
1. Workshop: Workshop on Computer Networks

2. Paper title: Improve Web Proxy Performance by Alleviating Disk I/O Overhead

3. Short abstract: In this paper, we first identify the performance bottleneck of Squid, and then

propose an object management, called UNIFIED, which is a user-level technique for improving the

performance of web proxy. In UNIFIED method, several techniques are used to improve the disk

I/O performance. The proposed method had been implemented and embedded into Squid-2.3

without modifying the existing OS and file system. Experimental results show that, compared to

Squid-2.4, our method can dramatically improve the proxy performance by reducing the overhead

associated with disk I/O.

4. Authors:

Yen-Jen Chang
Dept. of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan

E-mail: d88017@csie.ntu.edu.tw
Tel.: 886-02-23625336-111

Feipei Lai

Dept. of Computer Science and Information Engineering &
Dept. of Electrical Engineering

National Taiwan University
Taipei, Taiwan

E-mail: flai@cc.ee.ntu.edu.tw
FAX: 886-02-2363-7204; Tel.: 886-02-2391-4116

5. Contact author: Yen-Jen Chang, d88017@csie.ntu.edu.tw

6. Keywords: Web proxy, Squid, Object management, disk I/O, Polygraph 2.5.4, Polymix-3

 1

Improve Web Proxy Performance by Alleviating Disk I/O Overhead

Yen-Jen Chang† and Feipei Lai†*

†Dept. of Computer Science and Information Engineering, NTU

*Dept. of Electrical Engineering, NTU

Abstract

The dramatic increase of WWW traffic on the Internet has led to the wide use of web proxy. The web

proxies are dedicated to caching and delivering web content. They can be used to improve security,

save network bandwidth and reduce network latency. However, as the network bandwidth increased,

the general-purpose file system is rapidly becoming the performance bottleneck of web proxies. In this

paper, we first identify the performance bottleneck of Squid, and then propose an object management,

called UNIFIED, which is a user-level technique for improving the performance of web proxy. In

UNIFIED method, several techniques are used to improve the disk I/O performance. The proposed

method had been implemented and embedded into Squid-2.3 without modifying the existing OS and

file system. Instead of the traditional trace-driven simulation, we apply Polygraph 2.5.4 with Polymix-3

workload to evaluate our system realistically. To investigate how the proxy performance depends on the

equipped disk, we offer two sets of test machines. One is equipped with one IDE disk and the other is

equipped with five SCSI disks. Experimental results show that, in both tests, our method can

dramatically improve the proxy performance by reducing the overhead associated with disk I/O.

 2

1. Introduction

For reducing both network latency and traffic on the Internet, the web cache servers (proxies) are being

increasingly used. The function of the web proxy is to serve the client’s requests by looking up the equipped

cache that stores the previous web data, and only contacts the web servers in case of proxy miss. Unless the main

memory becomes cheap enough, the web proxies always employ the disk to cache web data. Apart from the

network latency, disk I/O is a major performance bottleneck of the web proxy. This conclusion can be found in

lots of researches [1, 2, 3, 4, 5, 6, 7]. In some specific environment, Mogul et al. [8] even suggested to run the

web proxy in non-caching mode because the disk I/O overhead is higher than the latency improvement obtained

from the use of web proxy.

All public web proxies (CERN, Harvest and Squid) use the UNIX file system (UFS) for portability.

Because the UFS is a general-purpose file system that is designed for the workstation workload and is not

optimized for the workload of web proxy, the use of UFS would degrade the proxy performance. By contrast,

some commercial web proxies are developed with a special operating system (or file system) that is optimized

for disk I/O [9, 10, 11]. These vendors report their solutions can improve the proxy performance by many orders

of magnitude. However, the major disadvantages of these commercial solutions are expensive and non-portable.

In this paper, we concentrate on the methods that can be implemented at user-level (application-level)

without modifying the standard UFS. To alleviate the overhead associated with using UFS, we propose an object

management, called UNIFIED, that stores all objects in a single file. Because all objects are stored in a single

file, all open, close and unlink (delete) system calls can be eliminated completely. Besides, several techniques are

used to improve the disk I/O performance in the proposed UNIFIED method. First, we develop a precise and

 3

dynamic space allocation algorithm that can satisfy all space requests for various sizes. It costs only O(lg n) time

that is more efficient than the use of traditional linear search method (O(n)). Second, instead of multi-read/write,

the single-read/write scheme is used to further reduce the number of read and write system calls. Third, we use

cluster write to further improve write performance.

