
A Public Verifiable Security-Enhanced Voting Protocol for a Committee
Board Meeting

Pei-yih Ting , Po-Yueh Hung, Ching-Yi Chen
{pyting, m92570002, m91570019}@mail.ntou.edu.tw

Abstract- In this paper, we focus on the design of
an electronic voting protocol used in critical
elections at the meeting of board of a company or a
parliamentary committee. The number of
participating voters is limited to several hundreds
but the security requirement is expanded that the
accumulated vote-count of each candidate should be
kept as secret as possible. Most former electronic
voting frameworks simply take the announcement of
vote-counts for granted and neglect the privacy
aspect of this part, therefore, they are not applicable
directly. In the proposed protocol, the ElGamal
cryptosystem is used with its nice homomorphic
property. An electronic bulletin board is used to
hold public announced values during the protocol.
A ballot includes separate encrypted ‘yes’/’no’ vote
for each candidate such that the accumulated vote-
counts can be concealed in the secret comparison
algorithm. The secrecy goals of this protocol are
achieved not only by the design that each encrypted
ballot is never decrypted but also by the deliberately
designed comparison algorithm, in which a ‘mix-
and-match’ sub-protocol is utilized.

1. Introduction
Consider the following scenarios: In a small

meeting room, members of the board of directors are
voting for the chairman and the vice chairman of the
next term. Each one can vote for two candidates
without priority in his ballot. The company
organization rule specifies additionally that the
winning candidate must have majority
supports. After all the anonymous ballots are
disclosed and tallied, the winners are fairly
generated. However, the disclosed ballots leave
many intricate traces that might have sufficient
political influences to the management level and are
detrimental to the cooperative framework of the
company. For example, if the vote count for the
CEO is just on the legal margin of majority, some
members might challenge the competence of the
winner's leadership. If some candidates who actively
campaign for the position and are promised privately
a certain amount of support before the election, but
the results turns out to have less supporting votes,
some distrust and disgust might arise. In such a
situation, a practical solution is by resorting to a
trusted third party who counts all ballots secretly and
announces only the resulting winners.

A second situation happens in parliamentary
elections in which members are representatives from
various political parties. There might be some
predetermined principles on a certain topic for each

member of a political party to obey. Sometimes the
principles might even be against their own judgment
or against the benefits of most people in the
country. However, the public vote-counting and
comparison process forces most participants to obey
the principles of their political party. Otherwise, the
tallied vote-counts would reveal some traces about
possible traitors. In such a situation, extensive
discussions, which usually appear at the meeting
before the voting, seem to be superfluous. The
seemingly fair public vote-counting process actually
makes voters difficult to vote according to his sober
and independent judgment. Somehow, the advantage
of voting as a better collective decision method is
lost. Although it is well known that many
independent decisions with correctness probability
slightly higher than a half will accumulate to a good
decision with correctness probability far away from a
half and hopefully close to unity. In many such
occasions, the interests of the whole company or
country could be sacrificed for maintaining the
superficial peaceful cooperating atmosphere. In this
paper, we would like to present a secret and fair
vote-counting and comparison procedure that does
not disclose the vote counts directly. The proposed
protocol implements a vote-counting and comparison
procedure that tries to hide as much information as
possible except the names of the winning
candidates. At the same time, it is public verifiable
thus retains the fairness requirements.

In the past decade, there were extensive
researches on electronic voting schemes, [8], [4],
[13], [15], [3], [17], [18] to name a few. These
schemes make a general electronic election for
thousands or millions of voters feasible. The
primary achievements include maintaining the
privacy of each independent votes, preserving the
fairness, preventing vote-buying and coercion,
realizing vote-and-go concepts while reducing the
computation and communication of the voting center
and the voter. However, while focusing on
achieving the above properties, all electronic voting
schemes announce the final vote count of each
candidate in order to determine the winner fairly.
For some systems, this announcement is the by-
product in the course to achieve effectiveness. For
some other schemes, this announcement leaves
sufficient auditing traces to ensure the fairness of the
trusted authorities. However, this type of counting
and comparison procedure maintains the privacy of
each voter’s independent choice only when the
number of voters is sufficiently large. None of the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

678

above schemes can be applied directly to our
applications without considerable modifications.

