
A greedy approach to the coin exchange problem

Ming Yu-Hsieh Min-Zheng Shieh Shi-Chun Tsai

National Chiao-Tung University

Email: {myuhsieh, mzhsieh, sctsai}@csie.nctu.edu.tw

Abstract-We consider a variation of the well
known coin changing problem: Suppose that we
buy some merchandise priced at x dollars in a cur-
rency with n kinds of coins valued at c1, c2, · · · , cn

dollars. What is the fewest possible number of
coins required to be exchanged? In this paper, we
propose a greedy algorithm, which finds optimal so-
lutions for the case when ci = ci−1, i = 1, ..., n.
Also if we apply our greedy algorithm to general
input, then we can determine the solution to be
optimal or not in O(ncn) time.

Keywords: Coin change, coin exchange, greedy
algorithm.

1 Introduction

The coin changing problem[4, 2] is: given a set of
coin denominations {c1, c2, · · · , cn} and an integer
x, find the way to make change for x cents (or
dollars) using the fewest possible number of coins.
This famous problem is NP-complete and it can be
solved in polynomial time for some special sets of
coin denominations by a greedy algorithm. Kozen
and Zaks[4] showed that if the greedy algorithm
is not optimal for some set of coin denominations
1 = c1 < c2 < · · · < cn, then the minimal counter
example x lies in [c3 + 1, cn + cn−1]. This problem
is a variation of the integer knapsack problem[2, 5].
It can be formulated as follows:

min
n∑

i=1

xi

s.t.
n∑

i=1

cixi = x

xi ∈ N ∪ {0}, ∀i ∈ [n] and x ∈ N.

Now we consider the following case: when we

buy some merchandise priced at x cents, how
should we pay to make the number of coins ex-
changed as few as possible? Formally, the coin
exchange problem is: given a set of coin denomi-
nations {c1, c2, · · · , cn} and an integer x, find the
way to buy some merchandise priced at x cents (or
dollars) by exchanging the fewest number of coins.
This problem is a special case of the jug measuring
problem [6] and it’s also a generalization of the ex-
tended GCD problem [3] under `1-norm, which are
proved to be NP-hard [6, 3]. WLOG, we assume
that c1 < c2 < · · · < cn−1 < cn, and in general this
problem can be formulated as follows:

min
n∑

i=1

|xi|

s.t.
n∑

i=1

cixi = x

xi ∈ Z, ∀i ∈ [n] and x ∈ N.

Intuitively, |xi| is the number of the ci-coin ex-
changed. We pay |xi| ci-coins if xi is positive, oth-
erwise we get |xi| ci-coins. The goal is to find a vec-
tor (x1, x2, · · · , xn), with

∑n
i=1 cixi = x, such that

its `1-norm,
∑n

i=1 |xi| is minimized. For example,
suppose the denominations are 1-dollar, 10-dollar,
and 100-dollar bills, and we would like to buy a
book priced at x = 98 dollars. Then, we can pay 98
dollars consisting of nine 10-dollar bills and eight
1-dollar bills, and we get no change; seventeen bills
are exchanged. Or we can pay one 100-dollar bill,
and we get 2 dollars change consisting of two 1-
dollar bills; only three bills are used. It is obvious
that the latter is a better solution. In other words,
this problem can be stated as representing a given
value with the fewest number of coins (or bills)
from a given set of denominations.

The coin changing problem and the coin ex-

1

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1238

change problem share a strong resemblance in their
forms and both are NP-hard[5, 7, 6, 3]. While
the integer knapsack problem can be approximated
efficiently[1]. However, our problem has been
proved by Havas and Seifert [3] to be NP-hard even
to approximate within n1/O(logc n), where c is an
arbitrary small positive constant.

In this paper, we give an efficient greedy algo-
rithm runs in O(n) time for a special case of this
problem (where each ci = ci−1), and we prove if
the greedy algorithm does not give the optimal so-
lution for some set of denominations then the min-
imal counterexample x ∈ (0, cn + cn−1). At last,
we can determine whether the answer is optimal
or not for general input in O(ncn) time, which is
less than the time required by exhaustive search,
O(n2cn).

