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Abstract

The star graph is one of the famous interconnection networks. Edge fault tol-
erance is an important issue for a network. And the cycle embedding problem is
widely discussed in many researches. In this paper, we show that the n-dimensional
star graph can be embedding cycles of even length from 6 to n! when the number of
edge fault does not exceed n − 3. Since the graph is bipartite and (n − 1) regular,
our result is optimal.
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1 Introduction

Network topology is a crucial factor for a network since it determines the performance of

the network. For convenience of discussing their properties, networks are usually repre-

sented by graphs. In this paper, a network topology is represented by a simple undirected

graph, which is loopless and without multiple edges. For the graph definition and no-

tation we follow [2]. G = (V,E) is a graph if V is a finite set and E is a subset of

{(a, b) | a �= b ∈ V }, where (a, b) denotes an unordered pair. We call V the vertex set

and E the edge set. We say that vertices a and b are adjacent if and only if (a, b) ∈ E. A

path is a sequence of adjacent vertices, denoted by 〈v0, v1, · · · , vk〉, in which v0, v1, · · · , vk

are distinct except that possibly v0 = vk. The length of the path is k. We say that the

path is a cycle if v0 = vk. A path (or a cycle) is hamiltonian with respect to a graph G if

it crosses all vertices of G.

∗Correspondence to: Assistant Professor T.K. Li, Department of Computer Science and In-
formation Engineering, Ching Yun Institute of Technology, JungLi, Taiwan 320, R.O.C. e-mail:
tealee@ms8.hinet.net.
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To find a cycle of given length in a graph is a cycle embedding problem. Particularly,

to find cycles of all lengthes in a graph, i.e., of length from 3 to the number of vertices

in the graph, is the pancyclic problem. In this paper, we focus on such a problem on the

star graphs proposed by Akers et. al [1]. Since the star graphs are bipartite graphs, they

contain no odd length cycles. Moreover, the minimum length of cycles of the star graphs

is 6. Jwo et. al [5] showed that an n-dimensional star graph contains cycles of even length

from 6 to n!. Thus, we may say that the star graphs are weak even pancyclic.

However, there is no result about such a property on the faulty star graphs. Since

components in a network would fail sometimes, to study the graphs with faults in the

researches is more practice. In this study, we discuss the even cycles embedding problem

on the edge fault star graphs. We show that an n-dimensional star graph contains cycles

of even length from 6 to n! when the number of edge faults does not exceed n− 3. In the

next section, we introduce the definition of star graphs. In Section 3, we show the main

result in the finally.

2 Definition and Basic Properties

The following is the definition of the star graphs. For convenience, we always use v1v2 · · · vn

as the digital representation of vertex v in Sn in this paper.

Definition 1 The n-dimensional star graph, denoted by Sn, is the graph (V,E), where

V = {v | v is a permutation of 1, 2, · · · , n} and E = {(u, v) | v = uiu2 · · ·ui−1u1ui+1 · · ·un}.

By the definition, Sn contains n! vertices and each vertex is of degree (n − 1). For

example, 1234 is a vertex in S4 and connects to 2134, 3214, and 4231. We use N(u) to

denote the neighborhood of u, e.g., N(1234) = {2134, 3214, 4231}. S1, S2, and S3 are a

vertex, an edge, and a cycle of length 6, respectively. We show S4 in Figure 1. It is easy

to observe that there are four vertex-disjoint S3’s embedded in S4. The following lemma

states this property.

Lemma 1 There are n vertex-disjoint Sn−1’s embedded in Sn for n ≥ 2.
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Figure 1: 4-dimensional star graph.

Proof. Let i be some integer between 2 and n. Let H i:j = (V i:j, Ei:j) for V i:j =

{u ∈ V (Sn) | ui = j} and Ei:j = {(u, v) ∈ E(Sn) | u, v ∈ V i:j} for 1 ≤ j ≤ n.

