system. Therefore, our algorithm can be
used to make real-time volume rendering.

1. INTRODUCTION

Volume Rendering is a technique to visualize three-
dimensional volume data and to display it in two-
dimensional image. The traditional rendering techniques
are mostly used to display the surface of objects. Volume
rendering [1] is now used to understand and analyze the
shape of the objects in medical imaging and computational
fluid dynamics. It can display the object with semi-
opaque and also has a quality better than that of the
surface. In medical imaging, the three-dimensional
scanning devices (CT, PET, MRI and Ultrasounds) can
directly capture the properties of three-dimensional objects
in machine-readable format. Volume rendering can be used
to study natural objects by analyzing large empirical data
sets obtained from measurements or simulations.

Unfortunately, most of the existing volume
rendering methods are very computationally intensive and
therefore fail to achieve interactive rendering rates for
large datasets. The volume data are too large to hold in the
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memory of a single processor element. Even with the
latest volume rendering acceleration techniques, it still
takes a few minutes to a few hours to render volume
images in a single processor machine. It is not a real-
time interactive volume rendering at all.  Although
today's computer technology continues to advance, the
power of computer processing never seems to catch up
with the increases in data volume. Even volume
rendering acceleration techniques are available, one still
faces the problem of handling a large amount of data.
Besides, large datasets are very expensive in the storage.
and communication costs. In order to achieve interactive
volume rendering, users often reduce the original data size
and get inferior visualization results. From the above
probiems, we know that the visualization of volume data
should be performed in a parallel fashion.

One can parallelize a volume rendering algorithm
that uses the optimization technique to reduce computation
costs. In distributed computing environments such as a
campus-network, there are many workstations and
personal computers that might be idle for many hours a
day. One can integrate these workstations and personal
computers to become a parallel computing environment.
This allows us to distribute the large amount of data as
well as the time-consuming rendering process to the
available distributed computing resources.

Parallel volume rendering parallelizes the traditional
serial rendering techniques. It distributes volume data
into a lot of processor elements and reduces the
computation time. Different parallel system architectures
have different approaches and encounter various problems.
For example, in a distributed memory multiprocessor
system, the distributed volume rendering algorithm uses
message passing to exchange data. The communication
overhead is the main factor affecting the rendering
speedup. However, in a shared memory multiprocessor
system, Philippe Lacroute [2] found that a shared memory
implementation of the shear-warp algorithm was not
dominated by the costs of communication. Therefore,
shared memory implementations of volume rendering do
not have the communication problem.

A good volume rendering algorithm must ensure that
all large data structures are distributed among the
processors without wasteful duplication. In this paper,



we present an efficient volume rendering method based on
shear-warp  factorization on  distributed memory
multiprocessor systems. The shear-warp factorization
volume rendering algorithm is a fast algorithm used in
many volume rendering algorithms. It was presented by
Philippe Lacroute et al. {3] and had been implemented in
the shared memory multiprocessor system such as DASH
to perform high speedup rendering. However, the
preprocessing time is too long and it requires a lot of
memory as well. To solve these problems, we use an
efficient and adaptive partition method to distribute
volume datasets. Then each processor renders
subvolume independently. By using a merge method,
one can assemble rendered images to form the final image.

The rest of this paper is organized as follows. In
Section 2, we describe a number of volume rendering
algorithms which had been proposed recently. Then we
explain the serial shear-warp factorization volume
rendering algorithm in Section 3. Section 4 presents our
efficient parallel volume rendering algorithm on
distributed memory multiprocessor systems. Section 5
shows the implementation on IBM SP2 for our parallel
volume rendering algorithm and compares the results with
that of other volume rendering algorithms on IBM SP2.
Section 6 concludes our paper.

2. RELATED WORK

A number of algorithms have been proposed for
volume rendering. They can be broadly classified as ray
tracing algorithms, splatting algorithms, cell projection
algorithms, multi-pass resampling algorithms, or shear-
warp factorizations.

Ray tracing algorithms [4][5] are called backward
projection or image order algorithms. They first trace a
ray through the volume data for each image pixel, compute
their color and opacity, and then produce final image.
Splatting algorithms [6] are called forward projection or
object order algorithms. They compute the contribution
of a voxel to the image by convolving the voxel with a
filter that distributes the voxel's value to a neighborhood of
pixels. The cell projection algorithms [7] are similar to
splatting except that the former use polygon scan
conversion to perform the projection. The multi-pass
resampling algorithms [8] operate by resampling the entire
volume to the image coordinate system. Catmull and
Smith introduces multi-pass resampling for warping two-
dimensional images, and the technique was first applied to
volume rendering at Pixar [9]. The shear-warp
factorization is a fast volume rendering algorithm [10]. It
has a high performance of parallel computing approach
when optimize this algorithm by using early-ray
terminating and run-length encoding. In this research, we
develop our volume rendering algorithm based on this
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shear-warp factorization.