We had implemented the proposed UNIFIED method, and embedded it into Squid-2.3. Instead of traditional

trace-driven simulation, we use Polygraph 2.5.4 with Polymix-3 workload, which is an industry-wide benchmark

for proxy performance, to evaluate our system realistically. Compared to Squid-2.4 with DISKD scheme, the

experimental results show that our method can dramatically improve the average response time and throughput

of the web proxy by reducing the disk I/O overheads.

The rest of the paper is organized as follows. In Section 2, we describe the evaluation tools and test

environment used in this paper. Section 3 identifies the important characteristics of Squid. Next, in Section 4 we

detail the proposed UNIFIED object management, and provide the comparison between our method and

previous work. Experimental results are given in Section 5, and Section 6 offers some conclusions.

2. Methodology

Most of researchers use trace-driven simulation to evaluate the web proxy and make performance claims

regarding their methods. However, such claims were essentially meaningless due to the lack of widely available

tools and standard workloads. They only concentrate attention on some specific component in which they

are interested, but not the overall performance of web proxy. They ignore the overhead of running web

proxy in the real-world, for example, the interactions of web proxy and operating system, the request load on

client side, network delay and network performance, etc.

 4

Instead of trace-driven simulation, in this paper, we use Web Polygraph [12] to evaluate the proxy

performance. It is a high performance tool for generating web traffic and measuring proxy performance. In Web

Polygraph, there are many features absent from the traditional trace-driven simulation method. As shown in Fig.

1, our test environment consists of two polygraph machines (Polygraph Server and Polygraph Client), a web

proxy, and a network to tie them together. Polygraph Server generates HTTP responses for the requests issued

from Polygraph Client in case of proxy miss. Depending on the configuration, Polygraph Client can emulate the

end-user surfing the web with a browser, generate hundreds of HTTP requests per second and maintain

thousands of concurrent connections for hours. The detailed information of Web Polygraph can be found in [12].

3. File Management used in Squid

Because Squid [13] is the most popular web proxy and has been studied widely, we destine it to be our

target proxy. As well known, the major feature of storage architecture used in Squid is that each URL (object) is

stored on a separate file. Squid has many features designed to improve I/O performance. Unlike traditional

servers, Squid handles all requests in a single, non-blocking, I/O-driven process. Over the years, the poor

performance of UFS has been shown a vital bottleneck of Squid [13]. On average, Squid-2.3 only serves about

30-50 requests per second due to the use of UFS.

Figure 1: Test environment. (The arrows show the direction of data flow.)

Polygraph
Server

Ethernet Switch

Web
Proxy

Polygraph
Client

 5

3.1 Analysis of Squid

Fig. 2 shows the number of UFS operations executed in Squid. The total request numbers have increased

with the request rates. They are around 4.3 million, 6.0 million, 7.8 million and 9.5 million in the order of 50

req/sec, 100 req/sec, 150 req/sec and 200 req/sec. We observed the proportion of open/close and unlink (delete)

to the total requests number are roughly 76% and 40%. Besides, write and read take the more notable fraction of

UFS operations executed in Squid. Especially write operation dominates the traffic sent to the disk subsystem.

l Multiple Read/Write (Multi-R/W) Scheme

By tracking the Squid source code, we observe that Squid uses multiple write operations to perform caching

one object on disk. The default size is 8192 bytes for each write operation. The advantage of multi-write scheme

is that Squid does not require to allocate additional memory to store the coming object before it is written to the

disk, but such multi-write scheme would result in more write operations for caching the objects. Similarly, Squid

uses multi-read scheme to perform reading the cached object and reply it to client. The default size is 4096 bytes

for each read operation.

Figure 2: UFS operations executed in Squid.