Clearly, V i:1, V i:2, · · · , V i:n is a partition of V (Sn). It is also not difficult to see that H i:j

is isomorphic to Sn−1. Thus, the lemma follows. �

We use Si:j
n to denoted the subgraph induced by the vertex set {u | ui = j} for

2 ≤ i ≤ n. Specifically, we use Sj
n as the abbreviation of Sn:j

n and call it as the jth

(n − 1)-dimensional subgraph of Sn.

In our proof, we will use an important property of the edge fault star graphs, called

k-edge-fault hamiltonian laceable. A graph G is hamiltonian laceable if and only if for

any two vertices in G, there is a hamiltonian path of G between them. Furthermore, A

graph G is k-edge-fault hamiltonian laceable if and only if for any two vertices in G, there

is a hamiltonian path of G between them, where G contains at most k edge faults. The

following lemma is proved by [4]

Lemma 2 Sn is (n − 3)-edge-fault hamiltonian laceable.

By the lemma, we have the following result:
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Figure 2: Path of length n! − 3 between u and v.

Lemma 3 Let n ≥ 4 and u, v ∈ V (Sn) with u and v in different partite sets. Then there

are two paths of length n! − 3 and n! − 1 between u and v.

Proof. Since Sn is hamiltonian laceable, there is a path of length n! − 1 between u

and v. Then consider the path of length n! − 3. Let x ∈ N(v) with x �= u and y ∈ N(x)

with y �= v. Let F = {(x, z) | z ∈ N(x) − {v, y}}. Then |F | = n − 3, u and y are in

different partite sets, and x only connects to v and y in Sn −F . (See Figure 2.) Since Sn

is (n− 3)-edge fault tolerant hamiltonian laceable, there is a hamiltonian path between u

and y in Sn − F . Obviously, the vertex sequence 〈v, x, y〉 is in the path. Thus, the path

should be of the form 〈u, · · · , v, x, y〉. Then we have a path of length n!− 3 in Sn between

u and v. �

Note that the result is only applied to the fault-free star graphs. We will use this

result in our main proof frequently.

3 Main Result

In this section, we propose our main result. Our proof is by induction. For the base case,

we enumerate all required cycles in the following lemma.

Lemma 4 There is a cycle of each even length from 6 to n! in Sn − F , where F is a set

of edge faults with |F | ≤ n − 3 for n = 3 and 4.

Proof. For n = 3, S3 is C6. Since |F | = 0, the lemma follows.
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For n = 4, |F | = 1. Since S4 is edge-symmetric, we may assume that F = {(1243, 3241)}.
Then we construct cycles of length 6, 8, 10, · · · , 24 in the following:

C6: 〈1234, 4231, 2431, 1432, 4132, 2134, 1234〉.

C8: 〈1234, 4231, 2431, 1432, 3412, 2413, 4213, 3214, 1234〉.

C10: Replace (4231, 2431) in C6 by 〈4231, 3241, 2341, 4321, 3421, 2431〉.

C12: Replace (4231, 2431) in C8 by 〈4231, 3241, 2341, 4321, 3421, 2431〉.

C14: Replace (1432, 4132) in C10 by 〈1432, 3412, 4312, 1342, 3142, 4132〉.

C16: Replace (1432, 3412) in C12 by 〈1432, 4132, 3142, 1342, 4312, 3412〉.

C18: Replace (2134, 1234) in C14 by 〈2134, 3124, 1324, 2314, 3214, 1234〉.

C20: Replace (2413, 4213) in C16 by 〈2413, 1423, 4123, 2143, 1243, 4213〉.

C24: Replace (3214, 1234) in C20 by 〈3214, 2314, 1324, 3124, 2134, 1234〉.

C22: Replace the subpath 〈4231, · · · , 3412〉 in C24 by 〈4231, 2431, 3421, 4321, 2341, 1342, 3142,

4132, 1432, 3412〉.

Hence, the lemma follows. �

In fact, the cycles in the above proof are constructed by the method similar to that in

Lemma 8 except for C22 and we find C22 by programs however.

