Empirical Studies of Collective Communication in
Heterogeneous Cluster Systems

Li-Ru Chen
Department of Computer Science and Information Engineering
National Chung Cheng University

Pangfeng Liu
Department of Computer Science and Information Engineering
National Taiwan University
pangfeng@csie.ntu.edi.tw

August 1, 2002

Abstract

All-to-all personalized communication is a very important collective communication pat-
tern in high performance computing applications. The communication pattern is regular and
can be efficiently implemented in a homogeneous cluster system. However, due to economical
consideration, in today’s high-performance cluster computing environments, heterogeneity is
very common and processors could have very different computation and communication profile,
even in the same cluster. As a result new algorithms must be deployed in order to achieve good
communication efficiency in heterogeneous environments. This paper discusses scheduling al-
gorithms for Heterogeneous Networks of Workstations (so called HNOW) systems, and designs
simulators to conduct experiments on them. We want to make communication events with
all-to-all personalized and all-to-some communication efficiently scheduled, and the final goal
is to reduce the completion time of the communication schedule for heterogeneous networks of
workstations.

1 Introduction

With the speed of microprocessors increasing and cost decreasing, high-performance workstations/PCs
have become the building blocks of choice for high-performance parallel computing systems. While
traditional parallel machines typically exploit custom high-performance networks, modern commod-
ity networks (such as Fast Ethernet, ATM, HiPPI, Servernet, and Myrinet) are becoming widely
available at a reasonable cost. High performance parallelism is achieved by dividing the computa-
tion into manageable subtasks, and distributing these subtasks to the processors within the cluster.

These off-the-shelf high-performance processors provide a much higher performance-to-cost ratio
so that high performance clusters can be built inexpensively. In addition, the processors can be
conveniently connected by industry standard network components. For example, Fast Ethernet
technology provides up to 100 Mega bits per second of bandwidth with inexpensive Fast Ethernet
adaptors and hubs. The conjugation of high-speed networks and high-performance microprocessors
makes networks of workstations/PCs (so called NOW) appealing vehicles for cost-effective parallel
computing. As a whole, clusters are gradually becoming an alternative to MPPs and supercomput-
ers in many areas of applications [1].

Most of the literature on cluster computing emphasizes on homogeneous cluster — a cluster con-
sisting of the same type of processors. However, we argue that heterogeneity is one of the key issues
that must be addressed in improving parallel performance of NOW. Firstly, it is always the case
that one wishes to connect as many processors as possible into a cluster to increase parallelism
and reduce execution time. Despite the increased computing power, the scheduling management of
such a heterogeneous network of workstation (HNOW) becomes complicated since these processors
will have different performances in computation and communication. Secondly, since most of the
processors that are used to build a cluster are commercially off- the-shelf products, they will very
likely be outdated by faster successors before they become unusable. Very often a cluster consists
of “leftovers” from the previous installation, and “new comers” that are recently purchased. The
issue of heterogeneity is both scientific and economic. Due to the commodity nature of workstations
and networking equipments, LAN environments are gradually becoming heterogeneous. The het-
erogeneity could be due to the difference in processing speed and communication capability of the
workstations, or coexistence of multiple network architectures or communication protocols. There-
fore, in today’s high-performance cluster computing environments, heterogeneity is common and
its extent will continue to grow in the future. This trend is forcing networks of workstations to be
redefined as Heterogeneous Networks of Workstations (HNOW).

The collective communication, where all processors contribute data to get a result that may
arrive at one or all processors, provides important functionality for many applications, and thus
efficient implementations of the collective communication is crucial for achieving maximum perfor-
mance in message-passing systems.

All-to-all personalized communication is common in high performance computing applications.
For example, let us consider the matrix transposition problem [2]. At the beginning, each row of
a two-dimensional matrix is distributed among all processors. Since now the transposed matrix
would its columns distributed among all processors, each processor must use all-to-all personalized
communication to send different data to all the processors.

2 Problem Description

All-to-all personalized communication is common in HPC application, such as most noticeable
matrix transposition and the fast Fourier transform, etc [3]. For all-to-all personalized communi-
cation,each node sends different messages to each of the other nodes. The communication pattern
is regular and can be efficiently implemented in a homogeneous cluster system where all processors
have similar communication and computation capabilities.