UFS operations executed in Squid

0

2000

4000

6000

8000

10000

12000

14000

16000

open close delete write read

nu
m

be
r o

f o
pe

ra
tio

ns
 (t

ho
us

an
ds

))

50 req/sec
100 req/sec
150 req/sec
200 req/sec

 6

From the request flow, no matter whether the request is a hit or not, at least one disk operation (read or

write) would be executed. The standard UFS disk operations used in Squid are synchronous that means the

control is not returned to Squid process until I/O completion. Therefore, Squid spends a lot of time on disk

operations. This is the reason why Squid has poor performance.

l DISKD

Compared to Squid-2.3 that handles all disk I/O operations in a single process, in Squid-2.4 or later, DISKD

was introduced to improve disk I/O performance. The basic idea of DISKD is that each cache directory has its

own diskd child process. One diskd process performs all disk I/O operations for one cache directory. Of course,

the performance of DISKD would be further enhanced if the cache directories were located on different disks. At

the third IRCache Bake-Off, Squid-2.4 with DISKD got 160 req/sec [14].

Fig. 3 shows the average response time of Squid-2.4. In this experiment, Squid-2.4 can afford to deliver

50-60 req/sec in low-end test (equipped with one IDE disk), and 150-200 req/sec in high-end test (equipped with

five SCSI disks). Due to the proxy workload characteristics are different from the traditional UNIX workload,

Figure 3: Average response time of Squid-2.4.

Average response time of Squid-2.4

0
500

1000
1500
2000
2500
3000
3500
4000
4500

10 20 30 40 50 100 150 req/sec

re
sp

on
se

 ti
m

e
(m

s)
.

Low
High

 7

for web proxy, UFS has a number of features that are not necessary, or could be simplified. Even Squid-2.4 was

equipped with the competent disk in the high-end test; it is much less than the performance of other commercial

products, e.g., 500 req/sec for IBM-220-2 and 780 req/sec for iMimic-1300 [14].

4. UNIFIED Object Management

As indicated previously, the disk I/O operations have been shown to be the major performance bottleneck of

a web proxy. To alleviate the disk I/O overhead, we propose an object management called UNIFIED that stores

all objects in a single file, which we refer to as the UNIFIED file. This idea is very simple and straightforward,

but it is hard to be implemented due to the difficulty in space allocation. Despite the apparent performance gain

from storing all objects in a single file, however, the hidden cost of this approach is potentially more than its

benefits due to the space management.

4.1 Bit Vector

The UNIFIED file used in our method can be regard as a largely and continuously logical space. First, this

continuously logical space must be partitioned into fixed-sized blocks called chunks. We use bit vector (or bit

map) to indicate whether the chunks are available (free) or not. Each chunk is represented by one bit. If the

chunk is available, the bit is “0”; otherwise, the bit is “1”. Note that, for fast manipulation, the entire bit vector

should be kept in main memory.

first last

Figure 4: The node structure for a free piece.

first last heap_l heap_r

first last heap_l heap_r hash_f hash_r

(a)

(b)

(c)

 8

There must be a lot of free pieces in the UNIFIED file after repeated removing and storing the objects. As

shown in Fig. 4(a), one node is used to track one free piece, in which first and last fields are used to locate the

first free chunk number and the last free chunk number respectively. The size of a free piece is last-first+1.

4.2 Continuous Allocation & Single Read/Write (Single-R/W) Scheme

In our method, the first problem is how to allocate space to those objects such that the UNIFIED file is

utilized effectively and the objects can be accessed quickly. There are three methods used in space allocation:

contiguous, linked, and indexed. Except for the contiguous allocation, the other two would scatter the cached

object all over the UNIFIED file, and then slowdown the object access. Thus, we decide to use the contiguous

allocation in our method

From Section 3, we know that the multi-R/W scheme used in Squid is beneficial for the machines equipped

with less memory, but it degrades the proxy performance due to many system calls. By contrast, we use single

read/write (single-R/W) scheme which is straightforward and more efficient due to the use of continuous

allocation. The write operation is executed once to write the entire object data to the disk when the proxy

finishes reading the reply from the origin server. Similarly, before submitting the cached data to the request

client, the read operation is executed once to read the entire object data from the disk in the case of proxy hit.

Thus, the number of both write and read operations could be reduced dramatically. The disadvantage of the

single-R/W scheme is that the more memory would be consumed in storing the object data temporarily, but these

allocated memory would be released after using. It is reasonable to use appropriate memory to improve the disk

I/O performance as well as the proxy performance.

