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Abstract 

This paper presents new and systematic strategies for 2×n AB games. We invent a graphic model to 

represent the game-guessing process. From this representation, we find some symmetric and recursive 

structures in the process. This not only reduces the size of the search space but also helps us to derive 

the optimum strategies more efficiently. By using this novel approach, we develop optimal strategies for 

2×n AB games in the expected and worst cases, and are able to derive the following new results: 

(1) n/2+1 guesses are necessary and sufficient for 2×n AB games in the worst case. 

(2) The minimum number of guesses required for 2×n AB games in the expected case is (4n3+21n2 

-76n+72)/12n(n-1) if n is even, and is (4n3+21n2 -82n+105)/12n(n-1) if n is odd. 
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1. Introduction 

 

 The game of Mastermind is a deductive game for 2 players a codemaker and a codebreaker. The 

codemaker chooses a secret code consisting of four pegs out of six possible colors. Repeated colors are 

allowed, so the set of possible codes is 64=1296. The codebreaker will then try to guess the code. After 

each guess, the codemaker responds with a hint that consists of black and white pegs; a black peg 

means that a peg in the codebreaker’s guess is correct in both position and color; a white peg means that 

a peg in the guess is correct in color but not in position; and finally, no pegs means that there are pegs in 

the guess which are of no correct color. The purpose of the game is to solve the code (i.e. get four black 

pegs) in the smallest number of guesses.  

Over the past three decades, there has been much research about this kind of games. Knuth [1] 

demonstrated a strategy for the Mastermind game that requires at most five guesses in the worst case 

and 4.478 in the expected case. The strategy used in [1] is to choose the guess that minimizes the 

maximum number of remaining possibilities at every stage. Later, Irving [3] and Nerwirth [4] used 

sophisticated heuristic strategies to improve the bounds in the expected case to 4.369 and 4.364 

respectively. Finally, Koyama and Lai [2] used a recursive backtracking method to determine the 

Mastermind’s optimal strategy, for which the expected number of guesses is 4.34. Also, variants of the 

Mastermind game have been studied by [6], [10], and [11]. Furthermore, in [8] and [9], they used 

evolutionary algorithms and genetic algorithms for solving the related problems. More recently, Roche 

[7] analyzed the generalized Mastermind and got asymptotical bounds under some conditions. 

Kabatianski and Thorpe [5] investigated the Mastermind game and its related applications based on 

coding theorem. However, because the complexity of the Mastermind game grows at an exponential 

rate, no optimal strategy for the Mastermind game with higher dimensions (i.e. the numbers of digits 

and colors are more than 4 and 6 respectively) has yet been found. 

Another well-known deductive game in England and Asia, called “ Bulls and Cows”[1] or AB 

game, is a variant of the Mastermind game. The difference is that all digits of the code in the game must 

be distinct; but any digits 0 through 9 are allowed. Hence the set of possible codes is the number of 

permutations P(10,4)=10*9*8*7=5040. Now we restate the game with more precise description. The 

codemaker chooses a secret code (s1, s2, s3, s4). After each guess (g1, g2, g3, g4) by codebreaker, the 

codemaker responds with a pair of numbers [A, B], where A is the number of “direct hits,” i.e., the 

number of positions j such that sj=gj and B is the number of “indirect hits,” i.e., the number of positions 

j such that sj gj but sj=gk for some position k j. For example, if the secret code is (1, 2, 3, 4) and the 

guesses are (3, 1, 5, 4) and (3, 1, 4, 5), then the responses are [1, 2] and [0, 3], respectively. The goal of 

the codebreaker is, based on the responses, to minimize the number of guesses needed and to find the 

secret code.  

For describing and comparing the variants of these games, we briefly introduce the notations 

defined in [6]. The Mastermind game is denoted MM4×6, signifying four digits and six symbols with 

repetition of symbols allowed. The AB game is denoted MM4×10N, signifying four digits and ten 
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symbols with repetition of symbols prohibited. Likewise, MM2×nN signifies two digits and arbitrary n 

symbols with repetition of symbols prohibited. 

In this paper, we develop systematic methodology to discover the optimal strategies for general 

AB games with 1 digit and 2 digits—1×n and MM2×nN games. This paper is organized as follows. In 

Section 2, we introduce some properties of game trees and use binary search technique to determine the 

optimum strategy for the simple 1×n game. In Section 3 we present the graphic model by means of a 

MM2×5N game. The optimal strategy for 2×n AB games is developed in Section 4. Section 5 contains 

our concluding remarks.  

 

2. An optimum strategy for 1×n deductive games 

 

In this section, we deal with a simple example of deductive games, 1×n game. By means of some 

properties of game trees, we will show how to determine the minimum numbers of guesses required 

both in the expected and the worst case for the game. By this comparatively simple work, we present 

some fundamental concepts that can be applied to develop optimal strategy for 2×n AB games in 

Section 3 and Section 4. 

In 1×n deductive games, the codemaker chooses a secret number S, S∈ {0, 1, 2,... ,n-1}. After each 

guess Gi by the codebreaker, the codemaker responds with a hint Hi , Hi∈ {<, =, >}, three elements in 

which refer to S<Gi, S=Gi, and S>Gi, respectively. The goal of the codebreaker is, based on the hints, to 

minimize the number of guesses required and to find the secret number. Obviously, the guessing 

process for this game can be translated to a search problem. We can obtain the optimum strategy for this 

game by using binary search technique, which is shown in Theorem 1. In order to demonstrate how to 

calculate the number of guesses required in the worst and expected cases for 1×n games, we illustrate 

our strategy by way of a 1×16 game, the game tree for which is shown in Figure 1. Notice that the game 

trees built by binary search techniques are always full binary trees.  

