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Abstract- In this paper, we focus on the design of 
an electronic voting protocol used in critical 
elections at the meeting of board of a company or a 
parliamentary committee.  The number of 
participating voters is limited to several hundreds 
but the security requirement is expanded that the 
accumulated vote-count of each candidate should be 
kept as secret as possible.  Most former electronic 
voting frameworks simply take the announcement of 
vote-counts for granted and neglect the privacy 
aspect of this part, therefore, they are not applicable 
directly.  In the proposed protocol, the ElGamal 
cryptosystem is used with its nice homomorphic 
property.  An electronic bulletin board is used to 
hold public announced values during the protocol.  
A ballot includes separate encrypted ‘yes’/’no’ vote 
for each candidate such that the accumulated vote-
counts can be concealed in the secret comparison 
algorithm.  The secrecy goals of this protocol are 
achieved not only by the design that each encrypted 
ballot is never decrypted but also by the deliberately 
designed comparison algorithm, in which a ‘mix-
and-match’ sub-protocol is utilized. 

1. Introduction 
Consider the following scenarios: In a small 

meeting room, members of the board of directors are 
voting for the chairman and the vice chairman of the 
next term.   Each one can vote for two candidates 
without priority in his ballot.  The company 
organization rule specifies additionally that the 
winning candidate must have majority 
supports.  After all the anonymous ballots are 
disclosed and tallied, the winners are fairly 
generated.  However, the disclosed ballots leave 
many intricate traces that might have sufficient 
political influences to the management level and are 
detrimental to the cooperative framework of the 
company.  For example, if the vote count for the 
CEO is just on the legal margin of majority, some 
members might challenge the competence of the 
winner's leadership.  If some candidates who actively   
campaign for the position and are promised privately 
a certain amount of support before the election, but 
the results turns out to have less supporting votes, 
some distrust and disgust might arise.  In such a 
situation, a practical solution is by resorting to a 
trusted third party who counts all ballots secretly and 
announces only the resulting winners. 

A second situation happens in parliamentary 
elections in which members are representatives from 
various political parties.  There might be some 
predetermined principles on a certain topic for each 

member of a political party to obey.  Sometimes the 
principles might even be against their own judgment 
or against the benefits of most people in the 
country.  However, the public vote-counting and 
comparison process forces most participants to obey 
the principles of their political party.  Otherwise, the 
tallied vote-counts would reveal some traces about 
possible traitors.  In such a situation, extensive 
discussions, which usually appear at the meeting 
before the voting, seem to be superfluous.  The 
seemingly fair public vote-counting process actually 
makes voters difficult to vote according to his sober 
and independent judgment.  Somehow, the advantage 
of voting as a better collective decision method is 
lost.  Although it is well known that many 
independent decisions with correctness probability 
slightly higher than a half will accumulate to a good 
decision with correctness probability far away from a 
half and hopefully close to unity.  In many such 
occasions, the interests of the whole company or 
country could be sacrificed for maintaining the 
superficial peaceful cooperating atmosphere.  In this 
paper, we would like to present a secret and fair 
vote-counting and comparison procedure that does 
not disclose the vote counts directly.  The proposed 
protocol implements a vote-counting and comparison 
procedure that tries to hide as much information as 
possible except the names of the winning 
candidates.  At the same time, it is public verifiable 
thus retains the fairness requirements. 

In the past decade, there were extensive 
researches on electronic voting schemes, [8], [4], 
[13], [15], [3], [17], [18] to name a few.  These 
schemes make a general electronic election for 
thousands or millions of voters feasible.  The 
primary achievements include maintaining the 
privacy of each independent votes, preserving the 
fairness, preventing vote-buying and coercion, 
realizing vote-and-go concepts while reducing the 
computation and communication of the voting center 
and the voter.  However, while focusing on 
achieving the above properties, all electronic voting 
schemes announce the final vote count of each 
candidate in order to determine the winner fairly.  
For some systems, this announcement is the by-
product in the course to achieve effectiveness.  For 
some other schemes, this announcement leaves 
sufficient auditing traces to ensure the fairness of the 
trusted authorities.  However, this type of counting 
and comparison procedure maintains the privacy of 
each voter’s independent choice only when the 
number of voters is sufficiently large.  None of the 
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above schemes can be applied directly to our 
applications without considerable modifications.  