For all-to-all personalized communication, each node sends different messages to each of the
other nodes. This is very different from the all-broadcast operation, in which each node in the
system sends the same message to all the other nodes. The all-to-all personalized communication
is also different from the scatter operation, in which one node sends different messages to each of
the other nodes. We can think that all-to-all personalized communication is equal to all scatter —
each node scatters different messages to all the others.

Our model allows each node to participate a sending and a receiving operation at the same time,
but does not allow multiple sending or receiving [2]. When a node sends a message to another node,
or receives a message from another node, both are treated as communication events. As a result
for a P-node system, there are P? communication events for all-to-all personalized communication.
The message lengths of all the communication events are not necessarily the same, and consequently
will not require the same amount of time to finish. In order to reduce the completion time of the
communication schedule, i.e. the completion time of the last communication event, we must make
all the communication events efficiently scheduled. We can know that the completion time of the
communication schedule cannot be less than the sum of sending times or receiving times for any
processor.

The scheduling problem could be complicated due to the presence of servers in the systems, which
will incur a lot of traffics. For example, there could be WWW or ftp servers in the cluster, which
will contribute a large amount of traffics and cause hot spots for the system. In addition, under
large variation of network conditions, run-time load cannot be determined in advance, therefore
it is important to consider the case that the transmission times are very different, even when the
processors are homogeneous. We would like to find not a fixed schedule, but one that is capable of
adapting to changing network conditions.

The scheduling management of such a heterogeneous network of workstation (HNOW) becomes
complicated since these processors have very different performances in computation and commu-
nication. Heterogeneity of a cluster complicates the design of efficient collective communication
protocols as a result. When the processors send and receive messages at different rates, it is diffi-
cult to synchronize them so that the message can arrive at the right processor at the right time for
maximum communication throughput. On the other hand, in homogeneous NOW every processor
requires the same amount of time to transmit a message. For example, it is straightforward to
implement a broadcast operation as a series of sending and receiving messages, and in each phase
we double the number of processors that have received the broadcast message. In a heterogeneous
environment it is no longer clear how we should proceed to complete the same task.

Our problem can be formulated as follows: Given a matrix of communication costs from source
to destination processors, find a good communication schedule that minimizes the total all-to-all
personalized or all-to-some communication time. The system model allows a processor to participate
a sending and a receiving operation simultaneously, but does not allow multiple sending or receiving.
We will describe our experimental approaches on this problem in the following sections.

3 Algorithms

There are many related scheduling algorithms for toal exchange, or all-to-all personalized commu-
nication in the literature, which will be described as follow. We will also describe our randomized
algorihtms for all-to-all personalized and all-to-some communication.

3.1 Matching-Based Algorithm

We describe a simple matching-based algorithm that scedules the all-to-all personalized borad-
cast [2]. The communciation model allows a processor to participate a sending and a receiving
operation at the same time, but does not allow multiple sending or receiving. We construct a bipar-
tite graph with P vertices on both sides. The vertices on the left side are senders, and the vertices
on the right side are receivers. The edge from V; on the left side to V, on the right side is assigned
a weight, which is equal to the cost of the communication from P, to P.. In each round of the
algorithm, we find a maximum perfect matching in the bipartite graph and remove the edges of the
matching from the graph. Since those edges removed are part of a matchiing, there is no contention
among these P communication events. Since there is a well-known algorithm for finding a maxi-
mum weight complete matching with time complexity O(P?) [4], and the schedule has P rounds,
the total time complexity for finding all the maximum weight matchings is O(P?*). The inituition
of the matching-based algorithm is that it is likely that the communication events scheduled within
the same round have similar communication times.

3.2 Greedy Algorithm

We also describe a greedy algorithm for scheduling all-to-all communication [2]. Firstly, the com-
munication events of each sender node are ordered in decreasing order of the communication times.
In each round we find a destination node for a sender from its ordered list of receiver. The chosen
destination must satisfy the following two conditions — the destination is the first node in its ordered
list that has not been selected by the sender, and the destination is not the destination of the other
senders in the same round. If we cannot find the destination for a sender it will be idle in this round,
but has the highest priority in picking the destination in the next round. If there is no sender idle
in this round, the last sender will be the first node to pick the destination node in next round. The
complexity of the greedy algorithm is O(P3?).