From the aspect of saving computation efforts,
there seems no obvious reason to automate
electronically a voting scheme in a moderate-size
meeting room. However, if we rely on a trusted
person to compare all votes secretly in the
anonymous voting scenario where vote-counts are
also required to be secret, this trusted person is very
likely to be bribed or coerced later. Therefore, a
good cryptographic voting scheme without trusted
authority is necessary in this application scenario.

In the proposed protocol, the ElGamal
cryptosystem is used with its nice homomorphic
property. Each ballot includes separate encrypted
‘yes’/’no’ vote for each candidate such that the
accumulated vote-counts can be concealed in the
secret counting-and-comparison algorithm. The
correctness of each encrypted ballot is guaranteed
with zero knowledge proofs. Each encrypted ballot
is never decrypted. Even the accumulated vote
counts are not decrypted directly. The proposed
protocol then compares these encrypted vote counts
to determine the winner. Two types of elections, ‘R-
out-of-m ordered’ and ‘R-out-of-m unordered’, are
implemented with heapsort-based algorithm and
quicksort-based algorithm, respectively. The privacy
of each vote-count in a pairwise ciphertext
comparison is maintained by the ‘mix-and-match’
sub-protocol [14]. All the public values in the
proposed protocol are announced on an electronic
bulletin board in such a way that every participant
can write in his specified fields along the process of
the protocol but cannot modify other’s fields.

In section 2, we introduce the underlying
cryptographic primitives. In section 3, we present
the proposed secure voting protocol. Some
variations and performance issues are presented in
section 4. Section 5 contains the concluding remarks.

2. Cryptographic Primitives
2.1 Secret Sharing Scheme

In our protocol, we use Pederson’s (t, n) threshold
secret sharing scheme[16] which features a key
sharing protocol without any trusted dealer. Each
voter Vi chooses a random degree t-1 polynomial

j
t

j
ijii axf θθ ∑

−

=

+=
1

1
)(and announces ijag where g is the

generator of the subgroup in the ElGamal system. A
voter Vh shares his secret xh with another voter Vi by
sending shi=fh(i) to Vi. On receiving a share shi, Vi
can verify it with announced public values. After
voter Vi receives all correct sub-shares shi, he needs
to apply the secret sharing homomorphism to obtain
the t-share of the real secret X = ∑

=

n

1i
xi=F(0) where the

degree t-1 super polynomial F(θ) is defined as
∑
=

n

1i
fi(θ).

Let T={Vp}p=1...k, t ≦ k ≦ n, be the set of
cooperative voters. To jointly decrypt an ElGamal

ciphertext (α, β) on the bulletin board, a voter Vp in
the set T needs only compute independently

∏

∈≠ Tq p,q
q)-(-q)/(pF(p)

α and publishes it.
The decrypted plaintext is =),(βαD =)0(/ Fαβ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∏
∏

∈

−−
∈≠

Tp

qpqpF
Tqpq ,

)/()()(

/ αβ . To thwart disruptions by

malicious participants, the following ZKP should be
supplied by Vp for proving that the F(p) used in

∏
∈≠ Tq p,q

q)-(-q)/(pF(p)

α is consistent with all previous

published values.

2.2 The Ballots
In the proposed protocol, each voter Vi encrypts

his ‘yes’/’no’ vote for each candidate as a vector of
ElGamal ciphertexts, denoted as Ci:

Ci = (ci1,, cij,, cim) =
(EK(z),EK(1),,EK(z), EK(z),, EK(1)),
1≦i≦n, 1≦j≦m, n is the number of voters and m
is the number of candidates. An EK(z) in the j-th
component of Ci represents a 'yes' vote for the j-th
candidate, and an EK(1) represents a 'no' vote. There
are wi 'yes' vote in each Ci where wi is an integer
between zero and L, where L is the maximum
number of ‘yes’ votes in each ballot. The constant z
is chosen such that its order in Gq is larger than 2n.

