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Abstract - We present an approach to supporting the 
development of heterogeneous distributed applications for 
coordination through Multiparty Interaction (MI) protocol. 
A CORBA middleware technology is used as an 
underlying communication infrastructure to support 
heterogeneous communications. The approach decouples 
the applications and their underlying middleware 
implementations including coordination protocols by 
providing a set of generic interfaces to the applications.  
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1. Introduction 
 
 To support the development of heterogeneous 
distributed applications for coordination, we augment the 
existing middleware technologies to provide collaboration 
support through Multiparty Interaction (MI) protocol. An 
approach is presented to decouple the applications and 
their underlying middleware implementations including 
coordination protocols by providing a set of generic 
interfaces to the applications.  
 Joung and Smolka [4] writes that “A multiparty 
interaction is a set of I/O actions executed jointly by a 
number of processes, each of which must be ready to 
execute its own action for any of the actions in the set to 
occur.” N. Francez and I. R. Forman [3] present IP 
(Interacting Process) as the basis of specification 
languages for multiparty interaction. In IP, a distributed 
system is organized into teams. A team is viewed as a 
collection of distributed processes that interact with each 
other through multiparty interactions. A process can 
participate in a multiparty interaction through an 
interaction statement of the form a[…], where a is the 
interaction name and […] includes the statements to be 
executed by this process when the interaction point is 
executed.  
 In this research, we are not implementing a new 
language processor to execute IP specifications. On the 
contrary, our intention is to allow IP specifications to be 
realized under any general programming environment. 
The approach we use is to analyze an IP specification and 
generate a multiparty interaction description that is a data 

structure to describe the properties of the multiparty 
interactions in IP. Our IP language mapping approach 
allows a multiparty interaction description written in any 
target programming language to be automatically 
generated from an IP specification. Application developers 
then write a program in the target language to include the 
multiparty interaction description in the program. A 
function in the coordination library will be invoked to 
represent the caller (participating party) to interact with 
other participants for coordination. In this paper, we are 
focusing on the coordination support in heterogeneous 
distributed programming. 
 
2. Coordination support 
  
 Basically, the implementation of our distributed 
multiparty interactions consists of three phases: 
synchronization, data exchange, and computation. In the 
synchronization phase, enabled interactions are detected 
and one is selected for execution. In the data exchange 
phase, data are exchanged among participating processes 
through the underlying middleware. In the computation 
phase, upon receiving all the needed data, the processes 
participating in an interaction continue their executions on 
the interaction bodies. For example, in the dining 
philosophers problem shown in Figure 1, Philosopher0, 
Fork0, and Fork3 need to synchronize at the interaction 
point get_fork0 in the synchronization phase. Next, they 
start to exchange data in the data exchange phase. In this 
problem, however, there is no need for data exchange 
among Philosopher0, Fork0, and Fork3. Following the data 
exchange phase, these three participants enter the 
computation phase, Philosopher0 needs to execute the 
body of get_fork0 by assigning ‘eating’ to s0 which is a 
local variable declared in the Philosopher0 process.  
 
DINING_PHILOSOPHERS :: [Philosopher0 || Philosopher1 || 
Philosopher2 || Philosopher3 || Fork0 || Fork1 || Fork2 || Fork3], where 
 
Philosopheri :: i = 0, 3 
si := ‘thinking’; 
*[si = ‘thinking’ → si := ‘hungry’ 
    
   si = ‘hungry’ & get_forki[si := ‘eating’] → release_forki[] 
  ] 
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Forki :: i = 0, 3 
*[get_forki[] → release_forki[] 
    
   get_fork(i+1) mod 4[] → release_fork(i+1) mod 4[] 
  ] 
 

Figure 1. An IP to the dining philosophers 
 
 Centralized solutions to the implementation of 
multiparty interactions work quite well [2]. Our solution 
shifts the centralized solutions to a distributed solution. 
The work to be done in the three phases is distributed 
among participants and their thread managers. Each 
participating process creates its own thread manager to 
mange its interactions. For an interaction, which the 
participating process gets involved in, the thread manager 
will create a proxy thread to connect to the interaction. 
During the synchronization phase, information about 
enablement or disablement of interactions is exchanged. 
Once one interaction is selected, the thread manager 
notifies the other threads within the participating process 
indicating their interactions are not selected, so no one will 
be neglected and the whole process is fair. Figure 2 depicts 
our solution in the case of four philosophers who are 
trying to pick up their forks. The detailed implementation 
of coordination support is described in Section 3. 
 

