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Abstract-Many software reliability growth models 
(SRGMs) have been developed to estimate some 
useful measures such as the mean value function, 
number of remaining faults, and failure detection 
rate.  Most of these models have focused on the 
failure detection process and not given equal 
priority to modeling the fault correction process.  
But, most latent software errors may remain 
uncorrected for a long time even after they are 
detected, which increases their impact.  The 
remaining software faults are often one of the most 
unreliable reasons for software quality.  Therefore, 
we develop a general framework of the modeling of 
the failure detection and fault correction processes. 
Furthermore, we also analyze the effect of applying 
the delay-time non-homogeneous poisson process 
(NHPP) models.  Finally, numerical examples are 
shown to illustrate the results of the integration of 
the detection and correction process. 
 
Keywords: Software Reliability Growth Models 
(SRGMs), Non-Homogeneous Poisson Process 
(NHPP), Mean Value Function (MVF), Failure 
Detection Rate, Fault Correction Rate. 
 
1. Introduction 
 

Software reliability can be viewed as a powerful 
measure of quantifying software failures and is 
defined as the probability of failure-free software 
operation for a specified period of time in a specified 
environment [1].  Therefore, in order to achieve a 
desired level of quality, the reliability of a software 
system must be high. The fault-detection and fault-
correction are critical processes in attaining good 
software quality.  During the software detection 
process, testing cases are run and ultimately failures 
are detected.  After detection, the debugging team 
should analyze the failure, locate the fault and fix the 
fault [2-4].  That is, the fault correction process 
affects the reliability of a software product 
significantly and we should pay more attention to it . 

Recently, many SRGMs have been developed to 
estimate some useful measures such as the MVF, 

number of remaining faults, and failure detection rate.  
Most of these models have focused on the failure 
detection process. Consideration of fault correction 
process in the existing models is limited.  However, to 
achieve desired level of software quality, it is very 
important to apply powerful technologies for 
removing the errors in the fault correction process.  In 
reality, the fault correction rate is a function of the 
complexity of program modules, the manpower, the 
skill of testing teams, the deadline for the release of 
the software, etc.  Experiments have been performed 
based on real data set, and the results show that the 
proposed models obtain a better result in estimating 
the number of initial faults and also indicate a 
goodness-of-fit in terms of the mean-of-squares error 
criterion. 

This paper is organized as follows. In Section 2, 
the properties of the related models are reviewed.  An 
integration model of failure detection and fault 
correction processes is proposed in Section 3.  In 
Section 4, we show how some existing NHPP models 
are re-evaluated from the viewpoint of delayed 
correction process and make some observations 
between the delayed-time NHPP models and the 
integrated model.  The experiments and results are 
presented in Section 5.  Finally, the conclusions are 
made in Section 6. 
 
2. Some SRGMs Based on NHPP 
 

Let {N(t), t ≥  0} denote a counting process 
representing the cumulative number of errors 
detected by time t, m(t) be the MVF of the expected 
number of faults detected in time (0, t), and )(tλ  

denote the failure intensity at testing time t.  That is, 
they satisfy the following:  
 m(t) = E({N(t), t ≥  0}), (1) 
 dttdmt /)()( =λ , (2) 

 ttmatdtmttm ∆−×=−∆+ )]([)()()( , (3) 

  ))(()()( tmatdt −×=λ , (4)  

 ))(exp())0(()( 0∫−−+= t duudamatm . (5)  
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where a is the expected number of errors to be 
eventually detected (i.e. am =∞)( ) and  d(t) is the 

error detection rate per error at testing time t.  Thus, 
an SRGM based on NHPP with MVF m(t) can be 
formulated as   

 ...,2,1,0,
!
)(

})({ )( === − ne
n
tm

ntNP tm
n

(6)  

In general, we can have different SRGMs based on 
NHPP using different MVFs. 

 
2.1. Goel-Okumoto model [5] 
 

The most well-known SRGM based on NHPP is 
the model proposed by Goel and Okumoto.  This 
model assumes that the error detection rate per error 
in the testing phase is constant.  Thus, it is identical 
to take d(t) = b in Eq. (4) and  the MVF is derived by  

0,0),1()( >>−= − baeatm bt , 
where a is the expected number of errors to be 
eventually detected and b represents the error 
detection rate per error.  
 