3.3 Open Shop Algorithm

We also describe the open shop algorithm in this section [2, 5]. The algorithm maintain three data
structures — a receiver set for every sender, and two arrays for the available times of the senders
and receivers.

The open shop algorithm first finds the earliest sender that can send messages in future, then
it scan the receiver set of the sender to find the destination that can receive the message at the
earliest possible time. If all of the destination nodes in the receiver set are busy, the sender will sit

idle. If there are two or more senders that are available at the same time, we select any of them
at random. The complexity of this algorithm is O(P?) since there are P? communication events to
schedule, and we take O(P) time to select a communication event.

3.4 Caterpillar Algorithm

The total exchange scheduling problem is NP-Complete [2, 6, 7, 8] , therefore it is unlikely that we
could find an optimal algorithm, hence various heuristic were developed to give reasonalbly good
scheduling. One of these heuristic algorithm is called caterpillar algorithm [9], which is widely used
in tightly coupled homogeneous systems.

We assume that there are N nodes in the system, and the caterpillar algorithm generates a
schedule with NV steps. In step j (0 < j < N), each node P; (0 < i < N) sends a message to
Plit jymodn ;s as shown in Table 1. From now on we will illustrate these scheduling algorihtms by their
corresponding timing diagrams, as shown in Table 1. Each processor will send messages to all the
others according to the indeices in its column.

PR P P P P

o 1 2 3 4
12 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

Table 1: The sending sequence from the caterpillar algorithm for all-to-all personalized communi-
cation.

The caterpillar algorithm can also be used in all-to-some problem. The order that each node
sends messages is increasing with labels of nodes, as shown in Table 2.

Assume that there are 10 source nodes and 5 receiver nodes — { P3,Py,Ps,Ps, and P;}.

P P P P P P P P Ps Py
3 3 3 3 4 5 6 7 3 3
4 4 4 4 5 6 3 4 4
5 5 5 o5 6 7 3 4 5 5
6 6 6 6 7 3 4 5 6 6
T 7T 7 7 3 4 5 6 17 7

Table 2: The sending sequence from the caterpillar algorithm for All-to-some personalized commu-
nication.

3.5 Randomized Algorithms

Similar to the caterpillar algorithm, the randomized algorithm we would like to test simply de-
termine sending sequence by random. The intuition is that by randomly assigning the order the

5

processors sending messgaes, we will not have messages queued for a single processor simutaneously.

Random order Each node selects a receiver at random in each step.

Random _Starting Point_Baseline The Random_Starting_Point_Baseline algorithm first chooses
a random permutation for each processor as the starting point in the timing diagram (see
Table 3 for an illustration). After we decide the first destination, each node then follows the
order as in the caterpillar algorithm.

e All-to-all personalized communication
In the first row, we randomly permute {0,1,2,3,4} and place the result {0,4,3,2,1} in the
first row of the timing diagram. Then we following the caterpillar pattern.

R P P P P

0o 4 3 2 1
10 4 3 2
2 1 0 4 3
3 2 1 0 4
4 3 2 1 0

Table 3: The sending sequence from the Random_Starting_Point_Baseline algorithm for all-to-all
personalized communication.

e All-to-some personalized communication
The same random algorithm can be applied on all-to-some problem with a simple modi-
fication. Assume that there are 10 source nodes and 5 receiver nodes — { P3,Py,Ps, P, and
P;}. Each node first selects the first receiver at random, and then follow the caterpillar,
as shown in Table 4.

P P P P P P P P Ps Py
5 6 7 4 3 6 3 5 4 5
6 7 3 5 4 T 4 6 5 6
T 3 4 6 5 3 5 T 6 7
3 4 5 7 6 4 6 3 7 3
4 5 6 3 7 5 T 4 3 4

Table 4: The sending sequence from the Random_Starting_Point_Baseline algorithm for All-to-some
personalized communication.

One_Random _Starting Point_Baseline This algorithm is very similar to the previous Ran-
dom_Starting_Point_Baseline. First we select a random permutation of all processors and
place it in the first column of the timing diagram (Table 5). The we cyclicly shift the first
column and place the result in the second column. It is equivlent to the caterpillar order, but
only in horizontal direction. Please refer to Table 5 for details.

e All-to-all personalized communication:
We place a random permutation of {0,1,2,3,4} into the first column ({4,0,3,1,2} in this
case), then we follow the caterpillar horizontally. Refer to Table 5 for details.

