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Abstract 

The dramatic increase of WWW traffic on the Internet has led to the wide use of web proxy. The web 

proxies are dedicated to caching and delivering web content. They can be used to improve security, 

save network bandwidth and reduce network latency. However, as the network bandwidth increased, 

the general-purpose file system is rapidly becoming the performance bottleneck of web proxies. In this 

paper, we first identify the performance bottleneck of Squid, and then propose an object management, 

called UNIFIED, which is a user-level technique for improving the performance of web proxy. In 

UNIFIED method, several techniques are used to improve the disk I/O performance. The proposed 

method had been implemented and embedded into Squid-2.3 without modifying the existing OS and 

file system. Instead of the traditional trace-driven simulation, we apply Polygraph 2.5.4 with Polymix-3 

workload to evaluate our system realistically. To investigate how the proxy performance depends on the 

equipped disk, we offer two sets of test machines. One is equipped with one IDE disk and the other is 

equipped with five SCSI disks. Experimental results show that, in both tests, our method can 

dramatically improve the proxy performance by reducing the overhead associated with disk I/O. 
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1. Introduction 

For reducing both network latency and traffic on the Internet, the web cache servers (proxies) are being 

increasingly used. The function of the web proxy is to serve the client’s requests by looking up the equipped 

cache that stores the previous web data, and only contacts the web servers in case of proxy miss. Unless the main 

memory becomes cheap enough, the web proxies always employ the disk to cache web data. Apart from the 

network latency, disk I/O is a major performance bottleneck of the web proxy. This conclusion can be found in 

lots of researches [1, 2, 3, 4, 5, 6, 7]. In some specific environment, Mogul et al. [8] even suggested to run the 

web proxy in non-caching mode because the disk I/O overhead is higher than the latency improvement obtained 

from the use of web proxy. 

All public web proxies (CERN, Harvest and Squid) use the UNIX file system (UFS) for portability. 

Because the UFS is a general-purpose file system that is designed for the workstation workload and is not 

optimized for the workload of web proxy, the use of UFS would degrade the proxy performance. By contrast, 

some commercial web proxies are developed with a special operating system (or file system) that is optimized 

for disk I/O [9, 10, 11]. These vendors report their solutions can improve the proxy performance by many orders 

of magnitude. However, the major disadvantages of these commercial solutions are expensive and non-portable. 

In this paper, we concentrate on the methods that can be implemented at user-level (application-level) 

without modifying the standard UFS. To alleviate the overhead associated with using UFS, we propose an object 

management, called UNIFIED, that stores all objects in a single file. Because all objects are stored in a single 

file, all open, close and unlink (delete) system calls can be eliminated completely. Besides, several techniques are 

used to improve the disk I/O performance in the proposed UNIFIED method. First, we develop a precise and 
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dynamic space allocation algorithm that can satisfy all space requests for various sizes. It costs only O(lg n) time 

that is more efficient than the use of traditional linear search method (O(n)). Second, instead of multi-read/write, 

the single-read/write scheme is used to further reduce the number of read and write system calls. Third, we use 

cluster write to further improve write performance. 

We had implemented the proposed UNIFIED method, and embedded it into Squid-2.3. Instead of traditional 

trace-driven simulation, we use Polygraph 2.5.4 with Polymix-3 workload, which is an industry-wide benchmark 

for proxy performance, to evaluate our system realistically. Compared to Squid-2.4 with DISKD scheme, the 

experimental results show that our method can dramatically improve the average response time and throughput 

of the web proxy by reducing the disk I/O overheads. 

The rest of the paper is organized as follows. In Section 2, we describe the evaluation tools and test 

environment used in this paper. Section 3 identifies the important characteristics of Squid. Next, in Section 4 we 

detail the proposed UNIFIED object management, and provide the comparison between our method and 

previous work. Experimental results are given in Section 5, and Section 6 offers some conclusions. 

2. Methodology 

Most of researchers use trace-driven simulation to evaluate the web proxy and make performance claims 

regarding their methods. However, such claims were essentially meaningless due to the lack of widely available 

tools and standard workloads. They only concentrate attention on some specific component in which they 

are interested, but not the overall performance of web proxy. They ignore the overhead of running web 

proxy in the real-world, for example, the interactions of web proxy and operating system, the request load on 

client side, network delay and network performance, etc. 