From the aspect of saving computation efforts, 
there seems no obvious reason to automate 
electronically a voting scheme in a moderate-size 
meeting room.  However, if we rely on a trusted 
person to compare all votes secretly in the 
anonymous voting scenario where vote-counts are 
also required to be secret, this trusted person is very 
likely to be bribed or coerced later.  Therefore, a 
good cryptographic voting scheme without trusted 
authority is necessary in this application scenario. 

In the proposed protocol, the ElGamal 
cryptosystem is used with its nice homomorphic 
property.  Each ballot includes separate encrypted 
‘yes’/’no’ vote for each candidate such that the 
accumulated vote-counts can be concealed in the 
secret counting-and-comparison algorithm.  The 
correctness of each encrypted ballot is guaranteed 
with zero knowledge proofs.  Each encrypted ballot 
is never decrypted.  Even the accumulated vote 
counts are not decrypted directly.  The proposed 
protocol then compares these encrypted vote counts 
to determine the winner.  Two types of elections, ‘R-
out-of-m ordered’ and ‘R-out-of-m unordered’, are 
implemented with heapsort-based algorithm and 
quicksort-based algorithm, respectively.  The privacy 
of each vote-count in a pairwise ciphertext 
comparison is maintained by the ‘mix-and-match’ 
sub-protocol [14].  All the public values in the 
proposed protocol are announced on an electronic 
bulletin board in such a way that every participant 
can write in his specified fields along the process of 
the protocol but cannot modify other’s fields. 

In section 2, we introduce the underlying 
cryptographic primitives.  In section 3, we present 
the proposed secure voting protocol.  Some 
variations and performance issues are presented in 
section 4.  Section 5 contains the concluding remarks. 

2. Cryptographic Primitives 
2.1 Secret Sharing Scheme 

In our protocol, we use Pederson’s (t, n) threshold 
secret sharing scheme[16] which features a key 
sharing protocol without any trusted dealer.  Each 
voter Vi chooses a random degree t-1 polynomial 
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generator of the subgroup in the ElGamal system.  A 
voter Vh shares his secret xh with another voter Vi by 
sending shi=fh(i) to Vi.  On receiving a share shi, Vi 
can verify it with announced public values.  After 
voter Vi receives all correct sub-shares shi, he needs 
to apply the secret sharing homomorphism to obtain 
the t-share of the real secret X = ∑

=
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degree t-1 super polynomial F(θ) is defined as 
∑
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fi(θ).  

Let T={Vp}p=1...k, t ≦ k ≦ n, be the set of 
cooperative voters.  To jointly decrypt an ElGamal 

ciphertext (α, β) on the bulletin board, a voter Vp in 
the   set   T    needs  only   compute   independently 

 
∏

∈≠ Tq p,q
q)-(-q)/(pF(p)

α and publishes it.   
The decrypted plaintext is =),( βαD =)0(/ Fαβ  

 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∏
∏

∈

−−
∈≠

Tp

qpqpF
Tqpq ,

)/()()(

/ αβ .  To thwart disruptions by  

malicious participants, the following ZKP should be 
supplied by Vp for proving that the F(p) used in 
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α is consistent with all previous 

published values. 

2.2 The Ballots 
In the proposed protocol, each voter Vi encrypts 

his ‘yes’/’no’ vote for each candidate as a vector of 
ElGamal ciphertexts, denoted as Ci:  

Ci = (ci1, ..........., cij, ....................., cim) = 
(EK(z),EK(1), ............,EK(z), EK(z), ........., EK(1)), 
1≦i≦n, 1≦j≦m, n is the number of voters and m 
is the number of candidates.  An EK(z) in the j-th 
component of Ci represents a 'yes' vote for the j-th 
candidate, and an EK(1) represents a 'no' vote.  There 
are wi 'yes' vote in each Ci where wi is an integer 
between zero and L, where L is the maximum 
number of ‘yes’ votes in each ballot.  The constant z 
is chosen such that its order in Gq is larger than 2n. 