Philosopher0

Fork0 Fork3

get_fork0

Mfork0

Fork1 Fork2

Mfork1 Mfork2 Mfork3

MPhilosopher0

Philosopher1 Philosopher2 Philosopher3

MPhilosophe1 MPhilosopher2 MPhilosopher3

get_fork1 get_fork2 get_fork3

TPhilosopher0,0 TPhilosophe1,1 TPhilosophe2,2 TPhilosopher3,3

Tfork0,1 Tfork1,1 Tfork1,2 Tfork2,2 Tfork2,3 Tfork3,3 Tfork3,0Tfork0,0

 

Figure 2. A distributed solution to the dining 
philosophers problem 

 
 After synchronization, data exchange takes place. 
Thread managers inform their participating processes 
which interactions have been selected for execution. The 
participating processes exchange the data they are 
responsible for with their corresponding thread managers 

by means of PutData(INOUT &OperationArgumentBuffer) 
and GetData(INOUT, &OperationArgumentBuffer). 
GetData() and PutData() transmit data through the 
invocation of CORBA functions. At this moment, no 
participating processes can continue until they all have 
completed data exchanges. The detailed descriptions of the 
coordination support can be found in [1]. 
  
3. Implementation of the coordination 
support 
 
 The heart of the design and implementation of 
multiparty interactions is the distributed guard scheduling 
problem described as follows: 

Given n multiparty interactions Ii (i=1,…, n), each of 
which has li parties to be participated by distinct 
processes form m participating processes Pj (j=1,…,m) 
whose identifiers are not know until run-time, the 
guard scheduling problem is to select at subset of the 
multiparty interactions for execution, subject to the 
following constraints, 
1. Each interaction selected for execution must have 

all its parties participated by distinct processes. 
2.  No process can participate in executions of more 

than on interaction. 
3. If there are interactions which can be selected for 

execution, the selection must be finished in finite 
time. 

Constraints 1 and 2 above are the safety requirement and 
Constraint 3 the liveness requirement of the problem.  
 For each interaction Ii, we create an interaction process 
also denoted Ii.  If Pj is ready to participate in k interactions 
Ii1, ..., Iik, we create (1) thread manager Mj and (2) one 
proxy thread Tj,ir for each of Ii1, ..., Iik. Our algorithm 
consists of three protocols for proxy thread Tj,ir ,  thread 
manager Mj, and interaction process Iir . Each of the 
protocols is a finite state machine which uses input 
message as event for state transition. The proxy thread Tj,ir  

is used to communicate with interaction process, Iir. 
Thread manager Mj  serves as the manager of all the proxy 
threads Tj,i1, … Tj,ik which it spawns.  
 The basic idea of the protocol for Tj,ir  is as follows: It 
sends message Request to Iir to notify its intension to 
participate. When Iir  receives all the Requests needed, it 
sends back a message All-Met to Tj,ir , telling Tj,ir that Iir  is 
ready to be activated. After receiving message All-Met, 
Tj,ir may do one of the following three tasks: (1) if none of 
the other Tj,ir’  has committed, Tj,ir may proceed to commit 
itself to Iir by sending a Commit message to it and makes 
transition to “commit” state (2) if a Tj,ir’  with higher 
priority has committed to Iir’, Tj,ir withdraw its participation 
by sending a Withdraw message to Iir and makes transition 
to “re-try” state, or (3) if a Tj,ir’  with lower priority has 
committed to Iir’,  Tj,ir  makes transition to “pending” state 
waiting to commit in case the commitment of Tj,ir’   does 
not realize the actual activation of Iir’  (due to withdrawals 
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of other participants of Iir’). The information about the 
commitment or pending of all proxy threads is stored in a 
shared array accessed through critical sections. Once in 
“commit” state, Tj,ir is waiting for Succeed message from 
Iir when it receives commitment from all of its participants. 
After Tj,ir  receives Succeed message, it sends a Finish 
message to thread manager Mj to register the activation of 
Iir and make transition to “success” state. The state 
diagram of the protocol of thread Tj,ir is shown in Figure 3. 
The transitions are represented by arcs labeled with 
event/action pairs. 