 4

 

 

 

 

Instead of trace-driven simulation, in this paper, we use Web Polygraph [12] to evaluate the proxy 

performance. It is a high performance tool for generating web traffic and measuring proxy performance. In Web 

Polygraph, there are many features absent from the traditional trace-driven simulation method. As shown in Fig. 

1, our test environment consists of two polygraph machines (Polygraph Server and Polygraph Client), a web 

proxy, and a network to tie them together. Polygraph Server generates HTTP responses for the requests issued 

from Polygraph Client in case of proxy miss. Depending on the configuration, Polygraph Client can emulate the 

end-user surfing the web with a browser, generate hundreds of HTTP requests per second and maintain 

thousands of concurrent connections for hours. The detailed information of Web Polygraph can be found in [12]. 

3. File Management used in Squid 

Because Squid [13] is the most popular web proxy and has been studied widely, we destine it to be our 

target proxy. As well known, the major feature of storage architecture used in Squid is that each URL (object) is 

stored on a separate file. Squid has many features designed to improve I/O performance. Unlike traditional 

servers, Squid handles all requests in a single, non-blocking, I/O-driven process. Over the years, the poor 

performance of UFS has been shown a vital bottleneck of Squid [13]. On average, Squid-2.3 only serves about 

30-50 requests per second due to the use of UFS. 

Figure 1: Test environment. (The arrows show the direction of data flow.) 
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3.1 Analysis of Squid 

Fig. 2 shows the number of UFS operations executed in Squid. The total request numbers have increased 

with the request rates. They are around 4.3 million, 6.0 million, 7.8 million and 9.5 million in the order of 50 

req/sec, 100 req/sec, 150 req/sec and 200 req/sec. We observed the proportion of open/close and unlink (delete) 

to the total requests number are roughly 76% and 40%. Besides, write and read take the more notable fraction of 

UFS operations executed in Squid. Especially write operation dominates the traffic sent to the disk subsystem. 

 

 

 

 

 

 

l  Multiple Read/Write (Multi-R/W) Scheme  

By tracking the Squid source code, we observe that Squid uses multiple write operations to perform caching 

one object on disk. The default size is 8192 bytes for each write operation. The advantage of multi-write scheme 

is that Squid does not require to allocate additional memory to store the coming object before it is written to the 

disk, but such multi-write scheme would result in more write operations for caching the objects. Similarly, Squid 

uses multi-read scheme to perform reading the cached object and reply it to client. The default size is 4096 bytes 

for each read operation. 

Figure 2: UFS operations executed in Squid. 
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From the request flow, no matter whether the request is a hit or not, at least one disk operation (read or 

write) would be executed. The standard UFS disk operations used in Squid are synchronous that means the 

control is not returned to Squid process until I/O completion. Therefore, Squid spends a lot of time on disk 

operations. This is the reason why Squid has poor performance.  

l  DISKD 

Compared to Squid-2.3 that handles all disk I/O operations in a single process, in Squid-2.4 or later, DISKD 

was introduced to improve disk I/O performance. The basic idea of DISKD is that each cache directory has its 

own diskd child process. One diskd process performs all disk I/O operations for one cache directory. Of course, 

the performance of DISKD would be further enhanced if the cache directories were located on different disks. At 

the third IRCache Bake-Off, Squid-2.4 with DISKD got 160 req/sec [14]. 

 

 

 

 

 

 

Fig. 3 shows the average response time of Squid-2.4. In this experiment, Squid-2.4 can afford to deliver 

50-60 req/sec in low-end test (equipped with one IDE disk), and 150-200 req/sec in high-end test (equipped with 

five SCSI disks). Due to the proxy workload characteristics are different from the traditional UNIX workload, 

Figure 3: Average response time of Squid-2.4. 
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for web proxy, UFS has a number of features that are not necessary, or could be simplified. Even Squid-2.4 was 

equipped with the competent disk in the high-end test; it is much less than the performance of other commercial 

products, e.g., 500 req/sec for IBM-220-2 and 780 req/sec for iMimic-1300 [14]. 