The rest of the paper is organized as follows. In
section 2, we propose a greedy algorithm to solve
a special case efficiently. This algorithm can give
an optimal solution for the specific case in linear
time. In section 3, we apply the greedy algorithm
to more general input and we can check whether
the greedy algorithm produces an optimal solution
or not in O(ncn) time, which is analogous to the
result for the knapsack problem by Kozen and Zaks
[4].

2 A greedy algorithm

For convenience, we use the following notations.
A coin system is a vector of positive integers ~c =
(c1, c2, · · · , cn−1, cn) with c1 < c2 < · · · < cn−1 <

cn. A vector ~s = (s1, s2, · · · , sn−1, sn) is a solu-
tion if

∑n
i=1 sici = x. We say a solution is opti-

mal if its `1-norm, ‖~s‖1 =
∑n

i=1 |si|, is minimum.
First we consider a special case for the coin system
~c = (c0, c1, · · · , cn−2, cn−1), where c is an integer
greater than 1. We propose a greedy algorithm
that finds an optimal solution for this special case.

Theorem 2.1 (Main result) Given a coin system
~c = (c0, c1, · · · , cn−2, cn−1), where c ∈ N and any
objective value x ∈ N , an optimal solution ~s =
(s1, s2, · · · , sn−1, sn) can be found in O(n) time.

We need the following observations and facts for
the correctness of theorem 2.1.

Lemma 2.2 If ~s = (s1, · · · , sn) is an optimal so-
lution, then |si| ≤ dc/2e, for i = 1, · · ·, n-1.

Proof. By contradiction, suppose there exists
an si such that si > dc/2e. Let s′i = si − c,
s′i+1 = si+1 + 1, then we can get a solution ~s′ =
(s1, s2, · · · , si−1, s

′
i, s

′
i+1, si+2, · · · , sn−1, sn). It is

clear that ‖~s′‖1 < ‖~s‖1, which is a contradiction.
2

We can improve the previous lemma especially
when c is an odd number.

Lemma 2.3 There exists an optimal solution ~s =
(s1, s2, · · · , sn−1, sn) such that |si| ≤ bc/2c, ∀ i =
{1, 2, · · ·, n-1}.

Proof. We only need to consider the case when
c is odd, since b c

2c = d c
2e when c is even.

Suppose there exists an optimal solution ~s has
an entry si = c+1

2 , then we can obtain ~s′ =
(s1, s2, · · · , si−1, s

′
i, s

′
i+1, si+2, · · · , sn−1, sn) where

s′i = − c−1
2 and s′i+1 = si+1 + 1. It is clear that

~s and ~s′ have the same `1-norm. Similarly, if ~s has
an entry si = − c+1

2 , then we can obtain another
optimal solution where the i-th entry satisfying the
constraint. We can simply adjust ~s sequentially
from the first entry to the (n− 1)-th entry and ob-
tain an optimal solution satisfying the constraints
in the lemma. This proves the claim.2

The following corollary is an immediate result
from Lemma 2.2. It will be used to prove the
greedy choice property of the greedy algorithm.

Corollary 2.4 Given an optimal solution ~s =
(s1, s2, · · · , sn−1, sn), we have |∑j

i=1 sici| < cj+1,
∀j = 1, 2, · · · , n− 1.

Proof. By lemma 2.2, we have |∑j
i=1 sici| ≤

d c
2e · cj−1

c−1 . It is easy to verify that for c ≥ 2,
d c

2e ≤ c− 1. Thus |∑j
i=1 sici| < cj+1. 2

Before we propose the greedy algorithm, we fix
the range of the objective integer x first. Actu-
ally, for Theorem 2.1, we only need to consider
the case of 0 < x < cn−1. For x ≥ cn−1, we

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1239

can solve the case x′ = x mod cn−1 obtain-
ing an optimal solution (s′1, s

′
2, · · · , s′n−1, s

′
n), and

(s′1, s
′
2, · · · , s′n−1, s

′
n + b x

cn−1 c) is an optimal solu-
tion for the original case. Suppose this is not true.
We know that s′n ≥ 0 and sn ≥ b x

cn−1 c from Corol-
lary 2.4. So that (s1, s2, · · · , sn−1, sn−b x

cn−1 c) will
be a better solution for x′, a contradiction. For
x < 0, we can just solve the case x′ = −x obtain-
ing an optimal solution (s′1, s

′
2, · · · , s′n−1, s

′
n), and

(−s′1,−s′2, · · · ,−s′n−1,−s′n) is an optimal one for
x. Now, we propose our greedy algorithm.