Each voter must prove that his encrypted vote 
vector Ci is valid.  It ensures that every voter votes at 
most L candidates such that the remaining 
homomorphic counting process is correct.  First, a 
voter must prove that each element cij of his ballot 
corresponds to a plaintext which is either z or 1.  
Second, using the multiplicative homomorphic 
property of the ElGamal cryptosystem[7], the voting 

center can calculate χ
i
= ∏

=

m

j 1
ijc which equals EK(z

wi).  

Each voter is required to prove either that cij decrypts 
 to one element of {1, z} or that χ

i
 decrypts to one 

element of a finite set of plaintexts S={z1,z2, ...,zL} 
with the following “decryption of an ElGamal 
ciphertext belongs to a finite set” ZKP.  

ZKP of “decryption of an ElGamal ciphertext 
belongs to a finite set S”: 

Consider the following public parameters of an 
ElGamal cryptosystem: p, q, g, K, (α, β), and S 
where p and q are large prime numbers, p=2q+1, g is 
a generator in the order q quadratic residue subgroup 
Gq of Zp

* , K ≡ gX (mod p) is the public key, X is the 
private key, X is chosen such that gcd(X, p-1) is 2 
and the order of K in Gq is q, (α ≡ gr(mod p), β ≡ 
Mi·K

r
 (mod p) ) is an ElGamal ciphertext, r∈R Zp-1, S 

is the finite set of specified messages {M1, ...,MJ}, 
Mi ∈ Gq.  Peggy wants to prove to Victor that she 
knows i and r without revealing them. 

1. Peggy picks randomly J-1 even values {ej}j≠i∈R 
Zp-1 and J-1 even values {yj}j≠i∈R Zp-1, then she 
computes {aj ≡ gyj α

-ej (mod p)}j≠i, {bj ≡ Kyj Mj/β}ej 
(mod p)}j≠i, chooses a random even w∈R Zp-1 and 
calculates ai ≡ gw(mod p), bi ≡ Kw (mod p).  
Finally, she commits {aj, bj}j=1...J to Victor.  
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2. Victor chooses a random even challenge e∈R Zp-1 
and sends it to Peggy. 

3. Peggy computes ei ≡ e - ∑j≠i ej (mod p-1), yi ≡ w + 
r ‧ ei (mod p-1), and sends the response {ej, 
yj}j=1...J to Victor. 

4. Victor checks that e ≡ ∑j ej (mod p-1) and that gyj 
≡ aj‧α

ej (mod p), K
yj ≡ bj‧(β/Mj)

ej (mod p) for 
j=1...J. 

A formal proof of this ZKP can be found in[19]. 

3. Secure Voting Protocol 
The complete secure voting protocol, including 

initialization, voting, and counting stages, is 
presented as follows: 

3.1 Initialization stage 
Enroll, choose the secret, and decide the public 
key:  Each participating voter needs to present a 
valid certificate signed by a specific certificate 
authority (CA) at this stage in order to enter the 
voting.  Each voter is then given a one-time 
password for the electronic bulletin board.  This 
allows a voter to write in his specific field exactly 
once. 
Step 1. A voter Vi chooses a secret xi, computes gxi, 

and publishes gxi. 
Step 2. Each voter computes the public key K ≡ gX ≡ 

g
x1+x2+......+xn ≡ g

x1· g
x2 · ...· g

xn (mod p).  

Share the secret key: 
Step 3. Vi chooses secretly a degree t-1 polynomial 
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 exponentials ijag of all coefficients. 

Step 4. Vi sends fi (h), which is the h-th share of xi, 
to the voter Vh. 