4. UNIFIED Object Management 

As indicated previously, the disk I/O operations have been shown to be the major performance bottleneck of 

a web proxy. To alleviate the disk I/O overhead, we propose an object management called UNIFIED that stores 

all objects in a single file, which we refer to as the UNIFIED file. This idea is very simple and straightforward, 

but it is hard to be implemented due to the difficulty in space allocation. Despite the apparent performance gain 

from storing all objects in a single file, however, the hidden cost of this approach is potentially more than its 

benefits due to the space management. 

4.1 Bit Vector 

The UNIFIED file used in our method can be regard as a largely and continuously logical space. First, this 

continuously logical space must be partitioned into fixed-sized blocks called chunks. We use bit vector (or bit 

map) to indicate whether the chunks are available (free) or not. Each chunk is represented by one bit. If the 

chunk is available, the bit is “0”; otherwise, the bit is “1”. Note that, for fast manipulation, the entire bit vector 

should be kept in main memory. 

 

 

 

first last 

Figure 4: The node structure for a free piece. 
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There must be a lot of free pieces in the UNIFIED file after repeated removing and storing the objects. As 

shown in Fig. 4(a), one node is used to track one free piece, in which first and last fields are used to locate the 

first free chunk number and the last free chunk number respectively. The size of a free piece is last-first+1. 

4.2 Continuous Allocation & Single Read/Write (Single-R/W) Scheme 

In our method, the first problem is how to allocate space to those objects such that the UNIFIED file is 

utilized effectively and the objects can be accessed quickly. There are three methods used in space allocation: 

contiguous, linked, and indexed. Except for the contiguous allocation, the other two would scatter the cached 

object all over the UNIFIED file, and then slowdown the object access. Thus, we decide to use the contiguous 

allocation in our method 

From Section 3, we know that the multi-R/W scheme used in Squid is beneficial for the machines equipped 

with less memory, but it degrades the proxy performance due to many system calls. By contrast, we use single 

read/write (single-R/W) scheme which is straightforward and more efficient due to the use of continuous 

allocation. The write operation is executed once to write the entire object data to the disk when the proxy 

finishes reading the reply from the origin server. Similarly, before submitting the cached data to the request 

client, the read operation is executed once to read the entire object data from the disk in the case of proxy hit. 

Thus, the number of both write and read operations could be reduced dramatically. The disadvantage of the 

single-R/W scheme is that the more memory would be consumed in storing the object data temporarily, but these 

allocated memory would be released after using. It is reasonable to use appropriate memory to improve the disk 

I/O performance as well as the proxy performance. 

4.3 Cluster Write 
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One difficulty in contiguous allocation is finding a sufficient space for a new coming object. This procedure 

can be reduced to the general dynamic storage-allocation problem, which is how to satisfy a request of size n 

from a set of free space. Instead of writing a new coming object in arbitrary free piece, we select the largest free 

piece to accommodate these new coming objects, i.e., worst-fit strategy. By continually appending objects until 

the largest free piece is exhausted, we can cluster the write operations and then improve the write performance. 

Our cluster write scheme always performs the longest sequential write operations due to the use of worst-fit 

strategy. The concept of cluster write is inspired from the log-structured file systems [15]. Although the cluster 

write used in logical file space makes no effect to layout data on disk, its effect on improving write performance 

had been certified in [5]. The worst-fit is easy to be implemented with the maximum-heap that is a priority queue 

to track the element with the largest key. The size of free piece can be used as key to build the maximum-heap. 

The node structure shown in Fig. 4(a) should be augmented with two additional fields to adapt for heap structure. 

Fig. 4(b) shows the modified node. Field heap_l and heap_r point to left and right subtrees respectively. 