4.3 Cluster Write

 9

One difficulty in contiguous allocation is finding a sufficient space for a new coming object. This procedure

can be reduced to the general dynamic storage-allocation problem, which is how to satisfy a request of size n

from a set of free space. Instead of writing a new coming object in arbitrary free piece, we select the largest free

piece to accommodate these new coming objects, i.e., worst-fit strategy. By continually appending objects until

the largest free piece is exhausted, we can cluster the write operations and then improve the write performance.

Our cluster write scheme always performs the longest sequential write operations due to the use of worst-fit

strategy. The concept of cluster write is inspired from the log-structured file systems [15]. Although the cluster

write used in logical file space makes no effect to layout data on disk, its effect on improving write performance

had been certified in [5]. The worst-fit is easy to be implemented with the maximum-heap that is a priority queue

to track the element with the largest key. The size of free piece can be used as key to build the maximum-heap.

The node structure shown in Fig. 4(a) should be augmented with two additional fields to adapt for heap structure.

Fig. 4(b) shows the modified node. Field heap_l and heap_r point to left and right subtrees respectively.

4.4 Precise Space Management

When an object was deleted, we must merge it with the neighbor free chunks to track each free piece

precisely. For example, in Fig. 5, the neighbor chunks of object x are free. We can merge these free pieces from

chunk number 5 to 15 to form a larger contiguous free piece after object x was removed.

l Merging

By testing the bit vector, it is easy to determine whether a chunk is free or not. The main difficulty in

merging is how to determine the size of neighbor free piece. The straightforward method is sequential and

exhausted testing from the first free chunk which is next to the removed object to the first used chunk. The time

 10

complexity is O(n). This approach is efficient in case of free pieces with small size, but it is inadequate for those

free pieces with extremely large size.

Here, we introduce another efficient merging method, called front-rear hashing, in which two hash tables

are used: one is front hash table and the other is rear hash table. Each free piece must be hashed into the front

hash table with the first free chunk number, and hashed into the rear hash table with the last free chunk number.

The main idea of front-rear hashing method is that we can retrieve a free piece by looking up the front hash table

(with the first free chunk number) or by looking up the rear hash table (with the last free chunk number). The

node structure shown in Fig. 4(b) must be augmented with two additional fields to store the linked list

information used in both hash tables, as shown in Fig. 4(c). In Fig. 5, we use an example to illustrate the merging

flow and describe it as follows:

1. The object x was removed from the web proxy, and then the free piece (8, 11) was released. The bit vector

corresponding to this object x has to be reset to “0”. This step costs only O(1) time.

2. Left merging: First, the chunk next to the first chunk of object x (i.e., chunk 7) must be tested. If chunk 7

is in use, we can skip this step. Otherwise, chunk 7 must be the last chunk of some free piece, and then we

look up the rear hash table with the chunk number 7. In this example, we can find the free piece (5, 7) in

the rear hash table. Note that, to keep the data consistency between these two hash tables, if the free piece

(5, 7) was removed from the rear hash table, its corresponding node hashed with chunk number 5 in the

front hash table must be removed at the same time. Finally, after removing the free piece (5, 7) from the

maximum-heap, the free piece (8, 11) can be merged with (5, 7) to form a larger new free piece (5, 11). In

this step, under the use of adequate hash function, the expected time to search for a node in the hash table

 11

is O(1), and the time to remove a node from the maximum-heap is O(lg n). Thus, the total cost is roughly

2×O(1)+O(lg n)=O(lg n) in the left merging.

3. Right merging: After left merging, the chunk next to the last chunk of object x (i.e., chunk 12 in this

example) should be tested, and then the following operation is the same as the left merging. The only

difference is that the front hash table should be looked up with the chunk number 12 in the right merging.

In this example, we can find the free piece (12, 15) in the front hash table, and merge it with the new one

obtained in left merging to form a new free piece (5, 15). The time cost is the same as that in Step 2.

4. After left and right merging, maybe we can receive a larger free piece than the removed object. We have

to hash this new free piece to both hash tables with the first chunk number and the last chunk number

respectively, and insert it into the maximum-heap. This step also costs 2×O(1)+ O(lg n)=O(lg n) time, in

which O(1) is for hashing operation and O(lg n) is for heap insertion operation.

In summary, the running time of the proposed object management is roughly O(lg n) time complexity. It is more

efficient than the use of sequential test in merging flow (i.e., O(n)).