Step 5. Vi cross verifies all the shares he received, 
{shi}h=1...n , against published values in step 3. 
i.e.,  
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 X=F(0). 
Prepare randomly re-encrypted permutation 
ciphertext sets: 

Define S+={z1, z2,..., zn}.  Calculate all 
elements in S+, encrypt them, and feed these 
ciphertexts into a verifiable mix-net[1] to create a 
randomly permuted set S+

(enc).  A voter acts as a mix-
server in the mix-net.  The input set is first blinded, 
i.e. each ElGamal ciphertext is multiplied by (gγ

 , kγ) 
where γ is a random number generated for each 
ciphertext.  Then the blinded set is permuted.  The 
blinding numbers and the permutation are secret to 
the mix-server.  However, the mix-servers are 
required to provide NIZKPs jointly for the overall 
operations.  After a sequence of distributed 
operations, the output is a randomly re-encrypted 
permutation S+

(enc) = {sk}k=1...n = {EK(z1), EK(z2),..., 
EK(zn)}.  Each voter is assured that S+

(enc) contains 

the ciphertexts of all plaintexts in S+, but he is not 
able to determine the correspondence between these 
two sets.  Because each comparison used one S+

(enc), 
participants jointly prepare sufficient number of 
ciphertext sets S+

(enc), which consists of ciphertexts 
of z raised to all positive offsets powers.  One should 
note that the number of voters, n, cannot be too large 
for practical reasons in this protocol and the order of 
z in the multiplicative group Gq is chosen to be 
larger than 2n. 

3.2 Voting stage 

Prepare the ballot: 
Step 1. A voter Vi decides ‘yes’/’no’ for each 

candidate.  He prepares a ballot Ci = ( EK(z), 
EK(1), EK(z), .................., EK(1) ).  An EK(z) 
represents a ‘yes’ vote and an EK(1) 
represents a ‘no’ vote.  There are wi ‘yes’ 
vote in the ballot Ci and wi is no more than a 
constant L. 

Prove the validity of a ballot: There are several 
illegal cases the protocol would like to avoid.  First, 
a ballot contains an element EK(zk).  It is effectively 
k ‘yes’ votes to the same candidate.  Second, a ballot 
contains more than L ‘yes’-votes.  Third, a ballot 
contains illegal encrypted elements other than EK(z) 
or EK(1) that would disrupt the homomorphic 
counting procedure. 

Step 2. A voter proves that each ciphertext element 
of the ballot is the encryption of either z or 1 
with the NIZKP described in section 2.2.     

Step 3. A voter also proves that χi≡ ∏
=

m

j
ijc

1
(mod p) is 

 the encryption of an element in the set {1, z1, 
z2,..., zL} with the NIZKP described in 
section 2.2. 

Publish the ballot:  
Step 4. A voter logs on the electronic bulletin board 

with the one-time password received earlier.  
Step 5. A voter publishes the ballot and the NIZKPs 

on his designated fields as shown in Figure 1. 

Figure 1. Ballots on the electronic bulletin board 

Verify the validity of NIZKPs:  
Step 6. In order to prevent malicious subversion in 

the remaining protocol, the voting center has 
the responsibility to verify the NIZKPs 
corresponding to each encrypted vote vectors.  

Step 7. Because none of the published cij will be 
decrypted in the protocol, any suspicious 
participant can also verify these proofs to 
establish his confidence on the ongoing 

     Candidates   
Voters  

1 ... m-1 m   

V1 c11 ... c1(m-1) c1m NIZKP for c1j 
NIZKP of  χ 1 

... .. ... ...  
Vn cn1 ... cn(m-1) cnm NIZKP for cnj 

NIZKP of χ n 
Tallies τ1 τ m-1 τ m  
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protocol. 

3.3 Counting-and-Comparison stage 
In this stage, the encrypted votes for each 

individual candidate are first tallied using the 
homomorphic property of the underlying encryption 
system.  Then R winners out of m candidates are 
generated without decrypting their individual vote-
tallies with a public verifiable counting-and-
comparison protocol.  Protocols for two election 
schemes are constructed for this purpose: ‘R-out-of-
m ordered’ election and ‘R-out-of-m unordered’ 
election.  The first scheme concludes the R winners 
with their relative order while the second scheme 
tries to hide the order of the final R winners. 

A. Homomorphic vote-tallying:  
The ciphertexts of the j-th column on the 

electronic bulletin board are multiplied together as 
the    encrypted    tally   of the   j-th   candidate,   i.e. 