meeting

all-met

success

recv Request &
nReq = q

recv Commit &
nC = q

recv Commit/Withdraw/
Abort &

nC+nW < q

recv Request/Abort &
nReq < q

recv Commit/
Withdraw/Abort &

nC+nW = q

 
init

re-try

recv
TryAgain/

req-sent

/send
Requestready-

to-die recv Stop/
send Abort

recv Stop/

pending

/send Withdraw
send Retry

commit-
sent

success

recv Succeed/
send Finish

recv Continue/
send Commit

recv Stop/
send Withdraw recv All-Met/

a[...]=0/
send

Commit

recv Fail/
send Continue

send Retry

 

Figure 4. State diagram of interaction process Iir 
 

 The protocol for thread manager Mj is to coordinate its 
all the proxy threads. It also intercepts and relay messages 
between proxy threads and its corresponding interaction 
process. In particular, it will discard all the messages to 
Tj,ir after it is killed by Mj. The main function of Mj

 is to 
synchronize the transitions of Tj,i1, … Tj,ik. After it spawns 
the proxy threads Tj,i1, …, Tj,ik, it waits for either Re-try 
message or Finish message from each of them. Upon 
receiving a Finish message from Tj,ir, it sends Stop 
message to all the other proxy threads so that they can 
send Withdrawal or Abort message to its corresponding 
interaction manages before make transition to ‘ready-to-
die” state. If all proxy threads send Re-try message, Mj

 

sends “start-over” message back and allow them to start 
the next round of coordination. The state diagram of 
thread Mj is shown in Figure 5. Thread Mj maintains a 
counter, nRetry, to synchronize all the proxy threads 
before entering into the next round of coordination. The 
next round of coordination should not start until all the k 
proxy threads Tj,ir (r = 1, …, k) fail. 

Figure 3. State diagram of thread Tj,ir 
 

 The protocol for interaction process, Iir, is a simple 
two-phase locking protocol with three states: “meeting”, 
“all-met” and “success”. In the “meeting” state, Iir receives 
Request message or Abort message from its participants, 
incrementing or decrementing its request counter, 
respectively. When the request counter reaches the total 
number of participants, Iir sends All-Met message to all of 
the participants, and makes transition to “all-met” state. In 
the “all-met” state, it waits for either a Commit, 
Withdrawal or Abort message from each of its participants. 
A commit counter and a withdrawal counter are used to 
track the numbers of the corresponding participants to 
decide whether it can transit to “success” state (when all 
participants committed) or “meeting” state to start over 
again for the next round of coordination (when all 
responded, but the number of committed falls short of the 
total number of participants). The state diagram of Iir is 
shown in Figure 4. Process Iir maintains three counters, 
nReq, nC, and nW, for the number of Request()s, 
Commit()s, and Withdraw()s received, respectively. 

 

init

working

finishing

success

recv Finish/
send Stop

recv Retry/
if (nRetry = p)

        send TryAgain

recv ReadyToDie/
send Kill

 
 

Figure 5. State diagram of thread Mj 
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4. Correctness and complexity 
 
 In this section, we prove the correctness and analyze 
the message complexity of the guard scheduling algorithm 
presented in the previous section. A solution to the guard 
scheduling problem for coordinating first-order multiparty 
interactions must satisfy the requirements of safety, 
liveness, and progress. 
 
4.1 Safety 
  
 The safety requirement of the guard scheduling 
problem defined in Section 3.3 demands that 

• no interaction be selected to execute unless all its 
parties are participated by distinct processes 
(interaction safety), and 

• no process participates in more than one interaction 
at a time (process safety). 

The interaction safety requirement can be derived from the 
protocol of Iir directly. In particular, process Iir will not 
enter into state ‘all-met’ unless it receives the requests for 
participation from q (i.e. lir) processes. Furthermore, it will 
not enter into state ‘success’ unless it receives the 
commitments from all these processes. 
 The process safety is ensured by Theorem 1 as follows. 
 
Theorem 1. Among the proxy threads Tj,i1, …, Tj,ik, 
started by Pj, only one can enter into state ‘success’. 
Proof: Thread Tj,ir can enter into state ‘success’ only from 
state ‘commit-sent’. It can enter into state ‘commit-sent’ 
either from state ‘pending’ or state ‘request-sent’. Thread 
Tj,ir moves from state ‘request-sent’ to state ‘commit-sent’ 
only when all the bits of bit map a[] are 0. If it moves into 
state ‘pending’, it will not enter into state ‘commit-sent’ 
until another thread sends it a Continue after leaving state 
‘commit-sent’. Therefore, there is only one thread in state 
‘commit-sent’ at any time. After the thread enters into 
state ‘success’, all other threads will be killed. 
 