Algorithm Exchange(x, ~c)

Input: ~c = (c1, c2, · · · , cn): the coin system
x: the objective value, 0 < x < cn

Output: ~g = (g1, g2, · · · , gn), the solution,
which is initialized to be a zero vector

1. while(x ! = 0){
2. find an i such that |ci − |x|| is minimum;
3. if(x > 0){
4. gi = gi + 1;
5. x = x− ci;}
6. else{
7. gi = gi − 1;
8. x = x + ci;}}

Figure 1: Algorithm Exchange

In each iteration of Algorithm Exchange, it is
clear that |x| is strictly decreasing in the cases
when c1 = 1. So, we know this algorithm will
finally terminate, although it may fall into an infi-
nite loop in some cases when c1 6= 1.

Lemma 2.5 The output ~g of algorithm Ex-

change is a solution.

Proof. In each iteration, gi = gi + 1 when
x = x − ci, or gi = gi − 1 when x = x + ci.
Because the algorithm terminates when x = 0
and ~g is initialized to be a zero vector, we have∑n

i=1 gici = x. Moreover, after each iteration
|ci − |x‖ is smaller than |x|, because c1 = 1, and
after the if statement |x| is equal to |ci − |x‖. So
we know that the algorithm will terminate and
produce a solution. 2

Next, we show the algorithm Exchange gives
an optimal solution. There are two parts to prove:
the greedy choice property of the algorithm and the
optimal substructure. Before proving the greedy
choice property, we define the leading coefficient
which is important to the proof.

Definition 2.6 For a solution ~s = (s1, s2, · · · ,
sn−1, sn), we say si is the leading coefficient if
si 6= 0 and ∀j > i, sj = 0.

It is clear that s`x > 0, where s` is the lead-
ing coefficient, by Corollary 2.4. In fact, we can
assume s` > 0 because it is sufficient to consider
the situation x > 0. We prove the greedy choice
property as follows.

Lemma 2.7 For an objective value x > 0, there
exists an optimal solution ~s = (s1, s2, · · · , sn−1, sn)
such that the leading coefficient si has |ci − |x‖
minimum, and it is determined in the first iteration
(line 2) of the algorithm Exchange.

Proof. Assume we have an optimal solution, sat-
isfying Lemma 2.3, with sj as the leading coef-
ficient and i as chosen in line 2 of Exchange,
which implies |ci − |x‖ is minimum. Notice that
|ci − |x|| is minimum implies |x| is closest to ci,
thus |x| ≥ ci+ci−1

2 and |x| ≤ ci+ci+1
2 . If j = i, then

it is done. Thus we consider j 6= i:

(i) Case j < i:
If j < i − 1, then by Corollary 2.4 we have
x < ci−1, which contradicts the fact that |x| ≥
ci+ci−1

2 . Thus j = i − 1. Since c can be even
or odd, we consider the following cases.

• Case ”c is even”: We claim sj =
sj−1 = c

2 . Suppose not, then x =
sjcj +sj−1cj−1+

∑j−2
k=1 skck < c

2cj +(c
2−

1)cj−1 + cj−1 = c
2cj + c

2cj−1. But since
x ≥ ci+ci−1

2 = c
2 (cj−1 + cj), we get a

contradiction. Since sj = sj−1 = c
2 , we

can adjust sj+1 = si = 1, sj = 1 − c
2 ,

sj−1 = − c
2 to satisfy this lemma without

losing the optimality.

• Case ”c is odd”: Then we have x =
sjcj + sj−1cj−1 +

∑j−2
k=1 skck < c−1

2 (cj +
cj−1)+cj−1 < c−1

2 (cj +cj−1)+
cj+cj−1

2 =

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1240

c
2 (cj−1 + cj) = ci+ci−1

2 ≤ x, a contradic-
tion. Thus for j = i − 1, c cannot be
odd.