 Figure 5: Front-rear hashing method. Dashed-line represents the search for a node in hash
tables, and solid-line represents the insertion into hash tables.

rear
hash table

11

11110000111100011111

191817161514131211109876543210

11110000111100011111

191817161514131211109876543210

11110000000000011111

191817161514131211109876543210

11110000000000011111

191817161514131211109876543210

22 33

front
hash table

object x

new free piece

44

 12

4.5 Recovery

To make our system robust, we must append sufficient information to object metadata. For example, if a

piece (s, t) was allocated to the object x, the chunk numbers s and t must be appended to the metadata of object x,

and then write object and metadata to disk. In case of crash, after the system reboots, the bit vector used in our

method can be recovered by scanning the entire UNIFIED file. At the same time, the maximum-heap, and both

hash tables are also rebuilt. Clearly, there is no overhead to prevent system crash in our method.

4.6 Comparison

Unlike buddy system, which suffers from internal fragmentation, our proposed front-rear hashing can

manage space dynamically and precisely with a competitive performance O(lg n). Without internal

fragmentation, the entire space can be utilized effectively in our method.

The idea behind our method is very simple, and the similar object-packing techniques have been proposed

in [3, 4, 5, 7]. Unlike these object-packing techniques, which only pack a part of objects into one file, our

method packs all objects into one file with a dynamic and precise space management. Thus, all open/close and

delete system calls can be eliminated completely. In addition, the use of both single R/W scheme and cluster

write further improve the proxy performance by reducing the number of read and write operations and

optimizing the write operations, they are absent from the previous work.

5. Experimental Results

We had implemented the proposed UNIFIED object management and embedded it into Squid-2.3. For

verifying the efficiency of our method, we destine the competitive Squid-2.4, which performance is much better

 13

than Squid-2.3, as the comparison target.

To measure how the proxy performance depends on the equipped hard disk, we offer two suits of test

machines. One is low-end test and the other is high-end test. (1) In low-end test, the web proxy is tested on the

x86 PC with a 600 MHz Pentium III processor running FreeBSD 4.1. The proxy machine is equipped with

256MB memory and a 20GB Seagate 7,200 RPM Ultra ATA/100 IDE (ST320414A) disk. The sizes of memory

cache and disk cache are configured as 100MB and 10GB respectively. (2) In high-end test, the web proxy is

tested on the x86 PC with two 600 MHz Pentium III processors running FreeBSD 4.1. The proxy machine is

equipped with 1GB memory and five 9GB IBM 10,000 RPM Ultra2 SCSI disks. The sizes of memory cache and

disk cache are configured as 300MB and 10GB respectively. In our system, these five disks are configured in

RAID0 mode, and in Squid-2.4, we configure that each cache directory is 2GB size on each disk.

In the following discussions, we use the number of disk I/O operations, average hit time, average miss time,

average response time and peak throughput as the criteria to compare Squid-2.4 to our system (i.e., Squid-2.3

embedded with our proposed UNIFIED object management). In this paper, we concentrate on the performance

of disk I/O. We do not modify the replacement strategy, and we use the same LRU replacement as Squid. Thus,

both Squid-2.4 and our system have the same hit ratio, so we do not consider the hit ratio here.

5.1 Disk I/O operations

Table 1 shows the number of open, close and delete operations executed in Squid for various configurations

of request rate. We measure the affordable request load of Squid-2.4 tested in low-end and high-end test are

50~60 req/sec and 170~180 req/sec respectively. In our system, because all objects are stored in a single file, all

open, close and delete system calls can be eliminated completely.

 14

Table 2 shows how read and write operations can be reduced in our system. The key observation is that

with the use of single-read/write scheme, our system further reduces roughly 50% of read operations and 63% of

write operations for various request rates in both tests. As expected, from the data shown in Table 1 and Table 2,

the proposed UNIFIED object management can dramatically reduce the number of disk I/O operations.

5.2 Average Hit Time

The hit time measured by Polygraph client is the elapsed time from the request submission to the receipt of

reply data, where this request is a hit in web proxy. Because the read operation is on the critical path in the case

of cache hit, this criterion can be used to characterize the read performance of web proxy. Figure 6 shows the

average hit time of Squid-2.4 and our system in both test environments. From this figure, we summarize the

most important aspects.