For the inductive step, we need to establish (n − 2) disjoint paths crossing the given

number of subgraphs to guarantee that there is still at least one of these paths crossing

no faulty edge when the number of edge faults in Sn does not exceed (n − 3). Moreover,

the endpoints of these paths must be in the same subgraph. The following three lemmas

discuss how to establish the disjoint paths. Then we use the paths to complete our proof

in the latest lemma. For ease of description, we use ui, u
j
i , and (uj)k

i to denote the ith

digits of vertices u, uj, and (uj)k, respectively. We use P or 〈v0, P, vk〉 to denote the same
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path where the later points the two endpoints of path P . For two paths P = 〈x, P, y〉
and Q = 〈u,Q, v〉 with y and u being adjacent, we use 〈x, P, y, u,Q, v〉 to denote the path

concatenating P with Q.

Lemma 5 Let x and y be two vertices in Sn for n ≥ 3 with x1 = y1. Then d(x, y) ≥ 3.

Proof. By definition, d(x, y) �= 1. Suppose that d(x, y) = 2. Then there is a vertex

z adjacent to x and y. Let x = ziz2 · · · zi−1z1zi+1 · · · zn and y = zjz2 · · · zj−1z1zj+1 · · · zn.

Since x �= y, i �= j and thus, x1 = zi �= zj = y1. We get a contradiction. So d(x, y) ≥ 3. �

Lemma 6 Let x1, x2, · · · xn−2 ∈ V (Si
n) with x1

1 = x2
1 = · · · = xn−2

1 for n ≥ 3. If uj ∈
N(xj) for 1 ≤ j ≤ n−2 with u1

1 = u2
1 = · · · = un−2

1 , then the 2(n−2) vertices are distinct.

Proof. Consider xi1 and xi2 for 1 ≤ i1 < i2 ≤ n − 2. Since xi1
1 = xi2

1 , by Lemma 5,

d(xi1 , xi2) ≥ 3. It is clearly that xi1 , xi2 , ui1 , and ui2 are distinct. �

Lemma 7 There are (n−2) disjoint paths of length 2m−1 crossing m (n−1)-dimensional

subgraphs of Sn such that the endpoints of these paths are in Si
n for any 1 ≤ i ≤ n and

3 ≤ m ≤ n for n ≥ 3.

Proof. Without loss of generality, assume that i = m. Let a1, a2, · · · , an−2 ∈ V (Sn
m)

be distinct (n− 2) vertices with aj
1 = 1 for all 1 ≤ j ≤ n− 2. Consider the (n− 2) paths:

〈aj = (aj)0, (aj)1, (aj)2, · · · , (aj)2m−1〉 for all 1 ≤ j ≤ n − 2, where

1. ((aj)2k−2, (aj)2k−1): (aj)2k−1
1 = (aj)2k−2

n and (aj)2k−1
n = (aj)2k−2

1 for 1 ≤ k ≤ m, i.e.,

exchanging the first digit and the last digit; and

2. ((aj)2k−1, (aj)2k): (aj)2k
1 = (aj)2k−1

l and (aj)2k
l = (aj)2k−1

1 such that (aj)2k−1
l = k + 1

for 1 ≤ k ≤ m− 1, i.e., exchanging the first digit and the lth digit which is equal to

k + 1. (See example below the proof.)

It is not difficult to check that each path goes though Sm
n , S1

n, S
2
n, · · · , Sm−1

n and then

returns to Sm
n . Clearly, all the paths are of length 2m− 1 and the endpoints of each path
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are in Sm
n . Since there are exactly two vertices of each path in one (n − 1)-dimensional

subgraph, by Lemma 6, the 2(n− 2) vertices of all paths in anyone subgraph are distinct.

Hence, all the vertices in these (n − 2) paths are distinct. �

For example, n = 6, m = 3, and a1 = 124563, a2 = 125463, a3 = 142563, a4 = 145263.

Then we have four disjoint paths as following:

〈124563, 324561, 234561, 134562, 314562, 214563〉,

〈125463, 325461, 235461, 135462, 315462, 215463〉,

〈142563, 342561, 243561, 143562, 341562, 241563〉,

〈145263, 345261, 245361, 145362, 345162, 245163〉.