Each voter must prove that his encrypted vote
vector Ci is valid. It ensures that every voter votes at
most L candidates such that the remaining
homomorphic counting process is correct. First, a
voter must prove that each element cij of his ballot
corresponds to a plaintext which is either z or 1.
Second, using the multiplicative homomorphic
property of the ElGamal cryptosystem[7], the voting

center can calculate χ
i
= ∏

=

m

j 1
ijc which equals EK(z

wi).

Each voter is required to prove either that cij decrypts
 to one element of {1, z} or that χ

i
 decrypts to one

element of a finite set of plaintexts S={z1,z2, ...,zL}
with the following “decryption of an ElGamal
ciphertext belongs to a finite set” ZKP.

ZKP of “decryption of an ElGamal ciphertext
belongs to a finite set S”:

Consider the following public parameters of an
ElGamal cryptosystem: p, q, g, K, (α, β), and S
where p and q are large prime numbers, p=2q+1, g is
a generator in the order q quadratic residue subgroup
Gq of Zp

* , K ≡ gX (mod p) is the public key, X is the
private key, X is chosen such that gcd(X, p-1) is 2
and the order of K in Gq is q, (α ≡ gr(mod p), β ≡
Mi·K

r
 (mod p)) is an ElGamal ciphertext, r∈R Zp-1, S

is the finite set of specified messages {M1, ...,MJ},
Mi ∈ Gq. Peggy wants to prove to Victor that she
knows i and r without revealing them.

1. Peggy picks randomly J-1 even values {ej}j≠i∈R
Zp-1 and J-1 even values {yj}j≠i∈R Zp-1, then she
computes {aj ≡ gyj α

-ej (mod p)}j≠i, {bj ≡ Kyj Mj/β}ej
(mod p)}j≠i, chooses a random even w∈R Zp-1 and
calculates ai ≡ gw(mod p), bi ≡ Kw (mod p).
Finally, she commits {aj, bj}j=1...J to Victor.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

679

2. Victor chooses a random even challenge e∈R Zp-1
and sends it to Peggy.

3. Peggy computes ei ≡ e - ∑j≠i ej (mod p-1), yi ≡ w +
r ‧ ei (mod p-1), and sends the response {ej,
yj}j=1...J to Victor.

4. Victor checks that e ≡ ∑j ej (mod p-1) and that gyj
≡ aj‧α

ej (mod p), K
yj ≡ bj‧(β/Mj)

ej (mod p) for
j=1...J.

A formal proof of this ZKP can be found in[19].

3. Secure Voting Protocol
The complete secure voting protocol, including

initialization, voting, and counting stages, is
presented as follows:

3.1 Initialization stage
Enroll, choose the secret, and decide the public
key: Each participating voter needs to present a
valid certificate signed by a specific certificate
authority (CA) at this stage in order to enter the
voting. Each voter is then given a one-time
password for the electronic bulletin board. This
allows a voter to write in his specific field exactly
once.
Step 1. A voter Vi chooses a secret xi, computes gxi,

and publishes gxi.
Step 2. Each voter computes the public key K ≡ gX ≡

g
x1+x2+......+xn ≡ g

x1· g
x2 · ...· g

xn (mod p).

Share the secret key:
Step 3. Vi chooses secretly a degree t-1 polynomial

 j
t

j
ijii axf θθ ∑

−

=

+=
1

1
)(which hides the secret xi

as the constant term, and publishes the
 exponentials ijag of all coefficients.

Step 4. Vi sends fi (h), which is the h-th share of xi,
to the voter Vh.