Table 2: The number of read and write operations executed in Squid-2.4 and our system.

Squid-2.4 Our Squid-2.4 Our
10 req/sec 534,704 255,763 4,318,921 1,575,083
20 req/sec 976,325 468,838 4,588,152 1,691,836
30 req/sec 1,208,030 618,340 4,877,634 1,781,951
40 req/sec 1,588,713 808,123 5,281,763 1,987,364
50 req/sec 1,931,362 996,848 6,520,977 2,381,317
100 req/sec 3,454,337 1,796,287 8,027,956 2,930,528
120 req/sec 3,806,434 1,906,340 9,781,763 3,573,648

read write
Squid-2.4 Our Squid-2.4 Our

50 req/sec 1,844,889 809,374 6,608,094 2,411,219
100 req/sec 3,379,529 1,622,303 8,228,432 3,005,464
150 req/sec 4,305,185 2,124,848 10,814,209 3,955,914
170 req/sec 4,514,545 2,193,743 12,871,436 4,638,126
200 req/sec 4,705,627 2,350,592 14,005,715 5,126,464
250 req/sec 5,683,479 2,748,622 19,635,487 7,256,498

read write

(a) Low-end test. (b) High-end test.

Table 1: The number of open, close and delete operations executed in Squid. The affordable
request load of Squid-2.4 in low-end test and high-end test are 50~60 req/sec and
170~180 req/sec, as shown in gray row.

(a) Low-end test. (b) High-end test.

open close delete
10 req/sec 1,830,968 1,830,967 1,002,896
20 req/sec 2,108,715 2,108,715 1,182,368
30 req/sec 2,400,413 2,400,413 1,204,749
40 req/sec 2,894,680 2,894,680 1,409,723
50 req/sec 3,378,287 3,378,287 1,659,489
100 req/sec 4,726,937 4,726,937 2,206,019
120 req/sec 5,224,545 5,224,545 2,698,164

open close delete
50 req/sec 3,220,714 3,220,714 1,691,382
100 req/sec 4,627,888 4,627,888 2,281,725
150 req/sec 6,080,883 6,080,883 3,235,120
170 req/sec 6,683,492 6,683,492 3,697,432
200 req/sec 7,477,177 7,477,177 4,404,863
250 req/sec 8,800,143 8,800,143 5,718,264

 15

 First, the average hit time measured in low-end test is much higher than that measured in high-end test.

This is because the performance of disk used in low-end test (one IDE disk) is much poorer than the

performance of disk used in high-end test (five SCSI disks). Second, in all cases depicted in this figure, the hit

time goes up with the request rate. Once the web proxy gets busy, disk I/O can become the bottleneck. The hit

time increased sharply when the request load approaches the delivering limit of web proxy. If the hit time is too

high such that the entire test cannot be finished, that implies the web proxy cannot afford to deliver such request

load. Third, because the single-read scheme shortens the elapsed time by reading data from the allocated buffer

instead of the disk, our proposed object management can improve average hit time dramatically. The speedup of

average hit time is defined as speedup=HTSquid/HTOur, where HT is hit time. In the low-end test, the speedup is

from 6 to 22 times, and in the high-end test, the speedup is from 2 to 9 times. The key observation is that the

proposed method is effective in both tests, low-end test especially.

5.3 Average Miss Time

The miss time measured by Polygraph client is the elapsed time from the request submission to the receipt

of reply data, where this request is a miss in web proxy. To simulate real-world conditions, PolyMix-3 introduces

Average Hit Time

0
200
400
600
800

1000
1200
1400
1600
1800
2000

10 20 30 40 50 100 120 req/sec

hi
t t

im
e

(m
s)

.

Squid
Our

Average Hit Time

0
50

100
150
200
250
300
350
400
450
500

50 100 150 170 200 250 req/sec

hi
t t

im
e

(m
s)

.

Squid
Our

Figure 6: The average hit time of Squid-2.4 and our system in both tests.

(a) Low-end test. (b) High-end test.

 16

an artificial delay on the server side. The server delays are normally distributed with a 2.5 sec mean and 1 sec

deviation [12]. These delays play a crucial role in creating a reasonable number of concurrent “sessions” in the

cache. Because the write operation is on the critical path in the case of cache miss, this criterion can be used to

characterize the write performance of web proxy.