PR P P P P

4 0 1 2 3
o 1 2 3 4
3 4 0 1 2
12 3 4 0
2 3 4 0 1

Table 5: The sending sequence from the One_Random_Starting Point_Baseline algorithm for all-to-
all personalized communication.

e Similarlly this algorithm can be modified to solve the all-to-some problem. Let’s assume
that there are 10 nodes in the system and the receiver nodes are {P3,P;,P5,Ps,P;}. In
the first column we place a random permutation ({6,3,7,5,4} in this case), then we follow
the caterpillar horizontally.Refer to Table 6 for details.

P P P P P P P P Ps Py
6 7 3 4 5 6 7 3 4 5
3 4 5 6 7 3 4 5 6 7
7T 3 4 5 6 7 3 4 5 6
5 6 7 3 4 5 6 17 3 4
4 5 6 7 3 4 5 6 7 3

Table 6: The sending sequence from the One_Random_Starting_Point_Baseline algorithm for All-
to-some personalized communication.

4 Our Experimental Approach

4.1 Communication Model

Our model allows each node to participate a sending and a receiving operation at the same time, but
does not allow multiple sending or receiving [2]. For all-to-all personalized communication and all-
to-some communication, we design simulators to execute four scheduling algorithms - including Ran-
dom order, Caterpillar order, Random_Starting_Point_Baseline, One_Random_Starting_Point_Baseline.

In our model, each node has a sending overhead and receiving overhead [10, 11]. The sending
overhead represents the initial start-up time, which is the time interval between a message is moved
from its local memory to the network; and the receiving overhead is a time interval from a message
is moved from local network buffer to its local memory. The network latency is the overhead for a
message to travel through the network. The communication time is the sum of the sending overhead
of the sender, the network latency, and the receiving overhead of the receiver. And we assume that

7

the communication time for local transmission is zero. For ease of notation we adopt the following
terminologies.

S.0. Sending overhead of the sender.
L Network latency.

R.O. Receiving overhead of the receiver.

4.1.1 Synchronous model

We will consider two communication models — synchronous and asynchronous model.

Synchronous model
Each sender must wait until the message has been received by the current receiver, then the
sender can start sending another messages to other receivers. The synchronous model is shown
Figure 1.

[SO |

R1.O

5.0

R2.0

Figure 1: The communication behaviors of the synchronous model.

Asynchronous model
In the asynchronous model the sender can send another messages to the other receivers just
after the sending overhead, that is, it does not need to wait until the receiver complete receiving
the message. The asynchronous model is shown Figure 2.

4.2 Implementation of the Simulators

The simulator first, according to various scheduling algorithms described earlier, determines an
order among the destination by which each sender sends messages to, then the simulator calculates
the final completion time for each schedule. The simulation details are as follows:

R1.0 |

R2.0

Figure 2: The communication behaviors of the asynchronous model.

4.2.1 Schedule generation

The simulator goes through the following steps to obtain a schedule.

1. We first obtain the number of receivers. There are two input parameters — the total number
of nodes and the number of receiver nodes in the system. If the communication pattern is
all-to-all personalized communication, the number of receivers is equal to the total number of
nodes. If the pattern is an all-to-some and there are 100 nodes in the system, then we select
10% of 100 nodes as receivers. In addition, for all-to-some, we must choose the receivers from
the cluster nodes.

2. Assign sending and receiving overhead of each node, and determine the value of the network
latency.

3. Determine the order that each node sends messages from the given scheduling algorithm. This
step may require random number generation.

4.2.2 Schedule simulation

The simulator does through the following steps to calculate the total communication time. For a
synchronous model simulation we need to do the following:

e Each sender must wait until the message is received by the current receiver, then each sender
can resume sending messages to the other receivers.

e For a P node system we use two P-element arrays — sendavail and recvavail, to maintain the
available time of the senders and receivers.

e We use event trigger to find the sender that can participate in future send operation at the
earliest time. If the receiver that the sender wants to send a message is busy, the sender sits
idle. We can know if the receivers are busy by the recvavail array. If the receiver that the
sender wants to send the message is idle, the message is scheduled. Then we update sendavail

and recvavail. The process repeats until all of the senders have sent messages to all of its
receivers. The time that the last communication event is completed is the completion time of
the communication schedule.