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 1, the number in each node represents each guess Gi. We start by comparing the secret 
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Figure 1. A game tree for 1*16 game where the binary search strategy is used. 
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number S to the middle key of the possible secret numbers, which is 7 in the root in this case. 

According to the hint given by the codemaker, we decide which subtree should be chosen to guess next, 

and the same procedure can be used again until S is hit. More precisely, if the secret code S equals to Gi, 

then we hit the code and the game is finished. If S<Gi, then our strategy follows the left subtree; 

similarly if S>Gi, the right subtree is used. For example, if S=5, our guessing sequence will be 7, 3, and 

then 5 because S<7, S>3, and S=5, where 3 guesses are required to hit the secret number. On the other 

hand, if S=15, then our guessing sequence will be 7, 11, 13, 14, and then 15, where 5 guesses are 

required to finish the game. By doing so in Figure 1, we can easily obtain the following 2 Observations. 

Observation 1. The number of guesses required in the worst case for a game is H+1, where H is the 

height of the game tree, i.e., the length of a longest path from the root to a leaf in the game tree. For 

example, H=4 in Figure 1. 

Observation 2. The number of guesses required in the expected case for a game is D/n+1, where D is 

the total path length of the game tree; i.e., the sum of distances from the root to each node in the game 

tree. For example, in Figure 1 D=0*1+1*2+2*4+3*8+4*1=38 and the number of guesses required in the 

expected case is D/n+1=38/16+1=3.375.  

 In Theorems 1 and 2, we will demonstrate an optimum strategy based on binary search techniques 

and derive the minimum numbers of guesses required in the worst case and expect case. Before that, we 

look at a property [13] about minimum total path length in a binary tree, which is important for us to 

prove Theorem 1, as shown in Lemma 1. 

Lemma 1. A binary tree has minimum total path length if and only if its external nodes all occur on at 

most two adjacent levels. 

Proof [13]: Omitted. î 

Theorem 1.  log
2
n+1 guesses are necessary and sufficient for 1×n games in the worst case. 

Proof. The necessary and sufficient conditions can be proven by the following two facts: Firstly, the 

game trees built by binary search techniques are always full, which means that the games trees always 

have minimum height. Secondly, the height of a full binary tree with n nodes is  log
2
n . By Observation 

1, we obtain the result. î 

Theorem 2. The minimum number of guesses required for 1×n games in the expected case is 

((n+1)(  log
2
n -1)+2)/n +1, if n=2k-1, where k∈ Z; and is 

((n+1)  log
2
n -2  log

2
n+1+2)/n +1, if n≠2k-1, where k∈ Z. 

Proof: Necessary. Since the game trees built by binary search techniques are always full, which means 

that the external nodes of the game trees all occur on at most two adjacent levels. Therefore, by Lemma 

1, the necessary condition can be proven.  

Sufficient. We divide into two cases to prove this property.  

Case 1. If n=2k-1, then the game tree for the game is a complete binary tree. In this case D = 
 

∑
=

n

i

ii
2log

1

2* = ( log
2
n -1)*2( log

2
n+1)+2=(n+1)( log

2
n -1)+2. By Observation 2, the number of guesses 

required is ((n+1)( log
2
n -1)+2)/n +1.  
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Case 2. If n�2k-1, then the game tree for the game is full but not complete. The number of nodes at the 

bottom level is only n-(2 log
2
n-1) rather than 2 log

2
n  in a complete binary tree, and the distance from the 

root to each node in this level equals  log
2
n . Therefore, we should subtract the quantity 

 log
2
n*(2 log

2
n-(n-(2 log

2
n-1))/n= log

2
n*(2 log

2
n+1–n-1)/n from the formula obtained in Case 1. That is, 

D= (n+1)( log
2
n -1)+2-( log

2
n*(2 log

2
n+1–n-1))= (n+1)  log

2
n  -2  log

2
n+1+2. This completes the proof.

 î 

We apply the results of Theorems 1 and 2 to 1*15 game, the game tree for which is complete, and 

1*16 game, the game tree for which is not complete. For 1*15 game, the numbers of guesses required 

in the worst and expected cases are 4 and ((15+1)( log
2
15 -1)+2)/15 +1=(16*2+2)/15 +1=3.2667, 

respectively. For 1*16 game, the numbers of guesses required in the worst and expected cases are 5, and 

((1*2+2*4+3*8+4*16)-(4*15))/16 +1=3.375, respectively. 

 

3. The graphic model 

 

In this section, we invent a graphic model to represent the guessing process of the deductive 

games. By using this methodology, we are able to develop an optimal strategy for 2×n AB games in the 

next section. At first, we introduce the graphic model by means of a 2×5 AB game for simplicity. We 

start with some definitions. The game tree for the 2×5 AB game is shown in Figure 2. Any moment of 

the game is expressed by a node, represented by a game graph Gi=<Vi, Ei>, in the game tree. At first, 

the root G0=<V0, E0> of the game tree is a complete directed graph with 5 vertices and 20 edges. We 

map the game graphs to the AB game as follows: 

Vertex: Each vertex in a game graph Gi corresponds to a symbol (digit) in the AB game, for 

example 0, 1, 2, 3, and 4 are five symbols in 2×5 AB game. Notice that we use the term “node” in the 

game tree and “vertex” in the game graphs. 