The impact of request load on the average miss time is shown in Figure 7. An interesting variation in the

degree of miss time reduction is observed among the data in this figure. The average miss time of our system is

not better than that of Squid-2.4 in case of proxy with light load (e.g., 10~20 req/sec in Fig. 7(a), 50~150 req/sec

in Fig. 7(b)). This is because traditional UNIX systems use the block buffer cache to minimize disk I/O

operations by caching recently accessed disk blocks in memory. To eliminate most write operations and also to

reorder the writes in a way that optimizes disk performance, the UNIX buffer cache is primarily write-back (or

write-behind). The write operation is finished when OS copies the write data from user buffer to block buffer

cache, and then these data would be written to the disk at a later time. This write-back scheme is similar to the

copy function used in our single-write scheme, in which the data retrieved from the server would be stored in the

allocated buffer temporally. Thus, when the proxy is in light load, the use of single-write scheme does not result

Average Miss Time

2200

2700

3200

3700

4200

4700

10 20 30 40 50 100 120 req/sec

re
sp

on
se

 ti
m

e
(m

s)
.

Squid
Our
Dealy

Average Miss Time

2200

2700

3200

3700

4200

4700

50 100 150 170 200 250 req/sec

re
sp

on
se

 ti
m

e
(m

s)
.

Squid
Our
Dealy

Figure 7: The average miss time of Squid-2.4 and our system. The default network delay is 2.5 sec.

(a) Low-end test. (b) High-end test.

 17

in the kind of time reduction that is realized for the single-read scheme used in case of cache hit. The effect of

single-write scheme in reducing write system calls would be pronounced when the proxy is in heavy load. This

phenomenon can be observed from 30~50 req/sec in Fig. 7(a) and 150~170 req/sec in Fig. 7(b).

5.4 Average Response Time

The average response time measured by Polygraph is defined as follows:

Average response time=(average hit time×HR)+(average miss time×MR),

where HR is the hit ratio and MR is the miss ratio. Figure 8 shows the average response time of both Squid-2.4

and our system. We observe the improvement of response time depends on the request load. In case of light

request load, our proposed UNIFIED object management does not exhibit the effect on improving the response

time. By contrast, in case of heavy request load, our method is beneficial to alleviate the disk I/O overhead. The

experimental results show that the affordable request load of Squid-2.4 are about 50~60 req/sec and 170~180

req/sec in low-end and high-end test respectively. In low-end test, our system results in roughly 3.5 times

speedup of response time under 50 req/sec affordable request load. Similarly, in high-end test, the speedup of

response time is about 1.5 times under 170 req/sec affordable request load.

Average Response Time

0

500

1000

1500

2000

2500

3000

50 100 150 170 200 250 req/sec

re
sp

on
se

 ti
m

e
(m

s)
.

Squid
Our

Average Response Time

0
500

1000
1500
2000
2500
3000
3500
4000
4500

10 20 30 40 50 100 120 req/sec

re
sp

on
se

 ti
m

e
(m

s)
.

Squid
Our

Figure 8: The average response time of Squid-2.4 and our system.

(a) Low-end test. (b) High-end test.

 18

5.5 Peak Throughput

The throughput of web proxy is defined as the number of requests serviced per second. Table 3 shows the

impact of UNIFIED method on peak throughput. As expected, in conventional Squid, throughput goes up with

the efficiency of the equipped disks. Even though the DISKD was used to improve disk I/O performance,

Squid-2.4 only affords to deliver 50~60 req/sec and 170~180 req/sec in low-end and high-end test respectively.

Compared to Squid-2.4, our system can afford to deliver 120~130 req/sec and 250~300 req/sec in low-end and

high-end test respectively. An increasing of 127% and 57% in peak throughput for two tests can be achieved by

using the proposed UNIFIED object management.

6. Conclusions

As the tremendous growth of WWW has significantly contributed to the network traffic on the Internet, the

demand for a web proxy with high performance is increasing. In this paper, we destine Squid as our target web

proxy and identify the performance bottleneck by analyzing characteristics of workload obtained from the test of

Squid. We then propose an object management, called UNIFIED, that stores all objects in a single file. For

portability, the proposed method can be implemented at user-level (application-level) without modifying the

standard UNIX system and UFS.