(ii) Case j > i:
Since cj ≥ ci+1 > ci+1+ci

2 ≥ x = sjcj +∑j−1
k=1 skck > (sj − 1)cj , we know sj = 1.

We claim j = i+1. If j > i+1, then x = sjcj+
sj−1cj−1 +

∑j−2
k=1 skck > cj + (sj−1 − 1)cj−1.

When c = 2, sj−1 can be 0 or 1. (Note that
sj−1 cannot be −1, otherwise, we can adjust
sj ’s such that the leading coefficient becomes
sj−1.) Hence x > cj − cj−1 ≥ ci+1, a con-
tradiction. When c > 2, since sj ≥ −b c

2c,
x > cj − (b c

2c + 1)cj−1 ≥ ci+1, a contradic-
tion. Thus j must be i + 1. Now consider the
following cases:

• Case ”c is even”: If sj−1 = − c
2 , we can

set sj = 0 and sj−1 = c
2 and get a better

solution. Hence sj−1 > − c
2 . We claim

sj−1 = − c−2
2 and sj−2 = − c

2 . Suppose
not, then ci+ci+1

2 ≥ x = cj + sj−1cj−1 +
sj−2cj−2 +

∑j−3
k=1 skck > cj − c−2

2 cj−1 −
(c
2 − 1)cj−2 − cj−2 = c

2 (cj−1 + cj−2) =
ci+ci+1

2 , a contradiction. Thus we can set
sj = 0, sj−1 = c

2 , sj−2 = c
2 to satisfy this

lemma.

• Case ”c is odd”: x = cj +
sj−1cj−1 +

∑j−2
k=1 skck > cj + (sj−1 −

1)cj−1 implies sj−1 = −b c
2c, oth-

erwise we have x > cj + (sj−1 −
1)cj−1 > ci+1+ci

2 , a contradiction. Thus
we know there exists another solution
~s′ = (s1, s2, · · · , si−1, d c

2e, 0, 0, · · · , 0) sat-
isfying the lemma.

2

Lemma 2.8 If ~s = (s1, · · · , sn) is an optimal solu-
tion for x, then, for si 6= 0, ~s′ = (s1, · · · , si−1, si −
sgn(si), si+1, · · · , sn) is an optimal solution for the
objective value x− sgn(si) · ci−1.

Proof. We only have to deal with the case
si 6= 0. Let ‖~s‖1 = t. Suppose ~s′ is
not optimal, but ~u = (u1, u2, · · · , un−1, un)
is the optimal solution for objective value
x−sgn(si)·ci−1. Thus ‖~u‖1 < ‖~s′‖1. However, ~v =

(u1, u2, · · · , ui−1, ui + sgn(si), ui+1, · · · , un−1, un)
would be a solution for objective value x. But
‖~v‖1 ≤ ‖~u‖1 + 1 < ‖~s‖1, a contradiction. 2

Theorem 2.9 Algorithm Exchange gives an op-
timal solution.

Proof. Immediately from Lemma 2.7 and
Lemma 2.8. 2

Algorithm Exchange2(x, ~c)
Input: ~c = (c1, c2, · · · , cn), the coin values

x, the objective value, 0 < x < cn

Output: ~g = (g1, g2, · · · , gn),
which is initialized to be a zero vector

1. for(i = n; i > 1 and x 6= 0 ; i = i− 1){
2. if(ci−1 ≤ |x| ≤ ci){
3. if(ci − |x| ≤ |x| − ci−1){
4. gi = gi + sgn(x);
5. x = x− ci · sgn(x);}
6. gi−1 = the integer part of x/ci−1;
7. x = x− gi−1 · ci−1;}}

Figure 2: Improved algorithm Exchange2

In fact, algorithm Exchange can be improved
by removing the unnecessary steps as follows. In
each iteration of the algorithm, because |ci − |x‖
becomes smaller and smaller and |x| = |ci − |x‖
after each iteration, we know that once ci is chosen,
cj will not be chosen any more ∀j > i. That is why
the algorithm uses a for-loop instead of a while-
loop. Besides, we can still shorten the steps of gi =
gi +1 or gi = gi− 1 to at most 2 steps. This is not
hard to understand in the algorithm. Moreover,
algorithm Exchange2 runs in time O(n). This
completes the proof of Theorem 2.1.