Edge: Each directed edge in a game graph Gi refers to a possible codeword, so there are 5×4=20 

edges in the root G0 of the game tree. In the medium stages, the edges in a game graph Gi, i≥1, refer to 

remaining candidates; that is, unidentified codewords.  

Partition edge: the edge codebreaker chooses to partition the game graph; for instance, the dashed 

arrow (0,1) shown in Figure 2, which refers to the first guess (0,1) in the 2×5 AB game. 

Each class, represented as a node in the game tree, in level 2 refers to one response [A, B] after 

guessing (0,1) in the game. The five classes at level 2, that is, [2,0], [1,0], [0,1], [0,0] and [0,2], partition 

the set of 20 edges in the complete directed graph G0 in the root node. Moreover, only one edge (0,1) 

remains in G1, which refers to class [2,0]. It means that the edge (0,1) was hit. On the other hand, if 

there is only one edge in a class, except the class [2,0], then this edge is called identified, and it requires 

one more guess to hit it. For example, there is only one edge (1,0) in G5. We need one more guess (1,0) 

to finish the AB game. 
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Now, let us present how to play the 2×5 AB game on the graph. Remember that a game graph Gi is 

a directed graph. If we have a partition edge (j, k), then vertex j is named origin vertex and vertex k is 

named destination vertex. We can partition the game graph Gi by the following simple criteria: 

(1) The outgoing edges (j, m) from the origin vertex j and the incoming edges (m, k) to destination 

vertex k are classified into [1,0], m�k, m�j. 

(2) The outgoing edges (k, m) from the destination vertex k and the incoming edges (m, j) to origin 

vertex j are classified into [0,1] , m�j, m�k. 

(3) The edges that are not adjacent to the origin and destination vertices are classified into [0,0]. 

(4) The edge (j, k) that is both an outgoing edge from the origin vertex j and an incoming edge to 

destination vertex k is classified into [2,0].  

(5) The edge (k, j) that is both an outgoing edge from the destination vertex k and an incoming edge to 

origin vertex j is classified into [0,2]. 

As depicted in Figure 2, at the initial stage, there is a complete directed graph G0 with 20 edges, 

which refer to 20 possible codewords. The codebreaker repeatedly chooses one partition edge to 

partition these edges into five classes, that is, [2,0], [1,0], [0,1], [0,0] and [0,2]. For example, the 

partition edge (0,1) in G0 partitions the 20 edges into five classes. The outgoing edges from origin 

vertex 0, i.e., (0,2), (0,3), and (0,4), and incoming edges to destination vertex 1, i.e., (2,1), (3,1), and 

(4,1), are classified into class [1,0], i.e., G2. The edge (0,1) is both an incoming edge to vertex 1 and an 

outgoing edge from vertex 0, so it is classified into class [2,0], i.e., G1. The other classes can be got in 

the same way.  

Now we describe our goals of this paper and show how to achieve them by the graphic model. 

The goals are to reduce or minimize the number of guesses in the worst case or the expected case. The 

Figure 2. A graphic model to represent the results after the first guess for 2×5 AB game, where 

(0, 1) is the partition edge. 
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number of guesses in the worst case is the largest number of guesses required to hit any one among all 

candidates. In addition, to obtain the number of guesses in the expected case, we first have to calculate 

the total number of guesses required to hit all candidates, and then divide it by the number of 

candidates.  

  By the partition criteria given above, we can translate the game-guessing process to a sequence 

of graph partition and tree traversal procedures. At first, we translate the problem “the number of 

guesses for a secret code (candidate)” to “the length of the path from the root to the leaf which contains 

the secret code (the remaining edge) in the game tree”. Notice that all leaves in the game tree are “hits 

nodes”, i.e., one candidate is hit in each of the leaf nodes. This property is a significant difference 

between 2×n AB games and 1×n games described in Section 2, where hit nodes are internal nodes in a 

game tree. Hence, the problem “the total number of guesses required to hit all candidates” can be 

translated to “the external path length L of the game tree [12]”, i.e., the sum of the lengths of the paths 

from the root to each of all leaves in the game tree. Similarly, the problem of “the number of guesses 

required in the worst case” refers to “the height H of the game tree”. Here the height H is defined as the 

length of a longest path from the root to a leaf. By these translations, our goals are thus to minimize the 

height H of the game tree for the worst case and to minimize the external path length L of the game tree 

for the expected case. The key to achieve these goals is simply to choose the best partition edge to 

partition the remaining edges at each stage, like playing the real game. 

Now let us present a strategy to play 2×5 AB game on the graphic model and show how to calculate 

the external path length L and the height H of the game tree. By this work, we can develop 

sophisticated strategies for higher dimension games. In Lemma 2, we show how to calculate the total 

number of guesses required to hit 2 possible candidates (or 2 remaining edges) in a class (or a game 

graph). This lemma can be applied to m×n AB games with arbitrary m, n. 

Lemma 2. If a game graph that is the root node of a game tree contains only 2 remaining edges, then 

the minimum possible values for the external path length L and the height H of the game tree are 3 and 

2, respectively. 

Proof: Sufficient: We can choose one of the two remaining edges as the partition edge. Then, this edge 

will be hit and the other edge will be identified and one more guess is required. Therefore, a possible 

value for the external path length L of the game tree is 1+2=3 and that for the height H of the game tree 

is 2. 