4.2 Liveness 
  
 The liveness requirement of the guard scheduling 
problem demands that there be no deadlock in the system 
comprising all the threads and processes running the 
protocols of Tj,ir, Mj, and Iir. In particular, no process or 
thread is allowed to stay in a waiting state indefinitely. 
 After Iir receives all the Iir requests it needs and enters 
into state ‘all-met’, it will receive the same number (li) of 
Commit(), Withdraw() or Abort(), provided that each 
thread Tj,ir involved is live and responds eventually. After 
that, Iir will enter either into state ‘meeting’ again for the 
next round of coordination or into state ‘success’. In other 
words, Iir is live as long as each thread Tj,ir with which it 
communicates is live. 
 Similarly, if every thread Tj,ir (1 ≤ r ≤ k) is live, thread 
Mj is also live. In particular, thread Mj will remain in state 

‘working’ and start the next round of coordination if all 
the k proxy threads Tj,ir (r = 1, …, k) are successful. If one 
thread succeeds, Mj will receive Finish() from it and enter 
into state ‘finishing’. Mj will further receive (k-1) 
ReadyToDie()s from the remaining proxy threads and 
enters into state ‘success’. Therefore, the liveness of the 
entire system hinges on the liveness of the protocol of Tj,ir. 
The following lemma is used to prove the liveness of Tj,ir. 
 
Lemma 1. If a proxy thread Tj,ir is in state ‘pending’ 
indefinitely, there must be another proxy thread Tj,ir’ of Pj 
such that r < r’ in state ‘commit-sent’ indefinitely. 
Proof: a[r] = 1 only if Tj,ir is in state ‘commit-sent’ or 
‘pending’, but the first thread Tj,ir with a[r] = 1 must be in 
state ‘commit-sent’. To simplify the notation, we rename 
Tj,ir to be T’j,r. Let us assume that T’j,r stays in state 
‘pending’ indefinitely. 
 When thread Tj,ir enters into state ‘pending’, 
a[(r+1)…k] ≠ 0 must be held. Let a[u1], …, a[uv] (r+1 ≤ u1 
< … < uv ≤ k) be all the bits that either are 1 when T’j,r 
enters into state ‘pending’ or ever become 1 when T’j,r is 
in state ‘pending’ (indefinitely). 
 Thread T’j,uv must be in state ‘commit-sent’ when T’j,r 
enters into state ‘pending’. Other threads T’j,u1, …, T’j,uv-1 
must be in state ‘pending’ first. We want to prove that 
based on the assumption above at least one of T’j,u1, …, 
T’j,uv must be in state ‘commit-sent’ indefinitely. 
 Consider thread T’j,uv first. If it does not stay in state 
‘commit-sent’ indefinitely, it must receive a Success() or a 
Fail in finite time. If it receives a Success(), T’j,r would 
leave state ‘pending’ in finite time. This would contradict 
the assumption above. If it receives a Fail, thread T’j,uv-1 
will enter into state ‘commit-sent’ in finite time. The same 
procedure will also apply to threads T’j,uv-1, …, T’j,u1. 
Therefore, if none of T’j,u1, …, T’j,uv can stay in state 
‘commit-sent’ indefinitely, T’j,r will leave state ‘pending’ 
in finite time. This proves the lemma.  
 There are four waiting states in the protocol of Tj,ir: 
‘req-sent’, ‘commit-sent’, ‘pending’, and ‘re-try’. The 
waiting of Tj,ir in state ‘req-sent’ is to ensure interaction 
safety and should not be considered as a problem for 
liveness. Tj,ir in state ‘re-try’ will enter into state ‘init’ after 
all the threads started by Pj send Withdraw()s to their 
interactions. Therefore, for the liveness of the protocol of 
Tj,ir, we only need to prove that no thread Tj,ir will stay in 
state ‘commit-sent’ or ‘pending’ indefinitely. This is done 
in the following theorem. 
 