2.2. Yamada s-shaped curve model [6] 
 

Yamada et al. assume that the error detection rate 
is a time-dependent function. That is, 

d(t) = 
bt
tb

+1

2

, 

and,  0,0],)1(1[)( >>+−= − baebtatm bt . 

 
2.3. A general discrete NHPP model [7, 8] 
 

The two parameters, a and b play the same role as 
the a and d(t) in Eq. (4). Taking w = 1-b, we have 
 m(i+1)=wm(i)+(1-w)a (7) 
This indicates that m(i+1) is equal to  the weighted 
arithmetic mean of m(i) and a with weights w and 1 – 
w.  More generally, the weighted arithmetic mean in 
Eq. (7) can be replaced by the weighted geometric, 
harmonic or quasi-arithmetic† means to derive other 
existing NHPP models [8].  Thus, we have the 
following theorem: 
 
Theorem 1: Let g be a real-valued and strictly 
monotone function and m(i+1) be equal to the quasi-
arithmetic mean of m(i) and a with weights w(i+1) and 
1–w(i+1), then 

)},()1())0(({)( 1 agumgugim ii −+= −  

where )(,0,1)(0
1

jwuaiw
i

j
i ∏=><<

=
 for i ≥ 1 and u0 = 1. 

 □ 
                                                                 
† The quasi-arithmetic mean z of x and y with weights w and 
1-w is defined as g(x)=wg(x)+(1-w)g(y) where g is a real-
valued and strictly monotone function. 

2.4. A general continuous NHPP model [8] 
 

Similar to the above discussion in the discrete 
case, we have the following theorem aimed on a 
general continuous NHPP model. 
 
Theorem 2: Let )( ttm ∆+  be equal to the quasi-

arithmetic mean of m(t) and a with weights )( ttw ∆+  

and 1- )( ttw ∆+ ,and if )(
)(1

0
lim

tb
t

ttw
t

=
∆

∆+−
→∆

. 

We have })]())0(([)({)( )(1 tBeagmgaggtm −− −+= , 

where g is a real-valued, strictly monotonic, and 
differentiable function, a is the expected number of 

initial faults, and duut btB )(0)( ∫= .  □ 

 
2.5. A delayed-time NHPP model [7, 8] 
 

We know that the time to remove a fault depends 
on the complexity of the detected errors, the skills of 
the debugging team, the available manpower, and the 
software development environment [1, 9, 10]. 
Therefore, the time spent by the correction process is 
not negligible.  Schneidewind [2, 11] first modeled the 
fault-correction process by using a delayed error-
detection process and assumed that the error-
detection process follows the NHPP and the rate of 
change of the MVF is exponentially decreasing.  
Furthermore, the fault-detection process in the 
Schneidewind model is isomorphic to the G-O model, 
except that the G-O model is viewed as a continuous-
time process.   Xie [2] extended the Schneidewind 
model to a continuous version by substituting a time-
dependent delay function for the constant delay in 
the Schneidewind model.   Thus, we remove the 
impractical assumption that the fault-correction 
process is perfect and can thus establish a 
corresponding time-dependent delay function to fit 
the fault-correction process in our past research [7].  
That is, the new MVF is  
 ,0,0),1()( )( >>−= − baeatm tb

e
bt ϕ  (8)  

where a and b are the parameters in G-O model, )(tϕ  

is a delay-effect factor to represent the corresponding 
time-dependent lag in the correction process. 
 
3. An Integrated Model 

 
In the past, much research on software reliability 

models have concentrated on modeling and 
predicting failure occurrence and have not given 
equal priority to modeling the fault correction process 
[12].  However, most latent software errors may 
remain uncorrected for a long time even after they are 
detected, which increases their impact.  The 
remaining software faults are often one of the most 
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unreliable reasons for software quality.  Therefore, we 
develop a general framework of the modeling of the 
failure detection and fault correction processes.  
 