τ j=∏
=

n

i 1

c ij 

B. Secure determination of R winners: 
Depending on the choice of R and m, different 

sorting algorithm is required to determine the result 
of the election in order to obtain minimal number of 
comparisons. 
1. ‘R-out-of-m ordered’ election: 

To achieve this goal, a general sorting 
algorithm can be applied until the highest R elements 
come out.  The ‘match’ sub-protocol[14], to be 
described later, is used to carry out each pairwise 
comparison without revealing both tallies.  For 
example, a selection sort algorithm[12] can be 
applied on the ciphertext list {τ 1, τ 2, ...,τ m}.  With 
(m-1) comparisons and exchanges, the largest 
element of the list can be sorted out.  With (m-2) 
comparisons and exchanges the runner-up can be 
sorted out.  In the same way, this procedure runs till 
the R-th largest element comes out. 

Since the ‘match’ sub-protocol is the most time 
consuming part of this counting-and-comparison 
protocol, it is necessary to consider other sorting 
algorithm that reduces the number of comparisons.  
Consider the heap sort algorithm[12] that requires 
asymptotically m log(m) comparisons in the worst 
case: 
Step 1: Use the ‘heapify’ algorithm to construct a 

maximal heap (a binary tree with every non-
leaf node larger than both of its children) 
from the ciphertext list {τ 1, τ 2, ...,τ m}.  The 
number   of   comparisons   of this   step   is 

∑
≤≤

− −
ki

i ik
1

1 )(22  where ⎡ ⎤1)(log += mk .  

The root of this maximal heap is the first 
winner. 

Step 2: Replace the root node, with the rightmost 
leaf node of the bottom layer and adjust the 
heap to a maximal heap again.  The number 
of comparisons of this step is less than 2 (k-
1). 

Repeat step 2 for (R-1) times will find the (R-1) 
ciphertexts corresponding to (R-1) maximum vote-

tallies. 
2.  ‘R-out-of-m unordered’ election: 

It is hard to find out the R winners without 
letting go any of their pairwise relations.  In the 
following, an algorithm that only disclose 
approximately 2m pairs of relations is suggested: 
Step 1: Randomly pick a pivot element τ i from the 

ciphertext list τ 1, τ 2, ...,τ m, compare τ i with 
{τ j}j≠i using the ‘match’ sub-protocol, put 
those element with corresponding plaintext 
less than DK(τ i) in U1 and others in U2.  
(Note: DK(τ i) denotes the plaintext 
corresponding to τ i.) 

Step 2: a. If | U2 | > R, apply step 1 and step 2 
recursively on list U2 to find the maximal 
R elements out of U2. 

b. If | U2 | < R, apply step 1 and step 2 
recursively on list U1 and find the 
maximal R-|U2|-1 elements out of U1. 

c. If | U2 | equals R or R-1, the algorithm 
stops with U2 or U2 ∪ {τ i} as the result 
winners. 

C. The ‘match’ pairwise comparison sub-protocol: 
In the counting-and-comparison stage, random 

permuted sets S+
(enc) consisting of ciphertexts of z 

raised to all positive offsets are required to compare 
tallies of any two candidates without revealing their 
counts.  To determine the relative relation of any 
DK(τ i) and DK(τ j) pair without revealing their 
difference, the following ‘match’ [14] steps are 
performed: 
Step 1: Divide τ i by τ j to obtain the ciphertext    

EK(z
ti-tj), where τ i equals EK(z

ti) and τ j equals 
EK(z

tj). 
Step 2: Determining whether the decryption of this 

ciphertext (τ i / τ j) is unity, an element of S+ , 
or an element of S-. 

2.1: Raise (τ i /τ j) to a secret random power 
sequentially by the k-th participant, i.e. (τ i 
/τ j)

λk such that no participant knows the 
overall random exponent λ=λ1+λ2+...+λn.  
Note, the notation (τ i /τ j)

λk denotes a 
separate λk power to both elements of an 
ElGamal ciphertext.  Each participant 
performs the exponentiation twice and 
supplies an ‘equal discrete logarithm’ 
ZKP[5] that he uses the same exponent λk 
in both operations. 

2.2: Perform jointly a threshold decryption of  
(τ i /τ j)

λ; we reach a conclusion that τ i 
equals  τ j if the result is unity. 