Theorem 2. It is impossible for any proxy thread Tj,ir in 
the system to stay in state ‘commit-sent’ or ‘pending’ 
indefinitely. 
Proof: According to Lemma 1, we only need to prove that 
it is impossible for any proxy thread Tj,ir to stay in state 
‘commit-sent’ indefinitely. 
 Let us assume that there is a proxy thread Tj1,i1 staying 
in state ‘commit-sent’ indefinitely. This means that Tj1,i1 
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 According to the protocol, a thread Tvj,ui (1 ≤ j ≤ y, 1 ≤ 
i ≤ w) can send Withdraw() only in two states: ‘req-sent’ 
and ‘pending’. But, based on the assumption above, it is 
impossible for Tvj,ui to send Withdraw() in state ‘pending’. 
This is because otherwise it must receive a Stop from Mvj 
and therefore there must be a thread Tvj,ui’ (1 ≤ i’ ≤ w) that 
succeeds in its coordination. This would imply that Iui’ 
enters into state ‘success’. 

receives neither Success() nor Fail in finite time. 
Therefore, none of the threads coordinating interaction Ii1 
ever sends a Withdraw() or an Abort() to it. Furthermore, 
there is at least one of these threads that does not ever send 
a Commit() either. Let this thread be Tj2,i1. According to 
the protocol, Tj2,i2 from the same process Pj2 such that it 
stays in state ‘commit-sent’ indefinitely and i1 < i2. 
Continuing this way, we will have an infinite series 

Tj1,i1, Tj2,i1, Tj2,i2, …, Tjk,ik-1, Tjk,ik, …  To simplify the notation, Pvj, Iui, and Tvj,ui are renamed 
P’j, I’i, and T’j,i, respectively. Consider I’w first. Because it 
enters into state ‘meeting’, it must have received at least 
one Withdraw() from, say T’j1,w (1 ≤ j1 ≤ y). According to 
Lemma 2, there must be a thread T’j1,i1 that has sent a 
Commit() to I’i1 such that i1 < w. Since I’i1 also enters into 
state ‘meeting’, it must have received a Withdraw() from 
say, T’j2,i1 (1 ≤ j2 ≤ y). By using Lemma 2 again, we can 
find another thread T’j2,i2 that has sent a Commit() to I’i2 
such that i2 < i1. Continuing this way, we will have an 
infinite series 

such that Tjk,ik (1 ≤ k) and Tjk,ik-1 (2 ≤ k) are indefinitely in 
states ‘commit-sent’ and ‘pending’, respectively, and i1 < 
i2 < … < ik < …. On the other hand, there are only a finite 
number (m) of interactions and we must have i1 < i2 < … < 
ik < … < m. Therefore, the series above cannot be infinite. 
We have reached a contradiction. 
 
4.3 Progress 
  
 We have proved the liveness of the system. The next 
question is whether the system can make progress in 
selecting interactions. The liveness of the system 
guarantees that an interaction process in state ‘all-met’ will 
enter into state ‘meeting’ or state ‘success’ in finite time. 
The progress requirement demands that at least one of 
those interactions in state ‘all-met’ enter into state 
‘success’. This requirement is satisfied in our algorithm. In 
order to prove this, we need the lemma as follows. 

T’j1,w, T’j1,i1, T’j2,i1, …, T’jk,ik, T’jk+1,ik, … 
such that … < ik < … < i1 < w. On the other hand, there 
are only a finite number (w) of interactions involved and 
we must have 1 < … < ik < … < i1 < w. Therefore, the 
above series cannot be infinite. We have reached a 
contradiction.  
 
4.4 Message complexity 

   
Lemma 2. If thread Tj,ir sends Withdraw() to Iir in state 
‘req-sent’ and enters into state ‘re-try’, there must be 
another thread Tj,ir’ of Pj in state ‘commit-sent’ such that r’ 
< r. 

 In our algorithm, Iir will re-try in the next round of 
coordination if it is not selected. Theorem 3 shows that at 
least one selectable interaction will be selected in each 
round of coordination. For a particular interaction selected 
eventually, the cost is obviously the number of rounds of 
coordination it has gone through times the number of 
messages required in each round of coordination. 
According to the protocols of our algorithm, 4lir messages 
between interaction Iir and its lir participating processes are 
required in each round of coordination. 