Step 5. Vi cross verifies all the shares he received,
{shi}h=1...n , against published values in step 3.
i.e.,

 1
1

2
21)()())(()(−

−≡≡
t

tbbbnhhi iaiaiaxifs gggggg L

Step 6. Vi calculates from {shi}h=1...n the share F(i) =

 ∑∑
==

=
n

h
h

n

h
h i

sif
11

)(of the actual decryption key

 X=F(0).
Prepare randomly re-encrypted permutation
ciphertext sets:

Define S+={z1, z2,..., zn}. Calculate all
elements in S+, encrypt them, and feed these
ciphertexts into a verifiable mix-net[1] to create a
randomly permuted set S+

(enc). A voter acts as a mix-
server in the mix-net. The input set is first blinded,
i.e. each ElGamal ciphertext is multiplied by (gγ

 , kγ)
where γ is a random number generated for each
ciphertext. Then the blinded set is permuted. The
blinding numbers and the permutation are secret to
the mix-server. However, the mix-servers are
required to provide NIZKPs jointly for the overall
operations. After a sequence of distributed
operations, the output is a randomly re-encrypted
permutation S+

(enc) = {sk}k=1...n = {EK(z1), EK(z2),...,
EK(zn)}. Each voter is assured that S+

(enc) contains

the ciphertexts of all plaintexts in S+, but he is not
able to determine the correspondence between these
two sets. Because each comparison used one S+

(enc),
participants jointly prepare sufficient number of
ciphertext sets S+

(enc), which consists of ciphertexts
of z raised to all positive offsets powers. One should
note that the number of voters, n, cannot be too large
for practical reasons in this protocol and the order of
z in the multiplicative group Gq is chosen to be
larger than 2n.

3.2 Voting stage

Prepare the ballot:
Step 1. A voter Vi decides ‘yes’/’no’ for each

candidate. He prepares a ballot Ci = (EK(z),
EK(1), EK(z),, EK(1)). An EK(z)
represents a ‘yes’ vote and an EK(1)
represents a ‘no’ vote. There are wi ‘yes’
vote in the ballot Ci and wi is no more than a
constant L.

Prove the validity of a ballot: There are several
illegal cases the protocol would like to avoid. First,
a ballot contains an element EK(zk). It is effectively
k ‘yes’ votes to the same candidate. Second, a ballot
contains more than L ‘yes’-votes. Third, a ballot
contains illegal encrypted elements other than EK(z)
or EK(1) that would disrupt the homomorphic
counting procedure.

Step 2. A voter proves that each ciphertext element
of the ballot is the encryption of either z or 1
with the NIZKP described in section 2.2.

Step 3. A voter also proves that χi≡ ∏
=

m

j
ijc

1
(mod p) is

 the encryption of an element in the set {1, z1,
z2,..., zL} with the NIZKP described in
section 2.2.

Publish the ballot:
Step 4. A voter logs on the electronic bulletin board

with the one-time password received earlier.
Step 5. A voter publishes the ballot and the NIZKPs

on his designated fields as shown in Figure 1.

Figure 1. Ballots on the electronic bulletin board

Verify the validity of NIZKPs:
Step 6. In order to prevent malicious subversion in

the remaining protocol, the voting center has
the responsibility to verify the NIZKPs
corresponding to each encrypted vote vectors.

Step 7. Because none of the published cij will be
decrypted in the protocol, any suspicious
participant can also verify these proofs to
establish his confidence on the ongoing

 Candidates
Voters

1 ... m-1 m

V1 c11 ... c1(m-1) c1m NIZKP for c1j
NIZKP of  χ 1

...
Vn cn1 ... cn(m-1) cnm NIZKP for cnj

NIZKP of χ n
Tallies τ1 τ m-1 τ m

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

680

protocol.

3.3 Counting-and-Comparison stage
In this stage, the encrypted votes for each

individual candidate are first tallied using the
homomorphic property of the underlying encryption
system. Then R winners out of m candidates are
generated without decrypting their individual vote-
tallies with a public verifiable counting-and-
comparison protocol. Protocols for two election
schemes are constructed for this purpose: ‘R-out-of-
m ordered’ election and ‘R-out-of-m unordered’
election. The first scheme concludes the R winners
with their relative order while the second scheme
tries to hide the order of the final R winners.