2.3: Divide (τ i /τ j) by each element of S+
(enc) 

and obtain a set {τ i /τ j /sl}l=1...n. 
2.4: Raise each elements (τ i /τ j /sl) to a secret 

random power sequentially by each 
participant, i.e. (τ i /τ j/sl)

λksuch that no 
participant knows the random exponent λ. 

2.5: Perform jointly threshold decryptions of 
{(τ i /τ j /sl)

λ}l=1...n; if there is a unity 
element inside, conclude that τ i > τ j; 
otherwise conclude that τ i <τ j. 

If only one set S+
(enc) is used in all ‘match’ sub-
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protocol, and suppose two pairs of ciphertexts (a, b) 
and (c, d) matches to the same element of S+

(enc) in 
two rounds of ‘match’ sub-protocol.  Then we know 
not only Dk(a) > Dk(b) and Dk(c) > Dk(d) but also 
Dk(a)-Dk(b) = Dk(c)-Dk(d) > 0, which leaks a lot 
more information than just relative order of them. 

4. Efficiency and Security 
In the proposed scheme, the ciphertext EK(1) or 

EK(z) represents a ‘no’-vote or a ‘yes’-vote for a 
specific candidate, respectively.  In a ballot, approval 
or disapproval of a total of m candidates requires m 
separate ElGamal ciphertexts.  This approach 
apparently uses a large amount of computation and 
storage.  In contrast, if suitable coding is used for 
each ballot the representation is extremely compact.  
For  example,  the  ballot  can  be  represented  as 

 EK(z
a0+a1N+a2N

2+...+am-1N
m-1

) [6], where ai ∈{0, 1} 

is the ‘no’/’yes’ decision, ordp(z) > Nm+1, N is a 
number  chosen to be  larger  than  the  number  of 

voters n.  In  this  representation, z
aiN

i
  with  ai  equal 

to  1 denotes an approval for the i-th candidate.  The 
homomorphic property of ElGamal encryption 
system enables the correct counting without 
decryption of each individual ballot.  However, 
before submitting this encrypted ballot, a voter has 
to provide a ZKP to ensure the validity of the ballot.  
One obvious yet impractical method is to create a set 
 of all possible ballots {1, zN0

, zN1
, zN2

, ..., zNm-1
, 

zN0+N1
, zN0+N2

, ...zNm-2+Nm-1
, 

zN0+N1+N2
, ...zN0+N1+N2+...NL-1

, ...., ZNm-L+Nm-L+1+Nm-

L+2+...Nm-1
}  and   to   prove   that   the  corresponding 

plaintext of one’s ballot is in this set.  Due to the 
large amount of elements in this set, the computation 
and communication cost of this proof is generally 
not affordable by a voter.  In the proposed scheme, 
to prove the validity of each individual ‘yes’/’no’ 
vote requires only a proof that DK(c

ij
) is in {1, z}.  

The requirement that there are at most L approvals in 
each ballot (which comprises m ciphertexts) can be 
proved with a ZKP that D

K
(χi) ∈ {1, z, ..., zL}.  The 

complexity  of  this  proof grows linearly instead of 
exponentially in L.  The second problem with the 
above compact ballot representation is: at the 
decryption stage, a discrete logarithm problem with 
respect to the new z, which has far larger order than 
the z in the proposed method, has to be solved.  The 
third problem with the compact ballot representation 
is: at the vote-counting stage, the vote-count for each 
candidate is revealed all at a time since the sum of all 
ballots has to be decrypted.  This violates the secrecy 
requirement of our application system. 

In the proposed vote-counting and comparison 
procedure, the security of individual primitives 
(NIZKPs) is guaranteed by their own security proofs.  
The sequential composition of these protocols are 
also well known to be secure[11].  The fulfillment of 
the new privacy requirements by the proposed 

protocol actually depends on the number of 
comparisons in the course of protocol execution. 