Assumptions   
1. The error-detection process follows the NHPP. 
2. The software system is subject to encountering 
the remaining faults in the system at random times.   
3. All faults are independent and equally detectable. 
4. The mean number of faults detected in the time 
interval (t, t+∆t) is proportional to the mean number 
of faults remaining in the system. The 
proportionality, )(tλ , may generally be a time-

dependent function [2]. 
5. The mean number of faults corrected in the time 
interval (t, t+∆t) is proportional to the mean number 
of detected but not yet corrected faults remaining in 
the system.   The proportionality, )(tµ , may also be 

time-dependent [2]. 
6. Each time a failure occurs, the fault is perfectly 
removed with no new faults being introduced. 
 
3.1. Description of the modeling 
 

Based on the above assumptions 1-6, we have the 
following differential equations for the MVF m(t) and 
mc(t) of failure detection and fault correction 
processes :  

 ,0)),()((
)(

>−= atmat
dt

tdm
λ   

 )].()()[(
)(

tmtmt
dt

tdm
c

c −= µ   

To develop a framework of the modeling of these 
processes, we thus derive the following theorem.   
 

Theorem 3: If dssttD )(0)( ∫= λ , dssttC )(0)( ∫= µ , 

and the differential equations for the MVF m(t) and 
mc(t) of failure detection and fault correction 
processes is as follows: 

 ,0)),()((
)(

>−= atmat
dt

tdm
λ  (9) 

 )].()()[(
)(

tmtmt
dt

tdm
c

c −= µ  (10) 

we have 
 ))](exp(1[)( tDatm −−= , (11) 

})1()({)( )(
0

)()( dseesacetm sDt sCtC
c

−− −= ∫  (12) 

where a is the expected number of initial faults, and 
the initial condition m(0)=mc(0)=0, i.e. no failure at the 
beginning.  
Proof:  
Solving the above differentiable eq.(9) by multiplying 
both sides with )(tDe , we get 

)())(( )()( tDtD e
dt
d

atme
dt
d

=  

Thus, )1(][)( )()()( tDtDtD eaaaeetm −− −=−= . 

As for Eq.(10), we can multiply both sides with )(tCe , 

we have dseescatme
dt
d t sDsC

c
tC ∫ −−= 0

)()()( )1()())(( . 

Finally, we have the result, 
})1()({)( )(

0
)()( dseesacetm sDt sCtC

c
−− −= ∫ . □ 

 
3.2. Constant rate in these two processes 
 

Note that )(tλ  in Eq.(9) is generally a time-

dependent function and can be rewrite as 

.0,
)(

)('
)( >

−
= a

tma
tm

tλ  

From the above equation, )(tλ  can be interpreted as 

the failure detection rate per remaining fault.  In 
particular, solving the differential equation (9) with 

bt =)(λ  under the initial condition m(0)=0 yields the 

following MVF: 
0,0),1()( >>−= − baeatm bt . 

Based on the above equation, the case is G-O model.  
Furthermore, )(tµ  in Eq.(10) has a similar 

interpretation. That is,  

.
)()(

)('
)(

tmtm
tm

t
c

c

−
=µ   

By the above deduction, )(tµ  is just the fault 

correction rate per detected but not corrected fault. 
Particularly, if )(tλ and )(tµ  equal b, the 

corresponding MVF is derived as follows:  
 
Corollary 1: If the differential equations for the MVF 
m(t) and mc(t) of failure detection and fault correction 
processes is as follows: 

0,0)),((
)(

>>−= batmab
dt

tdm
 

)].()([
)(

tmtmb
dt

tdm
c

c −=  

Therefore, we have  
]1[)( bteatm −−= , 

])1(1[)( bt
c ebtatm −+−=  

using the initial condition m(0)=mc(0)=0, i.e. no failure 
at the beginning.  □ 
 
Corollary 2: If the differential equations for the MVF 
m(t) and mc(t) of failure detection and fault correction 
processes is as follows: 