A. Homomorphic vote-tallying:
The ciphertexts of the j-th column on the

electronic bulletin board are multiplied together as
the encrypted tally of the j-th candidate, i.e.

τ j=∏
=

n

i 1

c ij

B. Secure determination of R winners:
Depending on the choice of R and m, different

sorting algorithm is required to determine the result
of the election in order to obtain minimal number of
comparisons.
1. ‘R-out-of-m ordered’ election:

To achieve this goal, a general sorting
algorithm can be applied until the highest R elements
come out. The ‘match’ sub-protocol[14], to be
described later, is used to carry out each pairwise
comparison without revealing both tallies. For
example, a selection sort algorithm[12] can be
applied on the ciphertext list {τ 1, τ 2, ...,τ m}. With
(m-1) comparisons and exchanges, the largest
element of the list can be sorted out. With (m-2)
comparisons and exchanges the runner-up can be
sorted out. In the same way, this procedure runs till
the R-th largest element comes out.

Since the ‘match’ sub-protocol is the most time
consuming part of this counting-and-comparison
protocol, it is necessary to consider other sorting
algorithm that reduces the number of comparisons.
Consider the heap sort algorithm[12] that requires
asymptotically m log(m) comparisons in the worst
case:
Step 1: Use the ‘heapify’ algorithm to construct a

maximal heap (a binary tree with every non-
leaf node larger than both of its children)
from the ciphertext list {τ 1, τ 2, ...,τ m}. The
number of comparisons of this step is

∑
≤≤

− −
ki

i ik
1

1)(22 where ⎡ ⎤1)(log += mk .

The root of this maximal heap is the first
winner.

Step 2: Replace the root node, with the rightmost
leaf node of the bottom layer and adjust the
heap to a maximal heap again. The number
of comparisons of this step is less than 2 (k-
1).

Repeat step 2 for (R-1) times will find the (R-1)
ciphertexts corresponding to (R-1) maximum vote-

tallies.
2. ‘R-out-of-m unordered’ election:

It is hard to find out the R winners without
letting go any of their pairwise relations. In the
following, an algorithm that only disclose
approximately 2m pairs of relations is suggested:
Step 1: Randomly pick a pivot element τ i from the

ciphertext list τ 1, τ 2, ...,τ m, compare τ i with
{τ j}j≠i using the ‘match’ sub-protocol, put
those element with corresponding plaintext
less than DK(τ i) in U1 and others in U2.
(Note: DK(τ i) denotes the plaintext
corresponding to τ i.)

Step 2: a. If | U2 | > R, apply step 1 and step 2
recursively on list U2 to find the maximal
R elements out of U2.

b. If | U2 | < R, apply step 1 and step 2
recursively on list U1 and find the
maximal R-|U2|-1 elements out of U1.

c. If | U2 | equals R or R-1, the algorithm
stops with U2 or U2 ∪ {τ i} as the result
winners.

C. The ‘match’ pairwise comparison sub-protocol:
In the counting-and-comparison stage, random

permuted sets S+
(enc) consisting of ciphertexts of z

raised to all positive offsets are required to compare
tallies of any two candidates without revealing their
counts. To determine the relative relation of any
DK(τ i) and DK(τ j) pair without revealing their
difference, the following ‘match’ [14] steps are
performed:
Step 1: Divide τ i by τ j to obtain the ciphertext

EK(z
ti-tj), where τ i equals EK(z

ti) and τ j equals
EK(z

tj).
Step 2: Determining whether the decryption of this

ciphertext (τ i / τ j) is unity, an element of S+ ,
or an element of S-.

2.1: Raise (τ i /τ j) to a secret random power
sequentially by the k-th participant, i.e. (τ i
/τ j)

λk such that no participant knows the
overall random exponent λ=λ1+λ2+...+λn.
Note, the notation (τ i /τ j)

λk denotes a
separate λk power to both elements of an
ElGamal ciphertext. Each participant
performs the exponentiation twice and
supplies an ‘equal discrete logarithm’
ZKP[5] that he uses the same exponent λk
in both operations.