Proof: Thread Tj,ir in state ‘req-sent’ sends a Withdraw() 
to Iir only if it finds a[1..(r-1)] ≠ 0. Let r’ be the largest 
integer such that r’ < r and a[r’] = 1. According to the 
protocol, thread Tj,ir’ is either the first thread in state 
‘commit-sent’ or a past pending thread which has been 
woken up by another thread and entered into state 
‘commit-sent’.  The average number of rounds of coordination 

required to select an interaction depends on many factors. 
First of all, it depends on the number of interactions 
connected through processes in conflict (processes ready 
to participate in more than one interactions) in the bipartite 
graph [1]. The larger is this number, the more rounds of 
coordination are needed. Secondly, the larger is the 
average number of interactions in which processes in 
conflict participate, the faster drops the number of 
selectable interactions. As a result, the average number of 
rounds of coordination required to select selectable 
interactions would be smaller. The third factor is the non-
deterministic nature of the algorithm. Figure 6 shows two 
possible scenarios of selection of interactions I0 (P0, F0, 
and F3) and I2 (P1, F0, and F1)  in Figure 1. Ii represents the 
multiparty interactions, get_forki, of the fork processes 
Forki, Fork(i-1) mod 4, and Philosopheri (we assume that 
index arithmetic is cyclic, i.e., 0 – 1 = 3 and 3 + 1 = 0). 

 The following theorem shows that in each coordination 
at least one selectable interaction will be selected. This 
ensures the progress of our algorithm.  
 
Theorem 3. Let Iu1, …, Iuw be the subset of all the 
interactions that enter into state ‘all-met’ after receiving all 
the requests they need. Then, at least one of them will 
enter into state ‘success’. 
Proof: Let Pv1, …, Pvy be all the processes involved to 
make Iu1, …, Iuw enter into state ‘all-met’. Without loss of 
generality, we also assume Iu1 < … < Iuw, i.e. u1 < … < uw. 
Due to the liveness of the system, every interaction of 
Iu1, …, Iuw will receive a response, Commit(), Withdraw(), 
or Abort(), from each of its participating processes from 
Pv1, …, Pvy and enter into either state ‘meeting’ or state 
‘success’. Let us assume that none of Iu1, …, Iuw enters 
into state ‘success’. 
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 As a matter of a fact, the scenario shown above in 
Figure 6(a), (b), and (c), is the worst case that can ever 
happen, where each process in conflict connects only two 
(the lowest) interactions in the bipartite graph and only 
one interaction is selected in every round of coordination. 
This gives us the upper bound of the number of 
coordinations for an interaction to be selected: [w/2], 
where w is the number of interactions connected through 
processes in conflict in the bipartite graph. This leads to 
the following theorem about the message complexity of 
our algorithm. 

Labels C or W of an edge shows that the process has sent 
Commit() or Withdraw(), respectively, to the 
corresponding interaction. Label P indicates that the 
process is in state ‘pending’ after it receives All-Met from 
the corresponding interaction. Label R indicates that the 
process has sent a Request() to the interaction, but cannot 
receive All-Met from it. 
 

P0 F0 P1 F1 P2 F2 P3 F3

C C CW C CW C W C W C

I0 I1 I2 I3  
 
Theorem 4. Given an l-party interaction I, the maximum 
number of inter-process messages required for I to be 
selected for execution is 4l[w/2], where w is the maximal 
number of interactions connected through processes in 
conflict in the bipartite graph of the problem. 

(a) 
 

P1 F1 P2 F2 P3

R R R RC C C

I1 I2 I3  

 
5. Summary 
 
 First-order multiparty interaction is one of the 
abstractions in the distributed programming model, called 
Interacting Processes, proposed by N. Francez and I. R. 
Forman [3]. In this paper, we presented an algorithm for 
coordinating first-order multiparty interactions on demand 
with the middleware support. In this algorithm, 
middleware serves as the underlying communication 
infrastructure. Data exchanges are done by middleware. 
Application developers can develop distributed 
applications without concerning about the issues of 
heterogeneity such as data marshalling/unmarshalling and 
data formats. Applications in different programming 
languages running on different machines can exchange 
information across different network systems. In addition, 
no specific language processor needs to be implemented in 
order to execute the applications using IP. Our approach 
allows the applications in any target language to be 
executed in any general programming environment.  

(b) 
 

P1 P3

I1 I3

R R

 
(c) 

 

P0 F0 P1 F1 P2 F2 P3 F3

C C CW P CC C W C W C

I0 I1 I2 I3  
(d) 

 
Figure 6. Progress of non-deterministic selection 
  
 Figure 6(a) shows one possible situation where only 
interaction I0 is about be selected. The selection of I0 
leaves only I2 still selectable in the second round of 
coordination. Figure 6(b) shows how I2 is selected in the 
second round of coordination. Note that I1 and I3 cannot 
receive Request()s from F0 and F3 (TF1,1 and TF3,3, to be 
exact)., respectively, because they are not available 
anymore. Figure 6(c) shows the situation after I2 is 
selected. 
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