Assuming an ‘R-out-of-m ordered’ election is 
conducted at a meeting, the proposed ‘match’ 
algorithm to choose the R winners from 
homomorphically processed vote-tally ciphertexts 
will reveal many relative relations of vote tallies (out 
of a total of m(m-1)/2 relations).  From these 
revealed information and the range of total number 
of votes, one can construct an upper bound and a 
lower bound of each vote tally.  The more number of 
comparisons performed, the more relations revealed, 
and the more exact the calculated bounds.  In the 
heapsort-style algorithm, choosing R winners from m 
tallies requires at worst ))1)(1()(2(2

1

1 −−+−∑
≤≤

− kRik
ki

i  

comparisons where ⎡ ⎤1)(log += mk .  In the above 
equation,   ∑

≤≤

− −
ki

i ik
1

1 )(22     is     the     number     of  

comparisons in the ‘heapify’ process and 
)1)(1(2 −− kR    is   the   maximal    number   of  

comparisons in choosing R maximal numbers from 
the maximal heap.  Note that if we record the result 
of each comparison in the course of the protocol and 
eliminate duplicated comparisons in the sequel; the 
average number of comparisons in the ‘R-maximum-
choosing’ process could be reduced to as small as 
one fourth such that the average number of 
comparisons for heapsort-based protocol is less than 
 2/)1)(1()(22

1
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i .   

Considering instead using the selection sort in 
combination with the ‘match’ algorithm, choosing R 

 winners   out  of  m  candidates requires  )(
1
∑

≤≤

−
Ri

im   

comparisons, and at most that number of relations 
are revealed.  In table 1, the number of comparisons 
for heapsort-based protocol and for selection-sort-
based protocol are tabulated.  The results of the 
average case are averaged over 10000 random 
independent experiments.  It can be observed that as 
number of winners increases, heapsort-based 
protocol outperforms the selection sort-based 
protocol.   

Heap sort 
# of candidates /
 # of winners 

Average Worst case 
Selection 

sort 
7/1 7.41000 8 6 
7/2 9.998333 12 11 
7/4 13.898000 19 18 

31/1 45.991333 52 30 
31/2 53.129667 60 59 
31/10 106.325667 124 255 

Table 1. Number of comparisons in the protocol 
In many election systems, the vote-count for a 

candidate is required to exceed a certain threshold 
before that candidate being declared as a winner.  In 
the proposed protocol, the encrypted vote-tallies for 
each candidate can be first compared with the 
encryption of this fixed threshold using the ‘match’ 
protocol.  In this way, only qualified candidates will 
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be compared in the proposed voting protocol.  
Another way to implement electoral threshold is to 
apply the proposed protocol on all tallies and only 
compare the vote-tallies of the final R winners to the 
threshold.  Both methods incur different 
comparisons; however, they only make limited 
differences. 

5. Concluding Remarks 
In our scheme, the privacy of all tallies is 

maintained and the fairness of the whole protocol is 
guaranteed by the public verifiability of 
homomorphic operations and ZKPs with the extra 
expense of computation and storage.  Almost all 
previously proposed schemes in the literature 
neglected the privacy requirement raised in this 
paper, namely the privacy of all vote-counts.  It is to 
our knowledge the first attempt to formulate this 
security aspect.  Another difference between our 
scheme and previous schemes lies in the trust 
structure.  In a large-scale election, all the voters 
have to trust a single vote-counting center or a set of 
non-collaborating vote-counting centers.  Some 
schemes might have extra scrutinizers to ensure the 
fairness of the counting procedure executed by the 
authority.  For our target application, which has only 
a moderate number of voters, the trust is distributed 
to each voter himself or herself.  A voter only needs 
to trust / observe that most other voters participating 
the meeting are not collaborating.  In that case, the 
voting mechanism would be fairly conducted.  
However, if convenience and efficiency are the first-
priority considerations, the trust can still be placed 
on multiple authorities and scrutinizers. 

It should also be noted that there is no point to 
apply the customized scheme proposed in this paper 
to a large-scale election.  First, the ZKPs required for 
the correctness of each ballot demand an excessive 
amount of computation, while the advantage of 
hiding the individual tallies makes not much sense in 
a large-scale election.  It is clear that small-scale 
elections in a democratic style of business 
management team control most decisions of an 
enterprise.  Independent voting decisions are assured 
by the proposed scheme.  The remaining difficulties 
include: the massive amount of computations and 
communications that are still not affordable by a 
medium-level personal device like a cellular phone 
or a smart card.  Also, the vote-buying (or the 
coercion) problem remains unsolved as for all 
homomorphic encryption-based voting systems. 