4.4 Precise Space Management 

When an object was deleted, we must merge it with the neighbor free chunks to track each free piece 

precisely. For example, in Fig. 5, the neighbor chunks of object x are free. We can merge these free pieces from 

chunk number 5 to 15 to form a larger contiguous free piece after object x was removed. 

l  Merging 

By testing the bit vector, it is easy to determine whether a chunk is free or not. The main difficulty in 

merging is how to determine the size of neighbor free piece. The straightforward method is sequential and 

exhausted testing from the first free chunk which is next to the removed object to the first used chunk. The time 
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complexity is O(n). This approach is efficient in case of free pieces with small size, but it is inadequate for those 

free pieces with extremely large size. 

Here, we introduce another efficient merging method, called front-rear hashing, in which two hash tables 

are used: one is front hash table and the other is rear hash table. Each free piece must be hashed into the front 

hash table with the first free chunk number, and hashed into the rear hash table with the last free chunk number. 

The main idea of front-rear hashing method is that we can retrieve a free piece by looking up the front hash table 

(with the first free chunk number) or by looking up the rear hash table (with the last free chunk number). The 

node structure shown in Fig. 4(b) must be augmented with two additional fields to store the linked list 

information used in both hash tables, as shown in Fig. 4(c). In Fig. 5, we use an example to illustrate the merging 

flow and describe it as follows:  

1. The object x was removed from the web proxy, and then the free piece (8, 11) was released. The bit vector 

corresponding to this object x has to be reset to “0”. This step costs only O(1) time. 

2. Left merging: First, the chunk next to the first chunk of object x (i.e., chunk 7) must be tested. If chunk 7 

is in use, we can skip this step. Otherwise, chunk 7 must be the last chunk of some free piece, and then we 

look up the rear hash table with the chunk number 7. In this example, we can find the free piece (5, 7) in 

the rear hash table. Note that, to keep the data consistency between these two hash tables, if the free piece 

(5, 7) was removed from the rear hash table, its corresponding node hashed with chunk number 5 in the 

front hash table must be removed at the same time. Finally, after removing the free piece (5, 7) from the 

maximum-heap, the free piece (8, 11) can be merged with (5, 7) to form a larger new free piece (5, 11). In 

this step, under the use of adequate hash function, the expected time to search for a node in the hash table 
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is O(1), and the time to remove a node from the maximum-heap is O(lg n). Thus, the total cost is roughly 

2×O(1)+O(lg n)=O(lg n) in the left merging. 

3. Right merging: After left merging, the chunk next to the last chunk of object x (i.e., chunk 12 in this 

example) should be tested, and then the following operation is the same as the left merging. The only 

difference is that the front hash table should be looked up with the chunk number 12 in the right merging. 

In this example, we can find the free piece (12, 15) in the front hash table, and merge it with the new one 

obtained in left merging to form a new free piece (5, 15). The time cost is the same as that in Step 2. 

4. After left and right merging, maybe we can receive a larger free piece than the removed object. We have 

to hash this new free piece to both hash tables with the first chunk number and the last chunk number 

respectively, and insert it into the maximum-heap. This step also costs 2×O(1)+ O(lg n)=O(lg n) time, in 

which O(1) is for hashing operation and O(lg n) is for heap insertion operation. 

In summary, the running time of the proposed object management is roughly O(lg n) time complexity. It is more 

efficient than the use of sequential test in merging flow (i.e., O(n)). 

 

 

 

 

 

 Figure 5: Front-rear hashing method. Dashed-line represents the search for a node in hash 
tables, and solid-line represents the insertion into hash tables. 
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4.5 Recovery 

To make our system robust, we must append sufficient information to object metadata. For example, if a 

piece (s, t) was allocated to the object x, the chunk numbers s and t must be appended to the metadata of object x, 

and then write object and metadata to disk. In case of crash, after the system reboots, the bit vector used in our 

method can be recovered by scanning the entire UNIFIED file. At the same time, the maximum-heap, and both 

hash tables are also rebuilt. Clearly, there is no overhead to prevent system crash in our method. 

4.6 Comparison 

Unlike buddy system, which suffers from internal fragmentation, our proposed front-rear hashing can 

manage space dynamically and precisely with a competitive performance O(lg n). Without internal 

fragmentation, the entire space can be utilized effectively in our method. 