Necessary: In the situation of two remaining edges in a game graph, there are only three possibilities to 

choose the partition edge.  

Case 1. Choose one of these two remaining edges as the partition edge. As described in the sufficient 

condition, the external path length L of the game tree is 1+2=3 and the height H of the game 

tree is 2. 

Case 2. Choose an edge adjacent to at least one of the two remaining edges. The best result of these 

guesses is able to identify the two remaining edges simultaneously, each of which requires one 

more guess to be hit. So the external path length L of the game tree is 2+2=4 and the height H 
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of the game tree is 2. 

Case 3. Choose an edge not adjacent to the two remaining edges. The result of this guess has no 

contribution to further guesses, since the game graph after the guess is the same as the one 

before the guess. Thus we can omit this possibility. 

Therefore, to hit 2 remaining edges in a game graph (or a class), the external path length L of the game 

tree is at least 3 and the height H of the game tree is at least 2. In other words, the total number of 

guesses to hit 2 remaining candidates is at least 3. Hence, the number of guesses in the expected case is 

3/2=1.5. In addition, the number of guesses in the worst case is at least 2.                      î        

Observing the first guess in Figure 2, we can choose any edge, (0,1) for example, to be the partition 

edge, since the game graph G0 is symmetric and complete. After the first guess, there is only one edge 

(0,1) remaining in G1 (class [2,0]), i.e., ‘hits’. Notice that Figure 2 shows only one leaf G1 and the 

length from the root G0 to G1 is 1. Therefore, edge (0,1) only requires one guess to hit it. Although the 

edge (1,0) is also the only one edge in G5 (class [0,2]), one more guess is required to ‘hit’ the edge (1,0) 

so that it requires 2 guesses. Furthermore, it is easy to show that the game graphs G2, G3 for classes [1,0] 

and [0,1] are isomorphic; that is, if we exchange vertex 0 and vertex 1 in the game graph G2 for class 

[1,0], then it will be equivalent to the game graph G3 for class [0,1]. Intuitively, they have the same 

number of guesses in both the worst case and the expected case. We deal with classes [1,0] and [0,0] in 

Figure 3 and Figure 4, respectively. (The process of class [0,1] is similar to class [1,0].)  

In the following paragraphs, we describe the general procedures to calculate the number of guesses 

for 2×5 AB game in the worst and expected cases.    

In Figure 3, the partition edge (2,3) partitions the remaining 6 edges into 3 nonempty classes, [1,0], 

[0,1], and [0,0], each of which has 2 remaining edges. By Lemma 2, the two remaining edges can be hit 

in one and two more guess respectively. Therefore, the total number of guesses (or the external path 

length L2) for the 6 edges in G2 is L2= 2+3+2+3+2+3(or =1+2+1+2+1+2+6)=15; thus the expected 

number of guesses for G2 is L2/6=2.5. 

 

Figure 3. The game tree for G2, where we choose (2,3) as the partition edge. 
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Now we consider how to calculate the total number of guesses (or the external path length L4) for 

2×3 AB game in the expected case. In G4 of Figure 4, there is a complete subgraph with 3 vertices and 

6 directed edges, which represents 2×3 AB game. Because it is a complete graph, we can choose any 

edge, (4,2) for example, as the partition edge. By using our graphic representation, as shown in Figure 4, 

we need 1, 2, 3, 2, 3, and 2 guesses to hit edges (4,2), (4,3), (3,2), (3,4), (2,3), and (2,4), respectively. 

Therefore, the total number of guesses (or the external path length L4) for the six edges in G4 is 

L4=1+2+3+2+3+2= 13; thus the expected number of guesses for the game graph G4 is L4/6=13/6. 

Finally, let us combine Figure 2, 3, and 4 all together. If we choose (2,3) and (4,2) as the partition 

edges in G2 and G4, respectively, then the height of the game tree is 4; that is, by using our analysis 

technique the number of guesses in the worst case is 4. The total number of guesses L0 for G0 can be 

computed as follows: L0= (L1+ L2+ L3+ L4+ L5)+ (the total number of edges in G0) = (L1+1) + (L2+6) + 

(L3+6) + (L4+6) + (L5+1) = (0+1)+(15+6)+(15+6)+(13+6)+(1+1)=64. Where L1+1 is for G1, L2+6 is for 

G2, and so on. Therefore, the expected number of guesses for G0=64/20=3.2. 

 

 

 

 

Figure 4. The game tree for G4, which represents 2*3 AB game. The total number of guesses  

for the six edges is 13; the expected number of guesses for the graph is 13/6. 
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4. An optimum strategy for 2×n AB games 

  

In this section, the graphic model described in Section 3 is used to develop an optimum strategy 

for 2×n AB games. In Figure 5, we simplify the graphic representation and define three functions for 

2×n AB games. The rectangle shown in Figure 5(a) and the ellipse shown in Figure 5(b), denoted “i�j” 

inside, refer to a graph with only j-i+1 separate vertices named i, i+1, …, j and a complete directed 

graph with j-i+1 vertices named i, i+1, …, j, respectively. Let T(n), T1(n), and T2(n) denote the total 

number of guesses required to hit all candidates for three types of game graph with n vertices, as shown 

in Figure 5(b), 5(c), and 5(d). Notice that the thick edges in Figure 5(c) and 5(d) refer to “one to all” or 