Recently, two parallel volume rendering algorithms
for the shear-warp factorization had been proposed.
Lacroute [10] proposed a parallel shear-warp factorization
algorithm for two types of shared-memory multiprocessors
(SGI Challenge and Stanford DASH). Lacroute achieved
15 frames per second for 256 x 256 x 167 voxels on an
SGI Challenge 32-processor shared-memory computer.
Kentaro Sano et al. [11] present another parallel volume
rendering algorithm.  They implemented shear-warp
factorization and achieved 12 frames per second for 256 x
256 x 256 on an IBM SP2 32-processor distributed-
memory multiprocessor. This algorithm first partitions
the slices and distributes them into each processor, then it
uses the shear-warp factorization to render sub-volume to
generate intermediate images. Finally, they use binary-
swap compositing method.to assemble the final image.

3. THE SERIAL YOLUME RENDERING
OF SHEAR-WARP FACTORIZATION

In this section, we describe the serial volume
rendering of shear-warp factorization. It is an object-
order volume rendering algorithm and has three major
steps. First, a three-dimensional shear is based on a
factorization of the viewing transformation matrix. Then
use projection to generate a distorted intermediate image.
Finally, warping a two-dimensional image to form an
undistorted final image [9].

Figure 1 illustrates the volume rendering of shear-
warp factorization. In this figure, we denote the
horizontal lines to represent slices of volume data that
were sampled on a rectangular grid. In the first step, we
shear the volume slices such that the viewing rays become
perpendicular to the slices of the volume. Then the
resampled slices are assembled together in a front-to-back
order using the "over" operator to generate an intermediate
image. Finally, the intermediate image must be
transformed into the correct final image by applying an
affine 2D warp.
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Figure 1: Serial shear-warp factorization.
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4. AN EFFICIENT PARALLEL VOLUME
RENDERING ALGORITHM BASED ON
SHEAR-WARP FACTORIZATION

To implement the shear-warp factorization in
distributed memory multiprocessor systems, an efficient
method to minimize rendering time is important. We first
employ an adaptive data partitioning method to distribute
the volume dataset, then use shear-warp factorization to
generate intermediate images, warping these images and
reassembling them to form the final image. In the
following subsections, we will discuss the methods used in
data partitioning stage and image compositing stage.

4.1 Data partitioning

In the volume rendering of a distributed memory
multiprocessor system, the first stage is partitioning the
original  three-dimensional volume datasets and
distributing the subvolume to each processor element. If
the data partitioning method is efficient, the computation
time and rendering time can be reduced and the
communication overhead can also be decreased.

In the data partitioning stage of Kentaro Sano et al.
[11], they employ the slice volume partition method to
distribute volume data among processors. They group
volume slices onto a set of subvolumes. Then each
processor will have several continuous volume slices. In
each processor, it employs shear-warp factorization
method to perform run-length encoding and resample of
allocated subvolumes. Then each subvolume image is
generated in parallel. The main advantage of this method
is easy to implement in parallel because this is a simple
volume data partitioning method. On the other hand, the
disadvantage of this method is that the total size of the
intermediate images generated from all processors is equal
to that of the final image. They must use "over" [12]
operation to decide the opacity and color in each image
pixel as shown in Figure 2.
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Figure 2: Slice data partitioning and binary swap
compositing method
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To avoid getting a large size of intermediate image
in each processor, we can slice the volume datasets in each
processor by vertical direction instead of slice partition as
shown in Figure 3. In this figure, there are four processor
elements. The volume dataset is sliced into four parts
that are denoted by parallelogram of dash lines. Each
part contains one piece of the slices. When shearing the
volume datasets, the intermediate images will have
overlapping areas and the intersection parts will be
assembled, which are generated from each processor
element. While the overlapping areas of intermediate
images have the communication overheads, the
compositing intersection parts of intermediate images have
extra computation overheads. The communication time
and computation time will be increased when it is sheared
in a large angle. This is because each processor needs to
exchange more intermediate image data resulting more
scanlines and uses "over" [12] repeatedly to compute the
color and opacity for each image pixel.
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Figure 3. Volume data partition method

To avoid the communication overheads of
overlapped areas, one can shear the volume datasets and
then partition them by slicing orthogonally to volume
slices according to the angle of viewing direction. Figure
4 shows the example of this method. From Figure 4, we
can see that the intermediate image of each processor does
not have overlapping area. The intermediate image can
be warped independently. We employ the mathematics
formula to decide the size of volume datasets which are
partitioned efficiently and adaptively by the sheared angle.
Note that the sizes of intermediate images in the processor
elements are not equal.  After the data partitioning is
finished, we then use shading table to compute the shading
of voxels and use shear-warp method to generate partial
image rendering.
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Figure 4. Example of adaptive data partition method.