Notice that If there are two or more senders that can participate in future send operation at the
earliest time, we select any of them at random. But we may have different completion times of the
communication schedule, despite the fact that the order that each node sends messages is fixed. For
example, in Figure 3 both P; and P, want to send messages to P, at the same time [2]. The choice
of letting whether P, or P, to be scheduled first will affect the final completion times. Similarly in
Figure 4 P, and P, want to send messages to P, at the beginning. The completion times will be
different,depending on which processor we choose as the sender.

K
[
(o]

s
[5],0
B

[~

H
EEEASE
N
—
EEasE
(-
ElEE

=]

o
[] [=]=]

[[~

(=[]

o o [

(=] < ||

[=]
=

1]

Figure 3: Fixed_order_contention_examplel

For an asynchronous model simulation we need to perform the following:

e For asynchronous model, after the sending overhead of each sender, each sender can send
messages to the next destination. Thus, when each sender sends the messages, we know when
the messages arrive at the receivers and we just wait until then. In contrast, in synchronous
model each sender cannot know when the message is received and when it can send the next
message to the next receiver.

e For asynchronous model, when each sender sends the messages to all of the receivers, we can
know when the messages arrive at the receivers. For each receiver, we use event trigger to
find the message that will arrive in the future at the earliest time to receive it. We repeatedly
use event trigger until all the messages from all senders are received by all receivers.

10

o

—
E:o
|

|

| o |

o
[\

[~]
—-]
[~]
| =

Figure 4: Fixed_order_contention_example2

e The completion time of the last receiver that finishes receiving all the messages is the com-
pletion time of the communication schedule.

In Figure 5 Py wants to send messages to the set { Py, P, P3} in order. The sending overhead of
P, is 2 and the network latency is 1.

5 Experimental Results and Observation

We describe our experimental results in this chapter. First we describe the simulation parameters
and the terminology to simply the dicsussion.

The simulation parameters are determined as follows: We assume that, for every node, the send-
ing overhead and receving overhead are the same. Then we divide these nodes into three categories
according to its communciation costs, which are 1, 5 and 10. We also assume that the network la-
tency is set to 1. For ease of explanation we use RSPB to denote the Random _Starting_Point_Baseline
algorithm, and ORSPB for One_Random _Starting_Point_Baseline.

5.1 Experiment Guildlines

We classify our experiments into four categories, as shown in Table 7. We consider both all-to-
all personalized communication and all-to-some scatter, and both synchronous and asynchronous
model. For each of these four combinations we run simulation for all four algorithms and compare
their schedules.

11

t=0 t =3, the msg arrives at P,

t=35, the msg arrives at P,

S.0 t =7, the msg arrives at P,

5.0

_
_
_
L]
|
T
_
_
_
_
[

_
_
_
L]
_
1
_
_
_
_
_

I

Figure 5: An example of asynchronous model simulation.

We would like to compute the completion time of the communication schedule with each schedul-
ing algorithm. First, we assign simulation parameters (the sending and receiving overhead of each
node) to the system. The we generate the schedule according to different algorithms. Note that
except for the caterpillar algorithm, each scheduling algorithm do require computation to determine
the sending order.

In general we experiment with each scheduling algorithm for 100 times and compute the average
completion time of these 100 runs. For caterpillar order the order is fixed. However, if there are two
senders that could send messages to the same receiver at the same time, we select one of them at
random. As a result the completion time from the caterpillar algorithm is also a random variable.
If we select a bad sender it may delay some critical nodes and result in longer completion time. By
taking the average of a Irage number of runs we hope to get a more reliable completion time.

Let N be the number of nodes in the system. For all-to-all personalized communication, we
experiment with clsuter size N = 30, 40, 50, 60, 70, 80. For all-to-some communication, we
experiment with N = 100, and select 10%, 20%, 30%, 40%, 50%, 60% of these 100 nodes as
receivers.

5.1.1 Synchronous all-to-all personalized communication

Figure 6 plots the relation between the average synchronous all-to-all personalized communication
completion time and the number of total nodes in the system for all four algorithms. Figure 7 plots
the variances of synchronous all-to-all personalized communication of four scheduling algorithms.