“all to one” edges, each of which connects the vertex outside the rectangle to all the vertices inside the 

rectangle. Hence there are n-1 and 2(n-2) edges in Figure 5(c) and 5(d), respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Now, we will demonstrate our procedure to minimize the external path length L and the height H 

of the game tree for 2×n AB games, by which we can obtain the minimum number of guesses in the 

expected and worst cases. First of all, we choose (0,1) as the partition edge at the initial stage. The 

game tree after the first guess is shown in Figure 6. The numbers of further guesses required for the 

classes [2,0], [1,0], [0,1], [0,0], and [0,2] (the external path lengths of subtrees whose roots are the 

nodes for classes [2,0], [1,0], [0,1], [0,0], and [0,2]) are 0, T2(n), T2(n), T(n-2), and 1, respectively. In 

addition, since the number of guesses for each remaining candidate (the length form root to each leaf) 

will be increased by one after the first guess, we have to add the quantity n(n-1) for computing T(n), 

where n(n-1) is the number of edges before the guess(i.e. in the root node). Hence, the total number of 

1 

0 0 0 

Figure 5. (a) A graph with n vertices and no edges. (b) A complete directed graph with n 

vertices and n(n-1) edges. T(n) is its total number of guesses. (c) Two types of graphs with 

n-1 edges. T1(n) is its total number of guesses. (d) A graph with 2(n-2) edges. T2(n) is its 

total number of guesses. 

0 n-1 

(b) T(n) 

(d) T2(n) 

2 n-1 
or 

(c) T1(n) 

1 n-1 

(a) 

0 n-1 

1 n-1 
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guesses (the external path length of the game tree) T(n) = 0+ T2(n)+ T2(n)+ T(n-2) +1+n(n-1)= 

T(n-2)+2T2 (n)+ n2-n+1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 6, since the game graphs for the classes [1,0] and [0,1] are isomorphic, and the game 

graph for class [0,0] can be solved recursively, we can only pay our attention to deal with the class [1,0]. 

The four ways to partition the class [1,0] and their recurrences are shown as follows: 

1. Choose (0, y) or (y, 1) as the partition edge, where y ∈  {2, 3, 4, …, n-1}. The game graph after the 

first guess is shown in Figure 7, where we choose (0,2) as the partition edge. Now, The numbers of 

further guesses required for the classes [2,0], [1,0], [0,1], and [0,0] are 0, T1(n-2), 1, and T1(n-2), 

respectively. In addition, we have to add the quantity 2(n-2) for computing T2(n), where 2(n-2) is the 

number of edges before the guess (0,2). Therefore, T2(n) = 0 + T1(n-2)+ 1+T1(n-2) +2(n-2) =2 

T1(n-2)+ 2n- 3.  

2. Choose (y, 0) or (1, y) as the partition edge, where y∈ {2, 3, 4, …, n-1}. For example, in Figure 8, we 

choose (2,0) as the partition edge. The numbers of further guesses required for the classes [2,0], [1,0], 

[0,1], [0,0] and [0,2] are 0, 1, T1(n-2), T1(n-2), and 1, respectively. Therefore, T2(n)= 1+ T1(n-2) 

+T1(n-2) +1 +2(n-2)=2 T1(n-2)+ 2n-2. Choosing (1,2) as the partition edge will get the same result by 

the similar analysis, so we omit it here.  

3. Choose (y1, y2) as the partition edge, where y1, y2 ∈ {2, 3, 4 …, n-1} and y1 y2. For example, in 

Figure 9, we choose (2,3) as the partition edge. Now, T2(n)=3+3+T2(n-2)+2(n-2) = T2(n-2)+2n +2. 

4. Choose (0,1) or (1,0) as the partition edge. As shown in Figure 10, if we choose (0,1) as the partition 

edge, there is only one nonempty class [1,0], which contains all the 2(n-2) edges; similarly, if (1,0) is 

chosen, the only one nonempty class is [0,1]. That is, we get no clue from this guess and also have to 

Figure 6. The game tree for 2×n AB game, where we choose (0,1) as the partition edge. 

T(n)=0+ T2(n)+ T2(n)+T(n-2)+1+n(n-1)= T(n-2)+2 T2(n)+ 1+n(n-1). 

[2,0] [1,0] [0,1] [0,0] [0,2] 

2�n-1 

0 

1 

0 

1 
2�n-1 

0 

1 

2�n-1 

0 

1 

0�n-1 
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add the quantity 2(n-2) for computing T2(n). Therefore, T2(n)= T2(n)+ 2(n-2).   

 

Figure 7. The game tree of graph T2(n), where we choose (0,2) as the partition edge. The notation 

“∅ ” in the class [0,2] refers to an empty set. T2(n)=0+T1(n-2)+1+T1(n-2)+2(n-2)=2 T1(n-2)+2n-3. 

[2,0] [1,0] [0,1] [0,0] [0,2] 

0 

3�n-1 

1 

0 

2 3�n-1 

1 
3�n-1 

0 

2 
1 

2 

[2,0] [1,0] [0,1] [0,0] [0,2] 

Figure 8. The game tree of graph T2(n), where we choose (2,0) as the partition edge. 

T2(n)=0+1+T1(n-2) +T1(n-2) +1+2(n-2)=2 T1(n-2)+2n-2. 

0 

3�n-1 

1 

0 

2 3�n-1 

1 
3�n-1 

1 

2 
0 

2 
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Observing the above recurrences, the total number of guesses for strategy 2 is always one more 

than that for strategy 1. In addition, we get no clue by using strategy 4. Therefore, we can ignore 

strategy 2 and strategy 4 here. Now, we can just investigate which is better between strategies 1 and 3. 