To decide the size of subvolume dataset, we derive
the mathematics formula in three cases: tanf < 3‘/2/ r,

tan® = 32/ p, and tand > 3/2/p , where 0 is the angle

for shearing and p is the number of processors. For case
I (Figure 5(a)), the mathematics formula to decide the size
of subvolume dataset is given as follows,

®  The left- and right-side parts (denoted as (i)

in Figure 5(a)):
I=n]—2—([F-n O
ptand
®  The trapezoid parts (denoted as (ii) in Figure
5(a)):
2 1 2
= n(—-—tanf+1- 2
(== ) @

® The middle rectangle parts (denoted as (iii)
in Figure 5(a)):
1= " dao-2-1y @
p-472 P

Here [ is the size of a partial image and p'=-——.
. tan &

For case 2 (Figure 5(b)), the mathematics formula to
decide the size of subvolume dataset is given as follows,

®  The left- and right-triangle parts (denoted as )
(i) in Figure 5(b)):

I= ntand )
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Figure 5: The three cases of mathematics formula
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®  The middle rectangle parts : (denoted as (ii)
in Figure 5(b)):
n 1 4
I= —~tanfd —— -1 5
SGme-—oh O

Here /'is the size of a partial image.

For case 3 (Figure 5(c)), the mathematics formula to
decide the size of subvolume dataset is given as follows,

® The trapezoid parts :
Figure 5(c)):

(denoted as (i) in

I= n(tan6?+l—ltan0) 6)
p 2

®  The middle rectangle parts : (denoted as (ii)
in Figure 5(c)):

n(1+£—3tan0)

I= ————f’_?_ @)

Here I is the size of a partial image.

4.2 Image Compositing

The image compositing stage reassembles the
intermediate images, which are generated from individual
processor elements, to form the final image. After the
volume rendering, each processor element will have one
subvolume image which contains partial intermediate
image. Then, different compositing methods are used to
combine these intermediate images to compose the final
image.

Kentaro. Sano et al. [11] employ the binary-swap
compositing method [13] to produce the final image. The
binary-swap compositing method is a divide-and-conquer
method.  The main advantage of the binary-swap
compositing method is that the image size decreases in the
dividing process and the compositing process is more
efficient. However, the number of processor elements is
restricted in a power of two. It is not adaptable for the
cases when the processor elements are not equal to a
power of two. '

In our image compositing method, since the
rendered partial images are generated independently, the
images do not have overlapping areas and intersecting
parts. We only need to use a merge method to assemble
them to the final image. By using the directives of
message passing library such as MPI on a distributed
memory multiprocessor system, the compositing time is
reduced and fixed. Therefore, the advantages of our
method are twofold: (1) it is not limited by the number of
processor elements and (2) the time used is short and
fixed.
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5. PERFORMANCE EVALUATION

In this section, timing results for the parallel volume
rendering implementation are presented. We also compare

_the proposed method with other volume rendering

algorithms [11]. We first describe our volume rendering
system architecture in Section 5.1. Then we discuss the
performance results and comparison of our volume
rendering algorithm in Section 5.2.

5.1 System Architecture

In our volume rendering system, we have
implemented our parallel volume rendering algorithm
based on shear-warp factorization on an IBM SP2 [14].
The IBM SP2 is supported from the National Center of
High performance Computing in Taiwan. The IBM SP2
is a super-scalar architecture and the CPU model is IBM
RISC System/6000 POWER2 which clock rate is 66.7
MHz. There are 40 IBM POWER2 nodes in the IBM
SP2. Each node has 128KB Ist-level data cache, 32KB
Ist-level instruction cache and the memory capacity is
128MB. Each node is interconnected based upon a low-
latency, high-bandwidth interconnection network called
the High Performance Switch (HPS).

In the software, we have used C language and MPL
message-passing library to implement our parallel volume
rendering algorithm on the IBM SP2. The MPL
message-passing library is the IBM's message passing
library and it is similar to the MPICH, which is one of the
MPI [15] message-passing libraries. MPI is a standard
for message passing to send and receive data in a parallel
architecture system. So our volume rendering algorithms
are portable and can be implemented in different
distributed memory multiprocessor systems.