Observation From Figure 6, the completion time of Random is larger than the completion time
of ORSPB. The completion times of RSPB and caterpillar order are almost the same and smaller
than the completion time of ORSPB.

12

1600 T T

Catepillar

1400

1200

1000

Finished Time

800

600

400 ! ! ! ! ! !
30 35 40 45 50 55 60 65 70 75 80

number of total nodes

Figure 6: The average completion time of synchronous all-to-all personalized communication of four
scheduling algorithms.

60 T T
Random —+—
RSPB —=—
ORSPB —*—
Caterpillar —&—

variances

30 35 40 45 50 55 60 65 70 75 80
number of total nodes

Figure 7: The variances of synchronous all-to-all personalized communication of four scheduling
algorithms.

13

Communication Pattern | Algorithm Model
Random order
Caterpillar order
Random _Starting_Point_Baseline Synchronous
One_Random_Starting_Point_Baseline
Random order

Caterpillar order

Random _Starting_Point_Baseline Asynchronous
One_Random_Starting_Point_Baseline
Random order

Caterpillar order

Random _Starting_Point_Baseline Synchronous
One_Random_Starting_Point_Baseline
Random order

Caterpillar order

Random _Starting_Point_Baseline Asynchronous
One_Random_Starting_Point_Baseline

all-to-all

all-to-all

all-to-some

all-to-some

bl e e B i e Bl

Table 7: Four groups of the experiments

Explanation For an /N node system, the sending order that each node follows has N destinations.
If there are two or more source nodes that send messages to the same node in each step, there will
be contentions. We hope that each node can send a message in each step so that no node is idle,
therefore the completion time of the communication schedule may be reduced. However, the sending
orders from Random have relatively high probabilities to have contention in each step'. If we think
of the sending orders from Random as a set, most of the set are orders with contentions in some of
the steps and very few elements of this set are without contention. Sending orders from Random
will certaily result in contentions and lengthen the completion time. In general it is possible to
reduce the completion time of the communication only when an sending order causes no contention
in every step?

5.1.2 Asynchronous all-to-all personalized communication

Figure 8 plots the relation between the average asynchronous all-to-all personalized communication
completion time and the number of total nodes in the system for all four algorithms. Figure 9 plots
the variances of asynchronous all-to-all personalized communication of four scheduling algorithms.

Observation For a given N, we observe from Figure 8 that the completion time of each of the
four scheduling algorithms is almost the same. When we try to increase IV, the completion time of
each scheduling algorithm increases proportionally.

!The probability of having at least one contention is (1 — N!/N¥) where N is the number of processors
2Nevertheless, even if there is no contention in every step, it is still possible that contention may occur since the
sending overhead and receiving overhead of each node is not the same.

14

Finished Time

900

‘ Random —+—
RSPB —*—
ORSPB —*—
Catepillar &
800
700 B
600 B
500 1
400 B
300 L L L L L L L L L
30 35 40 45 50 55 60 65 70 75 80

number of total nodes

Figure 8: The average completion time of asynchronous all-to-all personalized communication of
four scheduling algorithms.

Figure 9: The variances of asynchronous all-to-all personalized

algorithms.

variances

12 -

& I I &

T T
Random —+—

RSPB —>—
ORSPB —*—
Caterpillar —&—

40 45 50 55 60
number of total nodes

15

65

70 75 80

communication of four scheduling

1900 T T

1800 - ORSPB —%—. .4

1700

1600

1500

Finished Time

1400
1300
1200 .

1100

1000 I I I I I I I
10 15 20 25 30 35 40 45 50 55 60

sum of receive nodes(sum of total nodes:100)

Figure 10: The average completion time of synchronous all-to-some communication of four schedul-
ing algorithms.

Explanation In asynchronous model, each sender can send the next message to the next receiver
immdeiately after the current sending overhead. As a result the efficiency is not that sensitive to
whether there is contentions in the sending schedule, at least from the senders’ point of view. If
there are two or more messages waiting to be received at the same time (contention), it doesn’t have
effect on each receiver. For each receiver, it must receive these messages originally. Thus, when N
is fixed, the completion times of the four scheduling algorithms are almost the same.

Observation When we increase /N, the completion time of each scheduling algorithm increases
proportionally.