That is, we can determine the optimal strategy for T2(n) = Min(2T1(n-2)+2n-3, T2(n-2)+2n+2 ). 

Now let’s focus on the graph for T1(n). There are two types of graphs, between which only the 

edge direction is different, as shown in Figure 5(c). However, we can obtain the same numbers of 

Figure 9. The game tree of graph T2(n), where we choose (2,3) as the partition edge. 

T2(n)=3+3+ T2(n-2)+2(n-2)= T2(n-2)+2n+2. 

0

0 0

[2,0] [1,0] [0,1] [0,0] [0,2] 

1

0

4�n-1 

3

2 1

4�n-1 

3

12

3

12

0

0

[2,0] [1,0] [0,1] [0,0] [0,2] 

1

4�n-1 

1

4�n-1 

Figure 10. The game tree of graph T2(n), where we choose (0,1) as the partition edge. 

T2(n)= T2(n)+2(n-2)= T2(n)+2n-4. 
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further guesses for these two types of graphs by changing the direction of the partition edge. Hence, 

without losing the generality, we can only consider one type of the graphs. Now we show the only two 

ways to partition T1(n) and their recurrences, as follows: 

(i) Choose (0, y) as the partition edge, where y∈ {1, 2, 3, …, n-1}. In Figure 11(a), we choose (0, 1) 

as the partition edge, which partitions the graph for T1(n) into two nonempty classes, [2, 0] and [1, 

0]. The numbers of further guesses for these two classes are 0 and T1(n-1) respectively. Actually, 

there are n-1 edges in the graph for T1(n). Therefore, T1(n)=0+ T1(n-1)+n-1= T1(n-1) +n-1.  

(ii) Choose (y1, y2) as the partition edge, where y1, y2∈ {1, 2, 3, …, n-1} and y1 y2. For example, we 

choose the edge (1, 2) as the partition edge, as shown in Figure 11(b). Now, T1(n)=1+ T1(n-2) 

+1+n-1= T1(n-2)+n+1. 

Form the above analysis, we have T1(n)=Min(T1(n-2)+n+1, T1(n-1)+n-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To minimize the total number of guesses, we list the recurrences developed above and 

their solutions in Table 1, whose detailed proofs are shown in Theorem 3.

000
00

0 0

2 11

[1,0] [0,0] [0,1] [2,0] [1,0] 

Figure 11. (a) The strategy (i), where (0,1) is the partition edge. T1(n)= 0+T1(n-1)+n-1.  

(b) The strategy (ii), where (1,2) is the partition edge. T1(n)=1+ T1(n-2)+1+n-1. 

2�n-1 3�n-1 

3�n-1 2�n-1 

(b) (a) 

1 2 1
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unctions Recurrences relations Solutions 

T(n)= 







+++ 1,n-n (n)T 22)-T(n

,13

,3

2
2

           

if n=2 

if n=3  

otherwise 







++
++
105)/12,82n- 21n(4n

72)/12,76n- 21n(4n
23

23

 

if n is even 

if n is odd 

T2 (n)= 







+++ ), 22n2)-(n T 3,-2n2)-(n2T Min(

,7

,3

21

 

if n=3 

if n=4  

otherwise 






−+
−+

19)/2,4n (n

18)/2,4n (n
2

2

  
if n is even 

if n is odd 

T1 (n)= 







+++ 1),-n1)-(nT 1,n2)-(nT Min(

,3

,1

11

   

if n=2 

if n=3  

otherwise 






−+
−+

9)/4,4n (n

8)/4,4n (n
2

2

  
if n is even 

if n is odd 

Table 1. The recurrence relations and their solutions for T(n), T2(n), and T1(n). 

 

Theorem 3. The minimum number of guesses required for 2×n AB games in the expected case is 

(4n3+21n2 -76n+72)/12n(n-1) if n is even, and is (4n3+21n2 -82n+105)/12 n(n-1) if n is odd. 

Proof. We begin with solving the recurrences T(n), T2(n), and T1(n) listed in Table 1. 

1.  T1 (n)  = 






+++
=
=

otherwise.             1),-n1)-(nT 1,n2)-(nT Min(

3,n if                                                                   , 3

2,n if                                                                   , 1

11

  

At first, we shall prove by induction that  

T1(n) = T1(n-2)+n+1 (i.e., Min( T1(n-2)+n+1, T1(n-1)+n-1)= T1(n-2)+n+1). 

Basis step: 

T1(4) =Min( T1(4-2)+4+1, T1(4-1)+4-1)=Min(6,6), and 

T1(5) = Min( T1(5-2)+5+1, T1(5-1)+5-1)=Min(3+5+1,6+5-1)=Min(9,10), 

so T1(n) = T1(n-2)+n+1 is true for n=4,5. 

Inductive step: 

Assume that T1(k) = T1(k-2)+k+1 is true for 4≤k<n. 

We want to prove that T1(n) = T1(n-2)+n+1 is also true. 

