
An Executable Literate Document (ELD) for Application System
Development

Yu-Liang Chi1 and Chien-Hua Tsai2

1Department of Management Information System
Chung Yuan Christian University, Taiwan, R.O.C.

maxchi@cycu.edu .tw
2Department of Management Information System

National Defense University, Taiwan, R.O.C.
A334589@ms48.hinet.net

Abstract

Formal software development relies upon software
requirement specifications (SRS) to translate
customer requirements to final products. Literate
documents are responsible for a communication
medium among readers in different development
phases. However, issues of document inaccuracy
and inconsistency are crucial problems. This paper
provides some perspectives of how SRS utilized
executable literate document (ELD) can be directly
linked in software development process to improve
throughput, reduce iteration, and avoid uncertainty.
The idea of this study divides application system into
two parts, ELD and necessary programming code.
ELD is an XML-based document that contains
business rules retrieved from original application
software system. Since ELD is human readable
document, user can via change ELD to easily modify
application system. Therefore, ELD is not only
software requirement document but also a
semi-application.
Keywords: user-centered, executable document,
XML

1 The Problem

Software applications are artificial results from
human. For years, there were many theories, specs,
standards, and etc. published to help software
applications development. Most of them are based
on developer-centered concepts that focus on how to
speed up developing time, clarify user requirements,
reuse exist components, and so on. One of the most
important purposes of these assisting tools is
reducing gaps between software developers and
end-user. Because developers and users belong two

different domains, it is no reason to ignore end-user
role in software development [6]. This paper
describes an approach, called executable literature
document (ELD), to involving the participation of
end-user who potentially play a key role in the whole
cycle of software development stages. Using such an
approach allows us to execute specifications directly
and improve accuracy and consistency of
applications.

The first goal of ELD is to execute specifications
directly. In previous studies, formal specification
languages (FSL) allowed executing specifications
directly via a mathematical notation used in software
development to express the functional specification
of a system [1][5][7]. The well-known FSL are
popularly used in the world, such as VDM-SL and Z
notations [2][3]. However, FSL are still a
developer-centered approach to solve problems.
ELD and FSL are different in 1) ELD is based on text
document and FSL is based on language-like
document. 2) ELD is designed for both developers
and end-users, but FSL is designed only for
developers. 3) ELD is a part of an application that
retrieved only business rules into a standalone and
modifiable document. The similar researches can be
found on US Department Of Defense (DOD)
Information Systems Agency (DISA) project [4].
DISA runs an XML registry for the Defense
Information Infrastructure (DII) at Common
Operating Environment (COE). The major benefit of
COE developers is making reusable common data
components and related specifications available to all
potential requesters. Also, business rules isolated
from systems are maintainable without original
system designer.

The second goal of ELD is to keeping accuracy
and consistency during each phases of application

development. In software development life cycle,
software requirement specification (SRS) is an early
and critical stage to collect, transforms, and deploys
knowledge for follow-on user [9]. SRS is describing
the requirements of a computer system from the
user's point of view. In general speaking, an SRS
document specifies the required behaviors and
attributes of a system. For decades, requirement
definition and requirements specification were
usually written by natural language. The issues of
them are inaccuracy in translating to continue phase
of software development life cycle. Although formal
specification language, model-based specification,
algebraic specification, and etc. improve and shorten
the conversion of each phases. However, they are
hardly understood by regular end-users. In the other
hand, ELD is a text-based document that structured
by markup language. End-users capably participate in
development life cycle not only in SRS, but also in
later maintenance. Since the structured properties of
ELD document, it also can act as same as an
executable specifications. The similar research can be
found on Guerrieri’s article [10]. Guerrieri also
utilized XML as an medium to carry software
document, but not emphasize business rules.

2 Introduction of ELD

2.1 What is an ELD

ELD, Executable literature document, introduces a
new concept and utilization of software development.
In our design, ELD broke up hierarchical architecture
of software development process; instead, ELD was
tight integral into software development process. It
has literate-rendering characteristics as usual and may
extend to contain the executable business rules, open
interface, and version control for whole life cycle of
software development process.

In Figure 1, the relationship between ELD and
other software processes is presented. Since the
potential capability of markup mechanism is obvious,
various kinds of document such as MRD, SRD, SD
and SA also can be written by markup language.
Therefore, ELD can inherent and reuse the other kind
of software document. Since ELD shared the
responsibility of business logics, the system
implementation will be relative simple. Also, the
unit and system testing can be leveraged by different
error of logic. ELD also can expand to contain the
open interface; therefore, system will transparent for
system or enterprise integration process. Currently,
ELD was concentrate on the utilization of software
design specs and system implementation.

DTD
XML format

ELD

If system
logic error

If programming
logic error

Specs embedded
to applications

Open data
interface

Open application
interface

Described by
DTD & XMLMarketing

Requirement
Definition (MRD)

System Design &
Analysis (SA/SD)

Enterprises or
System Integration

System
Implementation

Unit and
System testing

System
Requirement (RD)

Described by
DTD & XML

Described by
DTD & XML

Figure 1: The architecture of ELD in software
development life cycle

Machines can’t really read, but they can interpret

literature document. Markup mechanism simply aids
this interpretation. For enforcing machines to
understand literate document, ELD applied markup
mechanism by utilizing XML that is created by the
World Wide Web Consortium to complement the
weakness of HTML. XML promises an
internet-based, universal standard data format, and
human/machine readable markup language. Data
Type Definition (DTD) is a set of rules for document
construction. DTD rules the syntax for XML
document, such as what tag can use in document,
what order they would appear in, which tags can
appear inside other ones.