Explanation There is an order with contentions in each step, it will not cause any delay. Each
sender can still send the next message to the next receiver after the sending overhead. So, the only
factor with an effect on the completion time of the communication schedule is N.

5.1.3 Synchronous all-to-some communication

Figure 10 plots the relation between the average synchronous all-to-some communication completion
time and the number of total nodes in the system for all four algorithms. Figure 11 plots the
variances of synchronous all-to-some communication of four scheduling algorithms.

16

Catepillar —8—

variances

L L L L L L L L L
10 15 20 25 30 35 40 45 50 55 60
sum of all receiver nodes(sum of total nodes:100)

Figure 11: The variances of synchronous all-to-some communication of four scheduling algorithms.

Observation From Figure 10, we know that the completion time of the catepillar order is larger
than the others and the completion times of RSPB and ORSPB are smaller than the others. On
the other hand, the timing from RSPB and ORSPB are too close to determine which is better.

Explanation First we explain why the completion time of the catepillar order is larger than the
others. Let’s assume that we select 10% of 100 nodes as receivers. If there are 100 nodes in the
system, only Py, ~ Pgg as receivers. If we use caterpillar order as the scheduling algorithm, in each
step there will be 91 senders that want to send messages to the same receiver. That is, during the
first step, Py ~ Pgy and Pyy ~ Pyg all want to send messages to Pgg. Duing the second step, Py ~ Pyg
and Py ~ Py want to send messages to Pg;. That is, the caterpillar order makes it possible for
many senders to send messages to the same receiver during each step. Because each receiver can
receive most one message each time, caterpillar order causes serious delay.

Now we explain why the completion time of Random order is larger than RSPB and ORSPB.
For all-to-some communication, the number of senders is larger than the number of receivers. There
will be two or more nodes to send messages to the same node during each step. If we can distribute
these senders among the receivers evenly, it is possible to effectively reduce the completion time of
an all-to-some communication. For example, if there are 100 nodes in the system, among them only
10 are receivers. If only 10 out of 100 possible senders are sending messages to a receiver, it may be
possible to reduce the completion time. Therefore the completion time of Random order is larger
than RSPB and ORSPB since Random order does not distribute these senders among the receivers
evernly. In contrast RSPB and ORSPB do distribute senders among the receivers more evenly.

5.1.4 Asynchronous all-to-some communication

Due to the minor difference between the timing results we use a table (Table 8) to illutrate the
results. Figure 12 plots the variances of asynchronous all-to-some communication of four scheduling

17

algorithms.

pertentage as | Random order | RSPB | ORSPB | Caterpillar order
recivers

10% 992.27 992.21 | 992.76 994

20% 993.5 993.27 | 993.14 994

30% 994.84 994.83 | 993.96 996

40% 996.23 996.05 | 995.9 996

50% 997.93 997.36 | 996.41 1001

60% 999.2 998.91 | 997.78 1001

Table 8: The average completion time of asynchronous all-to-some communication of four scheduling
algorithms.

Caterpillar —8—
25 B

variances

&

0 ! & ! &

L L L
10 15 20 25 30 35 40 45 50 55 60
sum of receiver nodes(sum of total nodes:100)

Figure 12: The variances of asynchronous all-to-some communication of four scheduling algorithms.

Observation From table 8 we know that when the number of receiver nodes is fixed, the com-
pletion times of four scheduling algorithms are similar. When we increase the number of receiver
nodes, the completion time of each scheduling algorithm is almost unchanged.

Explanation We will explain when the number of receiver nodes is fixed, the completion times of
four scheduling algorithms are similar. Let’s assume that N = 100, and we select 10% of these 100
nodes as receivers. The sending overhead and receiving overhead of each node may be (1, 1) or (5,
5) or (10, 10). For each of these 100 senders, the message sent last must arrive at the last receiver
before time = (10 x 10) + 1, since there are 10 receivers, and the maximum value of the sending
overhead is 10. (plus a network latency 1). Thus, before time = (10 x 10) + 1, all messages that each
sender sends to all receivers must have arrived. For each receiver, at time = (10 x 10) +1 = 101, all
messages from each sender have arrived and are waiting to be received. For a receiver with receiving

18

overhead 10, at time = 101, it could only have received at most 10 messages. However, there are
100 senders, therefore the orders produced by four scheduling algorithms are somewhat irrelavent.
For all-to-some communciation in asynchronous model, at very early stage of the communication,
all messages that each sender sends to all receivers have arrived and are waiting to be received.
All the receivers are busy receiving messages. The orders the sender sends messages is not that
important.