0,0)),((
)(

>>−= λλ atma
dt

tdm
 

)].()([
)(

tmtm
dt

tdm
c

c −= µ  

we have,  
)]exp(1[)( tatm λ−−= , 
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  ]1[)( tt
c eeatm µλ

µλ
λ

µλ
µ −−

−
−

−
+=  (13)  

where a is the expected number of initial faults, and 
the initial condition m(0) and mc(0) equal zero.      □ 
 
4. Comparisons and Observations 
 

Numerous stochastic models for software failure 
phenomenon have been developed to measure 
software reliability, and many of them are based on 
NHPP.  In fact, these models are very useful to 
describe the software failure detection and correction 
processes with suitable failure occurrence rates.  In 
this following, we discuss how several existing 
SRGMs based on NHPP mo dels can be 
comprehensively derived by applying some various 
factors.  Specifically, we focus on the Yamada S-
shaped curve model [6]. 
 
4.1. Error detection rate approach 
 

From Section 2 we know that we can have 
different SRGMs by using various d(t) in Eq. (5). For 

example, given d(t) = 
bt
tb

+1

2

 and m(0) = 0 in Eq. (5), 

we can get its corresponding MVF m(t) by the 
integration of d(t) as shown below:  

.0,0),)1(1()( >>+−= − baebtatm bt  

That is, a variation of the G-O model, known as the 
Yamada S-shape curve model [13], can be derived.  
 
4.2. Delay-time approach 
 
Moreover, we can have different delay-time NHPP 
models by applying various delay-effect factors.  
Therefore, if )1ln()( 1 btt b +=ϕ , we can also get its 

corresponding MVF by Eq. (8) as below: 
.0,0),)1(1()1()( )( >>+−=−= −− baebtaeeatm bttbbt ϕ

This example reflects the fact that the S-shape model 
can be interpreted from various points of view. In 
other words, by specifying the error-detection rate 
per error or the delay-effect factor, we can formulate 
various models with a new MVF. 
 
4.3. An integrated approach 
 

Suppose both the failure detection rate per 
remaining fault, )(tλ , and the fault correction rate per 

detected but not corrected fault, )(tµ , have the same 

value. That is, .)()( btt == µλ  Therefore, we have 

the corresponding MVF as below:  
.0,0),)1(1()( >>+−= − baebtatm bt  

 

4.4. Comparisons for these three 
approaches 
 

From the above derivation, we know that Yamada 
S-shaped curve can be interpreted from various 
points of view.  In other words, by specifying the 

error detection rate per error, i.e. d(t) =
bt
tb

+1

2

 in Eq. 

(5).  Moreover, from the viewpoint of delayed-time 
correction phenomenon, we can choose a proper 
delay-effect factor, i.e. )1ln()( 1 btt b +=ϕ  in Eq. (8).  

This factor is able to reflect the time lag in the 
correction process.   Furthermore, if btt == )()( µλ  

in the integrated approach of Section 3, the S-shaped 
curve can be described.  Thus, we make the following 
observations:  
� The classical NHPP MVF, is identical to the general 
delayed-time form of the MVF.  
� Many existing NHPP models for software reliability 
can be derived as special cases of this integrated 
framework of detection and correction processes. 
  
5. Numberical Examples 
 
5.1. Estimation and criteria for comparison 
 

Without loss of generality, we discuss three kinds 
of approaches described in Section 3 to model the 
fault correction process.  The first approach is about 
the delayed-time NHPP model, where )(tϕ  is  the 

Rayleigh function, i.e. 
2)()( θϕ

t

ctet −= . The second 

case discusses the general case of the proposed 
approach in Section 3 where the failure detection rate 
and fault correction rate are different constants, i.e. 