It is well known that secure electronic voting 
schemes are special instances and successful 
applications of secure multi-party computation 
protocols[9].  However, for efficiency considerations 
in the deployment of a large-scale election, most 
previous schemes avoided the general multi-party 
computation model[10] and sacrificed some secrecy 
properties such as the counts of vote-tallies.  At first 
glance, it looks like that Yao’s secure two-party 
comparison protocol[20] can be applied to do the 
comparisons.  However, the use of homomorphic 
encryption on the vote-tallying process hides all the 

vote-counts and discourages the application of Yao’s 
protocol. 

6.References 
[1] M. Abe, “Universally verifiable MIX with 

verification work independent of the number of 
MIX servers”, Adv. in Cryptology–Eurocrypt ‘98. 

[2] M. Abe and K. Suzuki, “M+1-st Price Auction 
Using Homomorphic Encryption”, PKC 2002.  

[3] O. Baudron, P. Fouque, D. Pointcheval, J. Stern, 
and G. Poupard, “Practical Multi-Candidate 
Election System”, ACM 20-th Symp. on 
Principle of Distributed Computing, PODC’01, 
2001. 

[4] J. C. Benaloh, “Verifiable Secret Ballot 
Elections”, PhD thesis, Yale University, 1987. 

[5] D. Chaum and T. Pedersen, “Wallet Databases 
with Observers”, Adv. in Cryptology – 
Crypto’92. 

[6] R. Cramer, R. Gennaro, and B. Schoenmakers, 
“A Secure and Optimally Efficient Multi-
Authority Election Scheme”, Advanced in 
Cryptology – Eurocrypt’97. 

[7] T. ElGamal, “A Public-key Cryptosystem and 
Signature Scheme Based on Discrete 
Logarithms”, IEEE Trans. on Information Theory, 
Vol. IT-31, pp. 469-472, 1985. 

[8] A. Fujioka, T. Okamoto, and K. Ohta, “A 
practical secret voting scheme for large scale 
elections”, Adv. in Cryptology – AUSCRYPT’92. 

[9] M. Franklin and Z. Galil, “An Overview of 
Distributed Secure computing”, 1992 

[10] O. Goldreich, S. Micali, and A. Wigderson, 
“How to Play Any Mental Game”, STOC’87. 

[11] O. Goldreich and Hugo Krawczyk, “On the 
Composition of Zero-Knowledge Proof 
Systems”, SIAM Journal on Computing 1996. 

[12] E. Horowitz, S. Sahni and S. Rajasekaran, 
“Computer Algorithm/ C++”, Computer Science 
Press, New York, 1997. 

[13] M. Hirt and K. Sako, “Efficient receipt-free 
voting based on homomorphic encryption” , 
Advanced in Cryptology – Eurocrypt ‘00, 2000. 

[14] M. Jakobsson and A. Juels,“Mix and Match: 
Secure Function Evaluation via Ciphertexts”, 
Advanced in Cryptology – Asiacrypt ‘00, 2000. 

[15] M. J. Radwin, “An untraceable, universally 
verifiable voting scheme”, 1995, http://www. 
radwin.org/michael/projects/voting.html. 

[16] T. P. Pedersen, “A Threshold Cryptosystem 
without a Trusted Party”, Advanced in 
Cryptology – Eurocrypt 1991, pp. 522-526, 1991. 

[17] R. Rivest, “Electronic Voting”, Financial 
Cryptography’91, 1991. 

[18] Z. Rjaskova, “Electronic Voting Schemes”, Ms 
Thesis, Comenius University, Bratislava, 2002. 

[19] P.-Y. Ting, Y.-T. Lee, C.-Y. Chen “On The 
Public Verifiability of an M+1-st Price Auction 
Using Homomorphic Encryption”, Technical 
Report, National Taiwan Ocean Univ. 2003. 

[20] A. Yao, “Protocols for secure computations”, 
Proc. of the 23rd IEEE Symp. On Foundations of 
Computer Science, FOCS’82, 1982. 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

683