Next, when we increase the number of receiver nodes, is the completion time of each scheduling
algorithm almost unchanged? Let’s assume N = 100, and we select either 10% or 20% of the 100
nodes as receivers. The difference is that all messages that each sender sends to all receivers have
arrived before time = (10 x 10) + 1 or before time = (20 x 10) + 1. For a receiver with receiving
overhead 10, it can receive most 10 sender’s messages at time = 101, or it could receive at most
20 messages at time = 201. Each receiver still needs to receive 100 sender’s messages. Although
we increase the number of receiver nodes, the number of the messages that each receiver needs to
receive is still the same, and each receiver is still busy receiving messages at very early time in
all-to-some and asynchronous model. Thus, the completion time of each scheduling algorithm is
almost unchanged.

6 Conclusion

This paper discusses scheduling algorithms for heterogeneous networks of workstations (HNOW)
systems, and designs simulators to conduct experiments on them. We want to schedule all-to-all
personalized and all-to-some communication efficiently, and the final goal is to reduce the completion
time of the communication schedule for heterogeneous networks of workstations in general.

From the experimental results we note that the completion time of all-to-all personalized com-
munication or all-to-some in asynchronous model is not very sensitive to the sending order. The
senders in asynchronous model is seldom delayed due to contention. When two senders send mes-
sages to the same receiver, each sender can send the next message after only a small period of
sending overhead because it does not need to wait until the message is received. On the other
hand, the completion time of all-to-all or all-to-some in synchronous model is sensitive to the order.
When two senders want to send the messages to the same receiver, one of them must wait until the
previous communication event finishes.

The current scope of this paper does not consider the asymmetric data transmission costs. That
is, we assume that our cost matrix is symmetric, that is, the cost of sending one message from A
to B is the same as from B to A. It is shown that the caterpillar order performs poorly in an
asymmetric cost matrix, up to a factor of O(P) from the optimal [2], where P is the number of
processors. We did not encounter such phenomenon, due to our symmetric matrix assumption. The
future work includes experimenting with asymmetric cost matrix, since this kind of communication
pattern can be easily justified when there are servers in the system, and the data volume in a request
and the corresponding reply is very different.

19

References

[1] T. Anderson, D. Culler, and D. Patterson. A case for networks of workstations (now). In IEEE
Micro, pages 54-64, Feb 1995.

[2] P. B. Bhat, V. K. Prasanna, and C. S. Raghavendra. Adaptive communication algorithms for
distributed heterogeneous systems. In Proceedings of the 7th IEEE Intnl. Symposium on High
Performance Distributed Computing (HPDC'), 1998.

[3] http://www.cacr.caltech.edu/publications/annreps/annrep95/compsci4.html.

[4] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt and Rinehart and
Winston, 1976.

[5] D.B. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for shop scheduling
problems. SIAM J. Comput., 23(3):617-632, June 1994.

6] P. B. Bhat, V. K. Prasanna, and C. S. Raghavendra. Adaptive communication algorithms for
distributed heterogeneous systems. Manuscript, Dept. of EE-Systems, University of Southern
California, May 1998.

(7] P. Brucker. Scheduling Algorithms. Springer, 1995.

[8] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish time. Journal of the ACM,
23(4):665-679, Oct. 1976.

9] L.H. Jamielson, P.T. Mueller, and H.J. Siegel. FFT algorithms for SIMD parallel processing
systems. Journal of Parallel and Distributed Computing, 3(1):48-71, March 1986.

[10] R. Libeskind-Hadas and J. Hartline. Efficient multicast in heterogeneous networks of worksta-
tions. In Proceedings of 2000 International Workshop on Parallel Processing, 2000.

[11] M. Banikazemi, J. Sampathkumar, S. Prabhu, D. Panda, and P. Sadayappan. Communica-
tion modeling of heterogeneous networks of workstations for performance characterization of

collective operations. In Proceedings of International Workshop on Heterogeneous Computing,
1999.

20