2.2: Perform jointly a threshold decryption of
(τ i /τ j)

λ; we reach a conclusion that τ i
equals τ j if the result is unity.

2.3: Divide (τ i /τ j) by each element of S+
(enc)

and obtain a set {τ i /τ j /sl}l=1...n.
2.4: Raise each elements (τ i /τ j /sl) to a secret

random power sequentially by each
participant, i.e. (τ i /τ j/sl)

λksuch that no
participant knows the random exponent λ.

2.5: Perform jointly threshold decryptions of
{(τ i /τ j /sl)

λ}l=1...n; if there is a unity
element inside, conclude that τ i > τ j;
otherwise conclude that τ i <τ j.

If only one set S+
(enc) is used in all ‘match’ sub-

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

681

protocol, and suppose two pairs of ciphertexts (a, b)
and (c, d) matches to the same element of S+

(enc) in
two rounds of ‘match’ sub-protocol. Then we know
not only Dk(a) > Dk(b) and Dk(c) > Dk(d) but also
Dk(a)-Dk(b) = Dk(c)-Dk(d) > 0, which leaks a lot
more information than just relative order of them.

4. Efficiency and Security
In the proposed scheme, the ciphertext EK(1) or

EK(z) represents a ‘no’-vote or a ‘yes’-vote for a
specific candidate, respectively. In a ballot, approval
or disapproval of a total of m candidates requires m
separate ElGamal ciphertexts. This approach
apparently uses a large amount of computation and
storage. In contrast, if suitable coding is used for
each ballot the representation is extremely compact.
For example, the ballot can be represented as

 EK(z
a0+a1N+a2N

2+...+am-1N
m-1

) [6], where ai ∈{0, 1}

is the ‘no’/’yes’ decision, ordp(z) > Nm+1, N is a
number chosen to be larger than the number of

voters n. In this representation, z
aiN

i
 with ai equal

to 1 denotes an approval for the i-th candidate. The
homomorphic property of ElGamal encryption
system enables the correct counting without
decryption of each individual ballot. However,
before submitting this encrypted ballot, a voter has
to provide a ZKP to ensure the validity of the ballot.
One obvious yet impractical method is to create a set
 of all possible ballots {1, zN0

, zN1
, zN2

, ..., zNm-1
,

zN0+N1
, zN0+N2

, ...zNm-2+Nm-1
,

zN0+N1+N2
, ...zN0+N1+N2+...NL-1

,, ZNm-L+Nm-L+1+Nm-

L+2+...Nm-1
} and to prove that the corresponding

plaintext of one’s ballot is in this set. Due to the
large amount of elements in this set, the computation
and communication cost of this proof is generally
not affordable by a voter. In the proposed scheme,
to prove the validity of each individual ‘yes’/’no’
vote requires only a proof that DK(c

ij
) is in {1, z}.

The requirement that there are at most L approvals in
each ballot (which comprises m ciphertexts) can be
proved with a ZKP that D

K
(χi) ∈ {1, z, ..., zL}. The

complexity of this proof grows linearly instead of
exponentially in L. The second problem with the
above compact ballot representation is: at the
decryption stage, a discrete logarithm problem with
respect to the new z, which has far larger order than
the z in the proposed method, has to be solved. The
third problem with the compact ballot representation
is: at the vote-counting stage, the vote-count for each
candidate is revealed all at a time since the sum of all
ballots has to be decrypted. This violates the secrecy
requirement of our application system.

In the proposed vote-counting and comparison
procedure, the security of individual primitives
(NIZKPs) is guaranteed by their own security proofs.
The sequential composition of these protocols are
also well known to be secure[11]. The fulfillment of
the new privacy requirements by the proposed

protocol actually depends on the number of
comparisons in the course of protocol execution.