So we may easily find a path of length 2m− 1 crossing m (n− 1)-dimensional subgraphs

in Sn −F , where F is a set of edge faults with |F | ≤ n− 3. And such a path uses exactly

one edge in each (n − 1)-dimensional subgraph. Note that the two endpoints of the path

are not adjacent except for m = 3, 4. Now we show the inductive step:

Lemma 8 There are cycles of all even length from 6 to n! in Sn − F , where F is a set

of edge faults with |F | ≤ n − 3 for n ≥ 5.

Proof. Assume that the statement is true for all 3 ≤ k ≤ n − 1. Since Sn is edge-

symmetric, we may assume that there is at least one faulty edge between two (n − 1)-

dimensional subgraphs, i.e., not in any (n−1)-dimensional subgraph. Thus, each subgraph

contains at most (n − 4) faulty edges and is still hamiltonian laceable. Moreover, since

|F | ≤ n − 3, there are at least four (n − 1)-dimensional subgraphs containing no faulty

edge. Without loss of generality, assume that S1
n and Sn

n contain no faulty edge.

By the hypothesis, we have cycles of each even length from 6 to (n− 1)! in S1
n −F ,

i.e., we have cycles of each even length from 6 to (n − 1)! in Sn − F .
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Now we construct cycles of even length from (n − 1)! + 2 to (n − 1)! + 2(n − 2).

Suppose that l = (n− 1)!− 4 + 2m for some 3 ≤ m ≤ n. By Lemma 7, there is a path P

of length 2m− 1 crossing m (n− 1)-dimensional subgraphs of Sn −F with two endpoints

in S1
n. Assume that the two endpoints are u and v. By Lemma 3, there is a path Q of

length (n − 1)! − 3 in S1
n between u and v. Then 〈u, P, v,Q, u〉 forms a cycle of length

(n − 1)! − 4 + 2m in Sn − F .

Then we construct cycles of even length from (n − 1)! + 2(n − 1) to n!. Let

l = k((n − 1)! − 2) + 2n + 2h for some 1 ≤ k ≤ n − 1 and 0 ≤ h ≤ (n−1)!−2
2

− 1 such that

(n− 1)! + 2(n− 1) ≤ l ≤ n!. Then l may be any even integer between (n− 1)! + 2(n− 1)

and n!. In the following, we construct cycles of length l in Sn − F .

By Lemma 7, there is a path P = 〈u1, v2, u2, v3, · · · , vn, un, v1〉 in Sn − F such that

ui, vi ∈ V (Si
n). Consider two cases:

Case 1: h �= 1. If k ≥ 2, replace each edge (vi, ui) in P by a hamiltonian path of

Si
n−F for 2 ≤ i ≤ k. If h ≥ 2, by the symmetric property of Sn−1 and hypothesis, we may

find a cycle of length 2h+2 crossing the edge (vn, un). So we may replace the edge (vn, un)

in P by a path of length 2h+1. Now the length of P is (k−1)((n−1)!−2)+2n−1+2h =

l− ((n− 1)!− 1). By Lemma 3, there is a path Q of length (n− 1)!− 1 in S1
n between v1

and u1. Thus, 〈u1, P, v1, Q, u1〉 forms a cycle of length l in Sn − F .

Case 2: h = 1. If k ≥ 2, replace each edge (vi, ui) in P by a hamiltonian path of

Si
n − F for 2 ≤ i ≤ k. Since there is no fault in Sn

n , there is a cycle of length 6 crossing

the edge (vn, un). So we may replace the edge (vn, un) in P by a path of length 5. Now

the length of P is (k − 1)((n − 1)! − 2) + 2n − 1 + 2h = l − ((n − 1)! − 3). By Lemma 3,

there is a path Q of length (n − 1)! − 3 in S1
n between v1 and u1. Thus, 〈u1, P, v1, Q, u1〉

forms a cycle of length l in Sn − F .

Hence, the lemma follows. �

So we have the following result:
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Theorem 1 There are cycles of all even length from 6 to n! in Sn − F , where F is a set

of edge faults with |F | ≤ n − 3 for n ≥ 3.
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