The idea behind our method is very simple, and the similar object-packing techniques have been proposed 

in [3, 4, 5, 7]. Unlike these object-packing techniques, which only pack a part of objects into one file, our 

method packs all objects into one file with a dynamic and precise space management. Thus, all open/close and 

delete system calls can be eliminated completely. In addition, the use of both single R/W scheme and cluster 

write further improve the proxy performance by reducing the number of read and write operations and 

optimizing the write operations, they are absent from the previous work. 

5. Experimental Results 

We had implemented the proposed UNIFIED object management and embedded it into Squid-2.3. For 

verifying the efficiency of our method, we destine the competitive Squid-2.4, which performance is much better 
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than Squid-2.3, as the comparison target. 

To measure how the proxy performance depends on the equipped hard disk, we offer two suits of test 

machines. One is low-end test and the other is high-end test. (1) In low-end test, the web proxy is tested on the 

x86 PC with a 600 MHz Pentium III processor running FreeBSD 4.1. The proxy machine is equipped with 

256MB memory and a 20GB Seagate 7,200 RPM Ultra ATA/100 IDE (ST320414A) disk. The sizes of memory 

cache and disk cache are configured as 100MB and 10GB respectively. (2) In high-end test, the web proxy is 

tested on the x86 PC with two 600 MHz Pentium III processors running FreeBSD 4.1. The proxy machine is 

equipped with 1GB memory and five 9GB IBM 10,000 RPM Ultra2 SCSI disks. The sizes of memory cache and 

disk cache are configured as 300MB and 10GB respectively. In our system, these five disks are configured in 

RAID0 mode, and in Squid-2.4, we configure that each cache directory is 2GB size on each disk. 

In the following discussions, we use the number of disk I/O operations, average hit time, average miss time, 

average response time and peak throughput as the criteria to compare Squid-2.4 to our system (i.e., Squid-2.3 

embedded with our proposed UNIFIED object management). In this paper, we concentrate on the performance 

of disk I/O. We do not modify the replacement strategy, and we use the same LRU replacement as Squid. Thus, 

both Squid-2.4 and our system have the same hit ratio, so we do not consider the hit ratio here.  

5.1 Disk I/O operations 

Table 1 shows the number of open, close and delete operations executed in Squid for various configurations 

of request rate. We measure the affordable request load of Squid-2.4 tested in low-end and high-end test are 

50~60 req/sec and 170~180 req/sec respectively. In our system, because all objects are stored in a single file, all 

open, close and delete system calls can be eliminated completely. 
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Table 2 shows how read and write operations can be reduced in our system. The key observation is that 

with the use of single-read/write scheme, our system further reduces roughly 50% of read operations and 63% of 

write operations for various request rates in both tests. As expected, from the data shown in Table 1 and Table 2, 

the proposed UNIFIED object management can dramatically reduce the number of disk I/O operations. 

 

 

 

 

5.2 Average Hit Time 

The hit time measured by Polygraph client is the elapsed time from the request submission to the receipt of 

reply data, where this request is a hit in web proxy. Because the read operation is on the critical path in the case 

of cache hit, this criterion can be used to characterize the read performance of web proxy. Figure 6 shows the 

average hit time of Squid-2.4 and our system in both test environments. From this figure, we summarize the 

most important aspects. 

Table 2: The number of read and write operations executed in Squid-2.4 and our system.  

Squid-2.4 Our Squid-2.4 Our
10 req/sec 534,704     255,763     4,318,921    1,575,083    
20 req/sec 976,325     468,838     4,588,152    1,691,836    
30 req/sec 1,208,030  618,340     4,877,634    1,781,951    
40 req/sec 1,588,713  808,123     5,281,763    1,987,364    
50 req/sec 1,931,362  996,848     6,520,977    2,381,317    
100 req/sec 3,454,337  1,796,287  8,027,956    2,930,528    
120 req/sec 3,806,434  1,906,340  9,781,763    3,573,648    

read write
Squid-2.4 Our Squid-2.4 Our

50 req/sec 1,844,889  809,374     6,608,094    2,411,219    
100 req/sec 3,379,529  1,622,303  8,228,432    3,005,464    
150 req/sec 4,305,185  2,124,848  10,814,209  3,955,914    
170 req/sec 4,514,545  2,193,743  12,871,436  4,638,126    
200 req/sec 4,705,627  2,350,592  14,005,715  5,126,464    
250 req/sec 5,683,479  2,748,622  19,635,487  7,256,498    

read write

(a) Low-end test. (b) High-end test. 