Assuming an ‘R-out-of-m ordered’ election is
conducted at a meeting, the proposed ‘match’
algorithm to choose the R winners from
homomorphically processed vote-tally ciphertexts
will reveal many relative relations of vote tallies (out
of a total of m(m-1)/2 relations). From these
revealed information and the range of total number
of votes, one can construct an upper bound and a
lower bound of each vote tally. The more number of
comparisons performed, the more relations revealed,
and the more exact the calculated bounds. In the
heapsort-style algorithm, choosing R winners from m
tallies requires at worst))1)(1()(2(2

1

1 −−+−∑
≤≤

− kRik
ki

i

comparisons where ⎡ ⎤1)(log += mk . In the above
equation, ∑

≤≤

− −
ki

i ik
1

1)(22 is the number of

comparisons in the ‘heapify’ process and
)1)(1(2 −− kR is the maximal number of

comparisons in choosing R maximal numbers from
the maximal heap. Note that if we record the result
of each comparison in the course of the protocol and
eliminate duplicated comparisons in the sequel; the
average number of comparisons in the ‘R-maximum-
choosing’ process could be reduced to as small as
one fourth such that the average number of
comparisons for heapsort-based protocol is less than
 2/)1)(1()(22

1

1 −−+−∑
≤≤

− kRik
ki

i .

Considering instead using the selection sort in
combination with the ‘match’ algorithm, choosing R

 winners out of m candidates requires)(
1
∑

≤≤

−
Ri

im

comparisons, and at most that number of relations
are revealed. In table 1, the number of comparisons
for heapsort-based protocol and for selection-sort-
based protocol are tabulated. The results of the
average case are averaged over 10000 random
independent experiments. It can be observed that as
number of winners increases, heapsort-based
protocol outperforms the selection sort-based
protocol.

Heap sort
of candidates /
 # of winners

Average Worst case
Selection

sort
7/1 7.41000 8 6
7/2 9.998333 12 11
7/4 13.898000 19 18

31/1 45.991333 52 30
31/2 53.129667 60 59
31/10 106.325667 124 255

Table 1. Number of comparisons in the protocol
In many election systems, the vote-count for a

candidate is required to exceed a certain threshold
before that candidate being declared as a winner. In
the proposed protocol, the encrypted vote-tallies for
each candidate can be first compared with the
encryption of this fixed threshold using the ‘match’
protocol. In this way, only qualified candidates will

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

682

be compared in the proposed voting protocol.
Another way to implement electoral threshold is to
apply the proposed protocol on all tallies and only
compare the vote-tallies of the final R winners to the
threshold. Both methods incur different
comparisons; however, they only make limited
differences.

5. Concluding Remarks
In our scheme, the privacy of all tallies is

maintained and the fairness of the whole protocol is
guaranteed by the public verifiability of
homomorphic operations and ZKPs with the extra
expense of computation and storage. Almost all
previously proposed schemes in the literature
neglected the privacy requirement raised in this
paper, namely the privacy of all vote-counts. It is to
our knowledge the first attempt to formulate this
security aspect. Another difference between our
scheme and previous schemes lies in the trust
structure. In a large-scale election, all the voters
have to trust a single vote-counting center or a set of
non-collaborating vote-counting centers. Some
schemes might have extra scrutinizers to ensure the
fairness of the counting procedure executed by the
authority. For our target application, which has only
a moderate number of voters, the trust is distributed
to each voter himself or herself. A voter only needs
to trust / observe that most other voters participating
the meeting are not collaborating. In that case, the
voting mechanism would be fairly conducted.
However, if convenience and efficiency are the first-
priority considerations, the trust can still be placed
on multiple authorities and scrutinizers.

It should also be noted that there is no point to
apply the customized scheme proposed in this paper
to a large-scale election. First, the ZKPs required for
the correctness of each ballot demand an excessive
amount of computation, while the advantage of
hiding the individual tallies makes not much sense in
a large-scale election. It is clear that small-scale
elections in a democratic style of business
management team control most decisions of an
enterprise. Independent voting decisions are assured
by the proposed scheme. The remaining difficulties
include: the massive amount of computations and
communications that are still not affordable by a
medium-level personal device like a cellular phone
or a smart card. Also, the vote-buying (or the
coercion) problem remains unsolved as for all
homomorphic encryption-based voting systems.