µµλλ == )(,)( tt .  Furthermore, the third case is 

the integrated model with equal value of rate, i.e. 
btt == )()( µλ .  When the three case are applied to 

the equation (8)-(10) and it is solved with respect to 
MVF m(t) under the initial condition m(0)=0, we 
obtain the following equation, respectively:  

)),exp(1()(
2)(

1
θ
t

bcteeatm bt −−−=  (14) 

)]exp()exp(1[)(2 ttatm µ
µλ

λλ
µλ

µ −
−

−−
−

+=  (15) 

).)1(1()(3
btebtatm −+−=     (16) 

For illustration of the proposed NHPP models based 
on the above approach, we present an experiment on 
one real data set.  Two most popular estimation 
techniques are the maximum likelihood estimation 
(MLE) and the least squares estimation (LSE) [1, 9, 
10].  The maximum likelihood technique estimates 
parameters by solving a set of simultaneous 
equations.  But the corresponding equations are 
usually complex and must be solved numerically.  
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Furthermore, we use the method of least squares to 
minimize the sum of squares of the deviations 
between what we actually observe/get and what we 
expect.  On the other hand, we adopt one evaluation 
criterion in the comparison of goodness-of-fit of the 
models.   

 

5.2. Performance analysis 
 

The data set was the System T1 data of the Rome 
Air Development Center (RADC) reported by Musa 
[9, 13].  The system T1, developed by Bell 
Laboratories, was used for a real-time, command and 
control system.  The number of object instructions 
was about 21,700 and it took 21 weeks to do the 
software test.  The data set includes 136 observed 
failures, recorded in the execution time.  

First, parameters of models are evaluated and the 
corresponding MVFs are obtained.  Second, all the 
selected models are compared with each other based 
on the objective criteria.  Table 1 shows the estimated 
parameters of the proposed models described in Eq. 
(14)-Eq. (16) solved numerically by MLE and LSE.  
The lower the MSE a model is , the better they fit the 
observed data.  Figure 1 depicts the observed curves 
and the fitted curves of the cumulative numbers of 
failures using the G-O, m1(t), m2(t), and m3(t) models , 
respectively.  Figure 2 illustrates the difference 
between the intensity functions of MVF predicted by 
these models.  Examples of the estimated MVF,  m1(t), 
m2(t), and m3(t), and their 90% confidence limits are 
shown in Figure 3-Figure 5. We can see from Table 1, 
Figure 3 and Figure 4 that the delayed-time model and 
the integrated model fit the data well.  Especially, the 
delayed-time model has the smallest value of MSE 
(21.64); therefore, we can conclude that the delay-
effect factor model gives a better fit in this experiment.  
Furthermore, Figure 2 shows the estimated 
instantaneous fault correction rate of these models, in 
which we find that the integrated approach is a bell-
shaped-type curve.   In reality, the fault correction 
rate is a function of the complexity of program 
modules, the manpower, the skill of testing teams, the 
deadline for the release of the software, etc.  At the 
beginning of the software correction process, the 
programmers usually remove easy-to-correct errors in 
the programs .  That is, the correction rate is 
increasing in such testing phase.  As time goes, the 
team becomes acquainted with the software-testing 
environment, with better skills, techniques and tools.  
These improvements may speed up the testing 
activities [1, 9, 10].  As time passes further, it is 
relatively more difficult for the correcting team to 
correct more errors. That is, the rate that resulted from 
the correction process becomes smaller. This 
phenomenon just fits the increasing-then-decreasing 
scenario of the human learning process. 

Table 1. Estimated parameters for T1 data. 

Model a b c θ  MSE 
m1(t) 133.119 0.1597 0.375 29.3 21.64 

m2(t) 133.119 0.1597 0.7825 － 58.70 

m3(t) 124.5 0.286 － － 78.78 
 

Figure 1. The MVFs for G-O, m1(t), m2(t), m3(t). 

 

 

Figure 2. The estimated intensity functions. 

 

 

 
Figure 3. The 90% confidence limits of m1(t) 
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Figure 4. The 90% confidence limits of m2(t). 

 
 

 
Figure 5. The 90% confidence limits of m3(t).  

 
6. Conclusions 
 

In this paper, we have constructed a SRGM based 
on an NHPP, which incorporates the failure detection 
and fault correction processes, and have discussed 
the methods of quantitative reliability assessment 
based on this new model.  We also make some 
observations between the delay-time NHPP model 
and the integrated model.  Several numerical cases 
based on real control system have been presented 
and the results show that the delayed-time model and 
the integrated model fit the data well.  
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