3 Determine the optimality of

the greedy algorithm

We have proved that algorithm Exchange gives
an optimal solution for a special case. Moreover,
algorithm Exchange may produce optimal solu-
tions for some other cases. In this section, we give

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1241

a proof for the upper bound of the existence of
positive counterexample and we propose a method
to check whether our greedy algorithm gives an
optimal solution or not for general cases. For con-
venience, we define m(x) and g(x) as follows:

Definition 3.1 Given a coin system, let m(x) de-
note the value of `1-norm of the optimal solution of
the objective value x, and let g(x) denote the value
of `1-norm of the solution by the greedy algorithm
to the objective value x. When the greedy algorithm
does not terminate, g(x) = ∞. We call a system
canonical if g(x) = m(x) for all x. If a system is
not canonical, then a value x for which m(x) < g(x)
is called a counterexample for the system.

The following lemma is the major tool to prove
the upper bound of the existence of positive coun-
terexample.

Lemma 3.2 Let c1 < · · · < cn be any system
of coins. For all x, coins ci and an integer k ∈
{−1, 1}, m(x) ≤ m(x − k · ci) + 1, with equality
holding if and only if there exists an optimal solu-
tion ~s = (s1, s2, · · · , sn) for objective value x where
sik > 0.

Proof. For the inequality, by contradiction, sup-
pose there exists a solution ~t = (t1, t2, · · · , tn) for
x − k · ci where ‖~t‖1 < m(x) − 1. Thus we have
a solution ~t′ = (t1, t2, · · · , ti−1, ti + k, · · · , tn) for x

and ‖~t′‖1 ≤ ‖~t‖1 + 1 < m(x), a contradiction.

If there exists an optimal solution ~s =
(s1, s2, · · · , sn) for objective value x where sik > 0,
it is easy to verify the equality holds by the exis-
tence of a solution (s1, s2, · · · , si−1, si − k, · · · , sn)
for x − k · ci. Assume the equality holds. If there
does not exist an optimal solution (s1, s2, · · · , sn)
for x such that sik > 0, then for every optimal solu-
tion ~u = (u1, u2, · · · , un) for x−k·ci, uik < 0. Thus
~s′ = (u1, u2, · · · , ui−1, ui+k, ui+1, · · · , un) is a solu-
tion for x and ‖~s′‖1 = ‖~u‖1− 1 = ‖~s‖1− 2 < ‖~s‖1,
a contradiction. So we complete the proof. 2

The following theorem gives a tight upper bound
for the existence of a positive counterexample. It
also implies that we only need to check O(cn) ob-
jective values to decide whether our greedy algo-
rithm works for any coin system.

Theorem 3.3 Given a coin system c1 < c2 <

· · · < cn−1 < cn, the smallest positive counterex-
ample lies in the interval (0, cn + cn−1), if exists.

Proof. Suppose x ≥ cn + cn−1 is the smallest
positive counterexample, then m(x) < g(x) and
for all positive integer y < x, g(y) = m(y). Sup-
pose ~s = (s1, s2, · · · , sn) is an optimal solution for
objective value x and si > 0. If i = n,

g(x) = g(x− cn) + 1 by definition of g

= m(x− cn) + 1 by hypothesis
= m(x) by Lemma 3.2

a contradiction. If i < n, assume m(x) = t,

⇒ m(x− cn) ≥ t by Lemma 3.2
⇒ m(x− cn − ci) ≥ t− 1 by Lemma 3.2

but because ci is a coin used in the optimal solution
of x, so

m(x− ci) = t− 1 by Lemma 3.2
⇒ g(x− ci) = t− 1 by hypothesis
⇒ g(x− ci − cn) = t− 2 by definition of g

⇒ m(x− ci − cn) = t− 2 by hypothesis

a contradiction. Moreover, for the three-coin
system 1, 3, 4, x = cn + cn−1 − 1 = 4 + 3 − 1 = 6
can be checked easily to be the smallest positive
counterexample. So, we have completed the proof
and the bound is tight. 2

Definition 3.4 A witness is an x for which
g(|x|) > g(‖x| − ci|) + 1 for some coin ci.