It is well known that secure electronic voting
schemes are special instances and successful
applications of secure multi-party computation
protocols[9]. However, for efficiency considerations
in the deployment of a large-scale election, most
previous schemes avoided the general multi-party
computation model[10] and sacrificed some secrecy
properties such as the counts of vote-tallies. At first
glance, it looks like that Yao’s secure two-party
comparison protocol[20] can be applied to do the
comparisons. However, the use of homomorphic
encryption on the vote-tallying process hides all the

vote-counts and discourages the application of Yao’s
protocol.

6.References
[1] M. Abe, “Universally verifiable MIX with

verification work independent of the number of
MIX servers”, Adv. in Cryptology–Eurocrypt ‘98.

[2] M. Abe and K. Suzuki, “M+1-st Price Auction
Using Homomorphic Encryption”, PKC 2002.

[3] O. Baudron, P. Fouque, D. Pointcheval, J. Stern,
and G. Poupard, “Practical Multi-Candidate
Election System”, ACM 20-th Symp. on
Principle of Distributed Computing, PODC’01,
2001.

[4] J. C. Benaloh, “Verifiable Secret Ballot
Elections”, PhD thesis, Yale University, 1987.

[5] D. Chaum and T. Pedersen, “Wallet Databases
with Observers”, Adv. in Cryptology –
Crypto’92.

[6] R. Cramer, R. Gennaro, and B. Schoenmakers,
“A Secure and Optimally Efficient Multi-
Authority Election Scheme”, Advanced in
Cryptology – Eurocrypt’97.

[7] T. ElGamal, “A Public-key Cryptosystem and
Signature Scheme Based on Discrete
Logarithms”, IEEE Trans. on Information Theory,
Vol. IT-31, pp. 469-472, 1985.

[8] A. Fujioka, T. Okamoto, and K. Ohta, “A
practical secret voting scheme for large scale
elections”, Adv. in Cryptology – AUSCRYPT’92.

[9] M. Franklin and Z. Galil, “An Overview of
Distributed Secure computing”, 1992

[10] O. Goldreich, S. Micali, and A. Wigderson,
“How to Play Any Mental Game”, STOC’87.

[11] O. Goldreich and Hugo Krawczyk, “On the
Composition of Zero-Knowledge Proof
Systems”, SIAM Journal on Computing 1996.

[12] E. Horowitz, S. Sahni and S. Rajasekaran,
“Computer Algorithm/ C++”, Computer Science
Press, New York, 1997.

[13] M. Hirt and K. Sako, “Efficient receipt-free
voting based on homomorphic encryption” ,
Advanced in Cryptology – Eurocrypt ‘00, 2000.

[14] M. Jakobsson and A. Juels,“Mix and Match:
Secure Function Evaluation via Ciphertexts”,
Advanced in Cryptology – Asiacrypt ‘00, 2000.

[15] M. J. Radwin, “An untraceable, universally
verifiable voting scheme”, 1995, http://www.
radwin.org/michael/projects/voting.html.

[16] T. P. Pedersen, “A Threshold Cryptosystem
without a Trusted Party”, Advanced in
Cryptology – Eurocrypt 1991, pp. 522-526, 1991.

[17] R. Rivest, “Electronic Voting”, Financial
Cryptography’91, 1991.

[18] Z. Rjaskova, “Electronic Voting Schemes”, Ms
Thesis, Comenius University, Bratislava, 2002.

[19] P.-Y. Ting, Y.-T. Lee, C.-Y. Chen “On The
Public Verifiability of an M+1-st Price Auction
Using Homomorphic Encryption”, Technical
Report, National Taiwan Ocean Univ. 2003.

[20] A. Yao, “Protocols for secure computations”,
Proc. of the 23rd IEEE Symp. On Foundations of
Computer Science, FOCS’82, 1982.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

683