5.2 Experimental Results

To evaluate the performance of our parallel volume
rendering algorithm, we use six different datasets as test
samples. These datasets are supported from the Chapel
Hill Volume Rendering Test Dataset. The dimensions
and descriptions of these datasets are shown in Table 1.
The first and the second samples are the "brain" dataset
which is an MR scan of a human head volume data and it
is resampled to two different resolution voxel sizes. The
third, the forth, and the fifth samples are the "head" dataset
which is a CT scan of a human cadaver head and it is
resampled to three different resolution voxel sizes. The
last sample is the "engine” dataset which is a CT scan of
an engine block. The images are grayscale and contain
256 x 256 pixels. Figures 6 (a) - (c) show the three final
images of our test datasets.
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Table I. Dimensions and descriptions for test datasets.
Dataset Dimensions Descriptions
Brain (small) 128 x 128 x 84 Applying a Gaussian filter; no further scaling is necessary
Brain (big) 128 x 128 x 109 Scaling 1.54x in the Z dimension
Head (small) 128 %128 x 113 Applying a box filter; no further scaling is necessary
Head (middle) 256x 256 x 113 Scaling 2x in the Z dimension
Head(big) 256% 256 x 225 Applying a cubic bspline filter; no further scaling is necessary
Engine 256x 256 x 110 No scaling

©

Figure 6: Test data sets for parallel volume rendering

algorithm. (a) A CT scan “head” (128 x 128 x 110) (b)
A MR scan "brain" (128 x 128 x 84) (¢} A CT scan
“engine” (256 x256 x 110)
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Fig 7: The shear-warp time and compositing time on the
256 % 256 x 225 dataset (a CT scan "head” }

Figures 7{a) and (b} show the results of shear-warp
iime and compositing time. The shear-warp time
contains shear time and warp time while the compositing
time contains the "over” operation time and the merge time.
In these figures, we compare four different volume
rendering algorithms. The m/ represents the algorithm
that was reported by Sano et al. [12]. It uses slice data
partition and binary-swap compositing method. Since the
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mI method uses the binary-swap compositing approach, it

does not have the timing results when the number of 700

processors is 10, 20 and 30. The m2 represents the ’8600 —o—mi
algorithm that was described in the second data partition 9 igg —o—m2
method in Section 4.1. It uses volume data partition and £ 30 —a—m3
compositing method. The m3 and m4 represent the E 200 —X—m4
algorithm that was described in the third data partition ™ 100

method in Section 4.1. It uses sliced volume data 0

partition and merge compositing method. The m4 15 9 131721252933
method slices volume data partition with the mathematics

formula and merge compositing method while m3 does not number of processors
use the mathematics formula. Figure 7(a) shows the :

timing results of shear-warp in different number of (¢) Head (small) dataset
processors. The time of m4 method is less than any other

methods. This is because that it uses the mathematics 2500

formula to decide its partition size in each processor. The - 5 2000 &

load balancing in the m4 method is better than others. 2 1500

Figure 7(b) shows the compositing time of these four %1000 i

different algorithms. The compositing time of the m3 E 500

and m4 methods is lower than that of the m/ and the m2
methods. This is because the m3 and m4 methods only
use merge method to assemble the partial images.
However, the m] and m2 method must use "over"
operation to decide the color and opacity in the
intersection parts of intermediate images. The timing
results of shear-warp time and compositing time for other
test datasets are similar to this case. Due to the page
limitation, we only present the total rendering time of
these four algorithms for test datasets shown in Table 1.
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Fig 8: The total rendering time of all sample datasets.



Figures 8(a) to 8(f) show the total rendering time for
the six test datasets described in Table 1. The total
rendering time contains the shear-warp time, the data
communication time and the compositing time. We also
compare four algorithms in each test data set. In any case,
the m4 method has a better performance than the other
methods.

6. CONCLUSIONS

In this paper, we have presented an efficient volume
rendering algorithm based on the shear-warp factorization
and demonstrated its performance on distributed memory
multiprocessor systems. As the experimental results
show, our algorithm has a better performance based on
shear-warp factorization in rendering medical images.
We use the mathematics formula to decide the sizes of
subvolume datasets. This method partitions volume data
efficiently and distributes among processors.  Each
processor employs the shear-warp factorization to render
subvolume and to generate intermediate image. Then we
use the merge method to assemble the final image. Our
volume rendering algorithm is attractive for its
exploitation of volume data partition method. The
experimental results show that the proposed algorithm is a
viable means of achieving real-time volume rendering.
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