Lemma 3.5 (1) Every witness is a counterexam-
ple. (2) Suppose |x| is a counterexample but not
a witness, then ‖x| − ci| is also a counterexam-
ple, such that there exists an optimal solution
(s1, s2, · · · , si 6= 0, · · · , sn) for objective value x.
(3) If |x| < cn + cn−1, then ‖x| − c| < cn + cn−1,
where c is any coin value.

Proof.

(1) Suppose x is a witness, then for some coin ci,
m(|x|) ≤ m(‖x| − ci|) + 1 ≤ g(‖x| − ci|) + 1 <

g(|x|). So, x is a counterexample.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1242

(2) Since |x| is a counterexample but |x| is not
a witness,we have m(‖x| − ci|) = m(|x|) − 1
< g(|x|) − 1 ≤ g(‖x| − ci|). Thus, ‖x| − c| is
also a counterexample.

(3) It follows immediately from the fact that 0 ≤
|x| < cn + cn−1 and 0 ≤ c < cn + cn−1.2

Theorem 3.6 For a given system, it is canonical
if and only if that there is no witness in the interval
(0, cn + cn−1).

Proof. If the given system is canonical, then it
is clear that there is no counterexample. Thus
there does not exist any witness by Lemma 3.5-1.
If the given system is not canonical, we know
that there exist counterexamples and the smallest
positive counterexample x with 0 < x < cn + cn−1.
If x =

∑n
j=1 sjcj is not a witness, by Lemma 3.5,

for some si > 0, |x − ci| is also a counterexample
and m(|x − ci|) < m(x). If |x − ci| is still not
a witness, then let x = |x − ci|, and repeat this
until finding a witness, since it is guaranteed that
we will find a witness because x will eventually
converge to 0 which can’t be a counterexample. 2

By the theorem above, we only need to check the
existence of a witness in the range of the smallest
counterexample to determine whether the greedy
algorithm gives an optimal solution or not. More-
over, the algorithm Examine takes time O(ncn).

Algorithm Examine(~c)

Input: ~c = (c1, c2, · · · , cn): the coin system
Variable: ~g = (g0, g1, · · · , gcn+cn−1−1),
which is defined in Definition 3.1

1. call Exchange2 to compute ~g;
2. for(i = 1 ; i < cn + cn−1 ; i + +){
3. for(j = 1 ; j <= n ; j + +){
4. if(gi > g|i−cj | + 1){
5. return NO;}}}
6. return YES;

Figure 3: Algorithm Examine

4 Conclusions and Remarks

We give a linear time greedy algorithm for a special
case and we can check whether it gives an optimal
solution for general case in O(ncn) time. A nat-
ural possible extension is: Can we find a greedy
algorithm for more general input?

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V.
Kann, A. Marchetti-Spaccamela and M. Pro-
tasi Complexity and Approximation, combi-
natorial optimization problems and their ap-
proximability properties, Springer-Verlag, New
York, 1999.

[2] T. Cormen, C. Leiserson, R. Rivest and C.
Stein Introduction to Algorithms, 2nd Ed, The
MIT Press, 2001.

[3] G. Havas and J. Seifert, The complexity of the
extended GCD problem, MFCS 1999: pp. 103-
113.

[4] Dexter Kozen, Shmuel Zaks, Optimal Bounds
for the Change-Making Problem, Theoretical
Computer Science, 123 (2), pp. 377-388, 1994.

[5] C. Papadimitriou and K. Steiglitz Combinato-
rial Optimization, algorithms and complexity,
Prentice-Hall Inc., 1982.

[6] M.-Z. Shieh, S.-C. Tsai, Jug measuring: com-
plexity and algorithm, 2004, submitted for pub-
lication.

[7] M. Sipser, Introduction to the Theory Compu-
tation, PWS Publishing Company, 1997.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1243