Table 1: The number of open, close and delete operations executed in Squid. The affordable 
request load of Squid-2.4 in low-end test and high-end test are 50~60 req/sec and 
170~180 req/sec, as shown in gray row. 

(a) Low-end test. (b) High-end test. 

open close delete
10 req/sec 1,830,968  1,830,967  1,002,896    
20 req/sec 2,108,715  2,108,715  1,182,368    
30 req/sec 2,400,413  2,400,413  1,204,749    
40 req/sec 2,894,680  2,894,680  1,409,723    
50 req/sec 3,378,287  3,378,287  1,659,489    
100 req/sec 4,726,937  4,726,937  2,206,019    
120 req/sec 5,224,545  5,224,545  2,698,164    

open close delete
50 req/sec 3,220,714  3,220,714  1,691,382    
100 req/sec 4,627,888  4,627,888  2,281,725    
150 req/sec 6,080,883  6,080,883  3,235,120    
170 req/sec 6,683,492  6,683,492  3,697,432    
200 req/sec 7,477,177  7,477,177  4,404,863    
250 req/sec 8,800,143  8,800,143  5,718,264    
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 First, the average hit time measured in low-end test is much higher than that measured in high-end test. 

This is because the performance of disk used in low-end test (one IDE disk) is much poorer than the 

performance of disk used in high-end test (five SCSI disks). Second, in all cases depicted in this figure, the hit 

time goes up with the request rate. Once the web proxy gets busy, disk I/O can become the bottleneck. The hit 

time increased sharply when the request load approaches the delivering limit of web proxy. If the hit time is too 

high such that the entire test cannot be finished, that implies the web proxy cannot afford to deliver such request 

load. Third, because the single-read scheme shortens the elapsed time by reading data from the allocated buffer 

instead of the disk, our proposed object management can improve average hit time dramatically. The speedup of 

average hit time is defined as speedup=HTSquid/HTOur, where HT is hit time. In the low-end test, the speedup is 

from 6 to 22 times, and in the high-end test, the speedup is from 2 to 9 times. The key observation is that the 

proposed method is effective in both tests, low-end test especially. 

5.3 Average Miss Time 

The miss time measured by Polygraph client is the elapsed time from the request submission to the receipt 

of reply data, where this request is a miss in web proxy. To simulate real-world conditions, PolyMix-3 introduces 
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an artificial delay on the server side. The server delays are normally distributed with a 2.5 sec mean and 1 sec 

deviation [12]. These delays play a crucial role in creating a reasonable number of concurrent “sessions” in the 

cache. Because the write operation is on the critical path in the case of cache miss, this criterion can be used to 

characterize the write performance of web proxy.  

 

 

 

 

 

 

The impact of request load on the average miss time is shown in Figure 7. An interesting variation in the 

degree of miss time reduction is observed among the data in this figure. The average miss time of our system is 

not better than that of Squid-2.4 in case of proxy with light load (e.g., 10~20 req/sec in Fig. 7(a), 50~150 req/sec 

in Fig. 7(b)). This is because traditional UNIX systems use the block buffer cache to minimize disk I/O 

operations by caching recently accessed disk blocks in memory. To eliminate most write operations and also to 

reorder the writes in a way that optimizes disk performance, the UNIX buffer cache is primarily write-back (or 

write-behind). The write operation is finished when OS copies the write data from user buffer to block buffer 

cache, and then these data would be written to the disk at a later time. This write-back scheme is similar to the 

copy function used in our single-write scheme, in which the data retrieved from the server would be stored in the 

allocated buffer temporally. Thus, when the proxy is in light load, the use of single-write scheme does not result 
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Figure 7: The average miss time of Squid-2.4 and our system. The default network delay is 2.5 sec. 