T1(n) = Min( T1(n-2)+n+1, T1(n-1)+n-1) 

= Min(T1(n-4)+(n-1)+(n+1), T1(n-3)+n+(n-1)) 

= Min(T1(n-6)+(n-3)+(n-1)+(n+1), T1(n-5)+(n-2)+n+(n-1)) 

=




−++…+++++…+++
−++…+++++…+++

odd. isn  if      )), 1n(n 7 5  (2) T 1),n( 8 6  (3) Min(T

 even, isn  if     1)),n(n 8 6  (3) T  1),n( 7 5  (2) Min(T 

11

11  

=




++
++

 odd. isn  if       15)/4),-6n(n  9)/4,-6n(n in(M

 even, isn  if       , 16)/4)-n6(n  8)/4,-n4(n Min(
22

22
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Since (n2+4n-8)/4≤(n2+6n-16)/4 and  

(n2+4n-9)/4≤(n2+6n-15)/4 for n≥4,  

we conclude that T1(n) = T1(n-2)+n+1 is true and 

T1(n) =




+
+

   odd. isn  if      9)/4,-4n(n 

even, isn  if     8)/4,-4n(n
2

2

  

2.  T2(n)  = 






++−+
=
=

otherwise.        2),n22)-(nT 3,n22)-(n2T Min(

4,n if                                                                   , 7

3,n if                                                                   , 3

21

 

Now, we shall prove by induction that  

T2(n) = 2T1(n-2)+2n-3. 

Basis step: 

T2(5) = Min( 2T1(3)+10-3, T2(3)+10+2 )=Min(6+10-3,3+10+2)=Min(13,15), and  

T2(6) = Min(2T1(4)+12-3, T2(4)+12+2)=Min(12+12-3,7+12+2)=Min(21,21), 

so T2(n) = 2T1(n-2)+2n-3 is true for n=5,6. 

Inductive step: 

Assume that T2(k) = 2T1(k-2)+2k-3 is true for 5≤k<n. 

We want to prove that T2(n) = 2T1(n-2)+2n-3 is also true. 

T2(n)=Min( 2T1(n-2)+2n-3, T2(n-2)+2n+2 ) 

=Min(2T1(n-2)+2n-3, 2T1(n-4)+2(n-2)-3+(2n+2)) 

= Min(2T1(n-2)+2n-3, 2T1(n-4)+4n-5) 

=





+−+−+−−+
+−+−+−−+

 odd. isn  if ,5)-4n9)/44)-n(44)-2((n  ,3n24/)9)2n(42)-((n2Min

 even, isn  if ,5)-4n8)/44)-n(44)-2((n  ,3n24/)8)2n(42)-((n2Min
22

22

)(

)(

  

=




−+−+
−+−+

 odd. isn  if        19)/2),n4(n  19)/2,n4(n Min(

 even, isn  if       18)/2),n4(n  18)/2,n4(n Min(
22

22

  

Therefore, we conclude that T2(n) = 2T1(n-2)+2n-3 is true and 

T2(n)= 




+
+

odd. isn  if         , 19)/2-4n(n 

even, isn  if         , 18)/2-4n(n 
2

2

 

  

3.  T(n)= 






+−++
=
=

otherwise.                         1,n(n)T 22)-T(n 

3,n if                                                                      13,

2,n if                                                                        3,

2
2 n

 

If n>3 is even, 
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T(n)   =  T(n-2)+2T2(n)+ n2-n+1 

=  T(n-2)+2(n2 +4n-18)/2+ n2-n+1          

=  T(n-2)+2n2+3n-17 

=  T(2)+ ]17)2(3)2(2[
2/)4(

0

2 −−+−∑
−

=

inin
n

i

 

=  T(2)+ ]68817-3n2n[
2/)4(

0

22∑
−

=

−−++
n

i

inii  

=  3+[(n-4)/2+1](2n2+3n-17)+ ]688[
2/)4(

0

2∑
−

=

−−
n

i

inii  

=  3+[(n-4)/2+1](2n2+3n-17)+8 ∑
−

=

2/)4(

0

2
n

i

i -(8n+6) ∑
−

=

2/)4(

0

n

i

i  

=  3+[(n-4)/2+1](2n2+3n-17)+8[(n3-9n2+26n-24)/24] -(8n+6)[(n2-6n+8)/8] 

=  (4n3+21n2-76n+72)/12. 

If n is odd, 

T(n)   =  T(n-2)+2T2(n)+ n2-n+1 

=  T(n-2)+2(n2 +4n-19)/2+ n2-n+1           

=  T(n-2)+2n2+3n-18 

=  T(3)+ ]18)2(3)2(2[
2/)5(

0

2 −−+−∑
−

=

inin
n

i

 

=  (4n3+21n2-82n+105)/12. 

Therefore, 

T (n)  = 




++
++

odd. isn  if            105)/12,82n- 21n(4n

even, isn  if            , 72)/1276n- 21n(4n
23

23

 

The necessary and sufficient conditions can be achieved by the fact that our procedure always 

chooses the best strategy at each stage. Therefore, the minimum number of guesses required for 2×n AB 

games is (4n3+21n2 -76n+72)/12 if n is even, and is (4n3+21n2 -82n+105)/12 if n is odd. Because the 

number of possible candidates of 2×n AB games is n(n-1), we have to divide these two numbers by 

n(n-1) in the expected case. This completes the proof.                                      î   

 

To determine the number of guesses for 2×n AB games in the worst case, we consider the height 

instead of the external path length of the game tree. Let H(n), H1(n), and H2(n) be the minimum possible 

value for the height of the game tree for the game graphs in Figure 5(b), 5(c), and 5(d) respectively. We 

can obtain the recurrences for H(n), H1(n), and H2(n) by slightly modifying the recurrences T(n), T1(n), 

and T2(n) shown in Table 1. Observing Figure 6, the height of the game tree will be 1 plus the height of 

the highest among the five subtrees whose roots are the nodes for the five classes. Therefore, we have 

H(n)=Max(0, H2(n), H2(n), H(n-2), 1)+1= Max(H2(n), H(n-2))+1. We can also obtain this recurrence 

from the recurrence T(n) = T(n-2) + 2T2 (n) +n2-n+1. That is, change the coefficient 2 associated with 
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the recurrence function T2(n) into 1, the cost (n2-n+1) for each iteration into 1, and the sum operations 

between recurrence functions in the right side into Max function. The recurrences H1(n) and H2(n) can 

be got by the similar way. The recurrence relations and their solutions for H(n), H1(n), and H2(n) are 

shown in the Table 2. We show how to obtain the solutions in Theorem 4.  