Except all open, close and unlink (delete) system calls can be eliminated completely, the UNIFIED object

Table 3: The peak throughput of both Squid-2.4 and our system in two tests.

low-end test high-end test
Squid-2.4 50~60 170~180

Our 120~130 250~300

 19

management employs several techniques to boost proxy performance. The single-read/write scheme and cluster

write are introduced to further reduce the number of read/write operations and improve the write performance.

We also develop a dynamic space management, named front-rear hashing, which can manage space dynamically

and precisely with a competitive performance O(lg n). Not only used in web proxy, we may apply the front-rear

hashing to other appliances that need space management.

We compare our method to previous work and indicate the difference among these methods. The proposed

method was implemented and embedded into Squid-2.3. Instead of traditional trace-driven simulation, we use an

industry-wide benchmark tool, i.e., Polygraph 2.5.4 with Polymix-3 workload, to evaluate our system

realistically. We offer two suits of test machines. One is low-end test, in which the web proxy is equipped with

one IDE disk, and the other is high-end test, in which the web proxy is equipped with five SCSI disks. The

experimental results show that our proposed UNIFIED object management can reduce roughly 50% of read

operations and 63% of write operations for various request rate while all open, close and delete operations are

eliminated completely. In low-end test, our system results in roughly 3.5 times speedup of response time under

50 req/sec affordable request load and an increasing of 127% in peak throughput. Similarly, in high-end test, the

speedup of response time is about 1.5 times under 170 req/sec affordable request load, and an increasing of 57%

in peak throughput would be achieved. Because the proxy performance is severely constrained by disk efficiency,

our method is more beneficial for the web proxy equipped with the inefficient disk.

 20

References
[1] J. Almeida and Pei Cao, “Measuring Proxy Performance with the Wisconsin Proxy Benchmark,” TR 1373,

Computer Science Department, University of Wisconsin-Madison, April 13, 1998.

[2] A. Rousskov and V. Soloviev, “A Performance Study of the Squid Proxy on HTTP/1.0,” World-Wide Web

Journal, Special Edition on WWW Characterization and Performance Evaluation, 1999.

[3] S. L. Fritchie, “The Cyclic News Filesystem: Getting INN To Do More With Less,” in Proc. of the 1997

Systems Administration Conference, 1997, pp. 99-111.

[4] C. Maltzahn, K. J. Richardson and D. Grunwald, “Reducing the Disk I/O of Web Proxy Server Caches,” In

Proc. of the 1999 USENIX Annual Technical Conference, June 1999, pp. 225-238.

[5] E. P. Markatos and M. G. Katevenis, “Secondary Storage Management for Web Proxies,” In Proc. of the

2nd USENIX Symp. on Internet Technologies and Systems, Oct. 1999, pp. 93-114.

[6] E. Shriver, E. Gabber and L. Huang, “Storage Management for Web Proxies,” In Proc. of the 2001

USENIX Annual Technical Conference, June 2001, pp. 203-216.

[7] K. C. Chinen, E. Kawai, Y. Kadobayashi and S. Yamaguchi, “User Level Techniques for Improvement of

Disk I/O in WWW Caching,” in Proc. of International Conf. on System, Man and Cybernetics, vol. 5, 2001,

pp. 3033.

[8] J. C. Mogul, “Speedier Squid: A Case Study of an Internet Server Performance Problem,” The USENIX

Association Magazine, 24(1), 1999, pp. 50-58.

[9] P. Danzig, “NetCache Architecture and Deployment,” Network Appliance TR-3029, Santa Clara, California,

1998.

[10] CacheFlow, Inc. High-performance Web Caching White Paper.

[11] IMimic Networking, Inc., “The iMimic DataReactor Architectural Overview,” http://www.imimic.com

/documents/WP-ArchitecturalOverview.pdf

[12] Polyteam, “Polygraph User Manual,” http://polygraph.ircache.net/UserManual/

[13] D. Wessels, “Squid Web Proxy Cache,” http://www.squid-cache.org/

[14] The Third Cache-Off Official Report, http://www.measurement-factory.com /results/public/cacheoff/N03

/report.by-alph.html

[15] M. Seltzer, M. K. McKusick, K. Bostic and C. Staelin, “An Implementation of a Log-Structured File

System for UNIX,” in Proc. of the 1995 Winter USENIX Technical Conference, January 1995.