(a) Low-end test. (b) High-end test. 



 17

in the kind of time reduction that is realized for the single-read scheme used in case of cache hit. The effect of 

single-write scheme in reducing write system calls would be pronounced when the proxy is in heavy load. This 

phenomenon can be observed from 30~50 req/sec in Fig. 7(a) and 150~170 req/sec in Fig. 7(b). 

5.4 Average Response Time 

The average response time measured by Polygraph is defined as follows: 

Average response time=(average hit time×HR)+(average miss time×MR), 

where HR is the hit ratio and MR is the miss ratio. Figure 8 shows the average response time of both Squid-2.4 

and our system. We observe the improvement of response time depends on the request load. In case of light 

request load, our proposed UNIFIED object management does not exhibit the effect on improving the response 

time. By contrast, in case of heavy request load, our method is beneficial to alleviate the disk I/O overhead. The 

experimental results show that the affordable request load of Squid-2.4 are about 50~60 req/sec and 170~180 

req/sec in low-end and high-end test respectively. In low-end test, our system results in roughly 3.5 times 

speedup of response time under 50 req/sec affordable request load. Similarly, in high-end test, the speedup of 

response time is about 1.5 times under 170 req/sec affordable request load. 
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5.5 Peak Throughput 

The throughput of web proxy is defined as the number of requests serviced per second. Table 3 shows the 

impact of UNIFIED method on peak throughput. As expected, in conventional Squid, throughput goes up with 

the efficiency of the equipped disks. Even though the DISKD was used to improve disk I/O performance, 

Squid-2.4 only affords to deliver 50~60 req/sec and 170~180 req/sec in low-end and high-end test respectively. 

Compared to Squid-2.4, our system can afford to deliver 120~130 req/sec and 250~300 req/sec in low-end and 

high-end test respectively. An increasing of 127% and 57% in peak throughput for two tests can be achieved by 

using the proposed UNIFIED object management. 

 

 

 

6. Conclusions 

As the tremendous growth of WWW has significantly contributed to the network traffic on the Internet, the 

demand for a web proxy with high performance is increasing. In this paper, we destine Squid as our target web 

proxy and identify the performance bottleneck by analyzing characteristics of workload obtained from the test of 

Squid. We then propose an object management, called UNIFIED, that stores all objects in a single file. For 

portability, the proposed method can be implemented at user-level (application-level) without modifying the 

standard UNIX system and UFS. 

Except all open, close and unlink (delete) system calls can be eliminated completely, the UNIFIED object 

Table 3: The peak throughput of both Squid-2.4 and our system in two tests. 

low-end test high-end test
Squid-2.4 50~60 170~180

Our 120~130 250~300
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management employs several techniques to boost proxy performance. The single-read/write scheme and cluster 

write are introduced to further reduce the number of read/write operations and improve the write performance. 

We also develop a dynamic space management, named front-rear hashing, which can manage space dynamically 

and precisely with a competitive performance O(lg n). Not only used in web proxy, we may apply the front-rear 

hashing to other appliances that need space management. 

We compare our method to previous work and indicate the difference among these methods. The proposed 

method was implemented and embedded into Squid-2.3. Instead of traditional trace-driven simulation, we use an 

industry-wide benchmark tool, i.e., Polygraph 2.5.4 with Polymix-3 workload, to evaluate our system 

realistically. We offer two suits of test machines. One is low-end test, in which the web proxy is equipped with 

one IDE disk, and the other is high-end test, in which the web proxy is equipped with five SCSI disks. The 

experimental results show that our proposed UNIFIED object management can reduce roughly 50% of read 

operations and 63% of write operations for various request rate while all open, close and delete operations are 

eliminated completely. In low-end test, our system results in roughly 3.5 times speedup of response time under 

50 req/sec affordable request load and an increasing of 127% in peak throughput. Similarly, in high-end test, the 

speedup of response time is about 1.5 times under 170 req/sec affordable request load, and an increasing of 57% 

in peak throughput would be achieved. Because the proxy performance is severely constrained by disk efficiency, 

our method is more beneficial for the web proxy equipped with the inefficient disk.
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