 

Function

s 

Recurrences relations Solutions 

H(n)= 







+1, (n))H 2),-Max(H(n

,3

,2

2

     

if n=2 

if n=3  

otherwise 

n/2+1 

H2 (n)= 







+1, 2))-(nH 2),-(nMin(H

,2

,2

21

  

if n=3 

if n=4  

otherwise 

n/2  

H1 (n)= 







+1, 1))-(nH 2),-(nMin(H

,2

,1

11

  

if n=2 

if n=3  

otherwise 

n/2  

Table 2. The recurrence relations and their minimum solutions for H(n), H1(n), and H2(n). 

 

Theorem 4. n/2+1 guesses are necessary and sufficient for 2×n AB games in the worst case.  

Proof. We solve the recurrences H(n), H1(n), and H2(n) according to Table 2.  

1. Since H1(n-2)≤H1(n-1), H1(n) = Min(H1(n-2),H1(n-1)) + 1= H1(n-2) + 1 for n>3. 

H1 (n) = H1(n-2) + 1 

= H1(n-4) + 1 + 1 

= …  

=




+=+
+−=+

odd. isn  if          , 23)/2-( 3)/2-n(  (3) H

even, isn  if         1,)/22(2)/2-n(  (2) H 

1

1

n

n
 

= n/2 . 
2. H2(n) = Min(H1(n-2), H2(n-2))+1 for n>4. 

At first, we shall prove by induction that  

H2(n) =H1(n-2)+ 1. 

Basis step: 

H2(5) =Min(H1(3)+1, H2(3)+1)=Min(3,3), and 

H2(6) = Min(H1(4)+1, H2(4)+1)=Min(2+1,2+1)=Min(3,3), 

so H2(n) =H1(n-2)+ 1 is true for n=5,6. 

Inductive step: 

Assume that H2(k) =H1(k-2)+ 1 is true for 5≤k<n. 

We want to prove that H2(n) =H1(n-2)+ 1 is also true. 
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H2(n) =Min(H1(n-2), H2(n-2))+1 

=Min(n/2 /2, H1(n-4)+1)+1 

=Min(n/2 -1, n/2 -1)+1. 

Therefore, H2(n) =H1(n-2)+ 1 is true and 

H2(n) =n/2   

3.  H(n) = Max(H(n-2),H2(n)) + 1 for n>3. 

Now, we shall prove by induction that  

H(n) =H2(n)+ 1. 

Basis step: 

H(4) = Max(H(2), H2(4)) +1= Max(2,2)+1, and  

H(5) =Max(H(3), H2(5)) +1 =Max(3,3)+1, 

so H(n) =H2(n)+ 1 is true for n=4,5. 

Inductive step: 

Assume that H(k) =H2(k)+ 1 is true for 4≤k<n. 

We want to prove that H(n) =H2(n)+ 1 is also true. 

H(n) = Max(H(n-2),H2(n)) + 1 

=Max( H2(n-2) + 1, n/2 )+1 

=Max(n/2 , n/2 )+1. 

Therefore, H(n) =H2(n)+ 1 is true and 

H(n) = n/2+ 1. î  

 

We apply the optimum strategy obtained in this section to 2×5 AB game. The height of the game 

tree for the strategy used in Section 2 for 2×5 AB game is 4, which has already met the best result, H(n) 

= n/2+1=5/2+1= 4, in Theorem 4. Nevertheless, the strategy used in Figure 3, i.e., choosing (2,3) as 

the partition edge, is not the best choice if we consider the external path length. As proven in Theorem 

3, if we use the best strategy, i.e., choosing (0, y) or (y, 1) as the partition edge, where y∈ {2, 3, 4}, then 

the external path length L2 of the game tree will be 13 instead of 15 in Figure 3. Thus, the total number 

of guesses required for 2*5 AB game, L0=(L1+ L2+ L3+ L4+ L5)+ (the total number of edge in G0)= 

(0+13+13+13+1)+20=60. Therefore, the minimum number of guesses required for G0=60/20=3, which 

meets the result, (4n3 + 21n2 - 82n + 105) / 12n(n-1) = (4*53 + 21*52 - 82*5 + 105)/(12*5*4)=3, in 

Theorem 3. 

 

5. Concluding remarks 

 

 We have presented in this paper a systematic methodology to obtain optimal strategies for 2×n AB 

games in both the worst and expected case. First, we take advantage of properties in game trees, such as 

the height and the external path length of the game tree, to calculate the numbers of guesses required in 

the worst and expected cases for a deductive game. Furthermore, we invent a graphic model to 
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represent the 2×n AB game and discover some recursive and isomorphic properties in the graphic 

model. By this, we can reduce the search space and obtain the optimal results in both the worst and the 

expected case. We hope that the methodologies proposed in this paper will prompt researchers to study 

other related problems. 
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