ELD utilizes both XML and DTD to well-formed
literate software document. Moreover, XML
processor aids on reading and interpreting document
into machines. XML processor loads the documents
and related DTD files, checks it follows all rules, and
builds a document tree structure that can be processed
by applications. Therefore, a machine-readable
document was generated.

2.2 ELD is an Executable Document

Based on machine-readable fundamental, an

executable document still needs the management
mechanisms to navigate and process XML formatted
document. Since the XML processor can parse the
ELD document that is also a tree-like structure,
Document Object Model (DOM) was naturally
utilized to deal with this tree object [11]0. In this
research, we utilize DOM to address the document
tree-structure issues. The DOM had an object design
that operates document as a tree-like structure. A
basic DOM object is called node that may or may not
contain its child nodes. DOM is an
application-programming interface (API) for markup
document to enhance how to build, navigate, and

process the contents of document.
In Figure 2, general requirements and business

logic are written on markup-formatted document.
XML parser then parsed markup document into
machine. In an implementation stage, for examples,
programming file does not duplicate the business
logic anymore. Instead, the software document can be
directly imported and DOM can help to access the
right actions. Since the relationship of software
document and implementation is tight integral, it
reduces the ambiguity of specs transformation and
also improves the productivity movement of software
process.

Implementation
1. Variables setting
2. GUI design
3. Programming Logic
4. Interface implementation

5. Import rules and logic

Using DOM API
to access contents
of docs

DTD

General Specs. Executable LogicAP Interface Version control Info.

…..

Software Specs.
XML Format

XML Parser

Figure 2: How ELD can be executed

3 How to Implement ELD on Software

Development

 For quickly understanding the idea of ELD, we
assume the software requirements well defined
already and then started from design software
document. A simple control system, alarm clock, is
used to demonstrate what the ELD look like. In
Figure 3, we use Finite state machine (FSM) to
address the problem domain. It includes three states:
“Reset, Alarm, and Idle”, and two events: “TimeUp
and Switch”. These states and events mix up twelve
different control situations that later fire a propriety
action. The literate software requirement document of
alarm clock control system can be written as List 1.

3.1 A n DTD for Alarm Clock Control System

Data Type Definition (DTD) is an optional
procedure for creating XML document [11]. In
formal procedure, a DTD is used to define the
elements that may be used and dictates where they
may be applied in relation to each other DTD also
help to verify the contents of XML files and to avoid

the errors. The DTD of an alarm clock control system
can be defined as List 2. In this List, DTD is clearly
defined the hierarchy of each element. For examples,
the document will start from “ALARMCONTROL”
that includes five sub elements: TITLE, STATE,
INPUTSIGNAL, EVENTLIST, and IDL. DID is also
clearly described the relationship; for examples,
“EVENT” is parent of “SWITCH” and “TIMEUP”.

List 2 was stored on a file named “alarmclock.dtd”
that will be refereed by XML file later. DTD file can
be flexibly located either on local or Internet.

Figure 3: Alarm clock control system using FSM

3.2 An DTD for Alarm Clock Control System

In this section, we follow the DTD of alarm clock
control system that defined on previous section to
create software document. This research did not
interesting on how XML editor operates; however,
several commercial XML editors were available in
markets. Also, develop a special purpose of XML
editor for editing software document is possible.

 For convenience, we separate the List 3, alarm
clock control system using ELD with two parts. The
upper part is descriptions of requirements that are not
related business logics. The lower part is about
business logics of alarm clock. Again, XML file also
as same as DTD file can be located in anywhere.
Except the markup tags, the contents and meaning in
List 3 is totally as same as List 1. In front of List 3, a
DTD file, “alarmclock.dtd”, was imported to verify
the format between DTD and XML. In the lower
part of List 3, an EVENTLIST node contained the all
business logic of alarm clock. Twelve EVENTs are
embedded between a start tag, <EVENTLIST>, and
end tag, </EVENTLIST>.

The literate software document was been created
now. An XML parser then used to parse the content
of document into a machine. XML parser API or tool
is for decoding markup tag and available in various
programming languages.

Reset Alarm

Idle

(Yes, On)

(Yes, Off) or (No, Off) (Yes, On)
or (No, On)

(Yes, On)

(Yes, Off)
or (No, Off)
or (No, On)

(Yes, Off)
or (No, Off)
or (No, On)

Event:(TimeUp, Switch)
TimeUp: Yes/No
Switch: On/Off

Alarm Clock Control System Specs

1. Alarm clock control system has three states. There are:
• Reset
• Alarm
• Idle

2. Alarm clock control system has two input signals. There are:
• Timeup: Yes, No
• Switch: On , Off

Each state will have four events, which consist of a pair of input signals, respectively. The signature of each
event is: (Timeup, Switch). Therefore:

Event Current State
TimeUp Switch

Action

Reset Yes On Alarm
Reset Yes Off Idle
Reset No On Idle
Reset No Off Idle
Alarm Yes On Alarm
Alarm Yes Off Reset
Alarm No On Alarm
Alarm No Off Reset
Idle Yes On Alarm
Idle Yes Off Idle
Idle No On Idle
Idle No Off Idle

List 1: Alarm Clock control system design spec

<!ELEMENT ALARMCONTROL (TITLE?,STATE, INPUTSIGNAL, IDL. EVENTLIST)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT STATE (DESCRIPTION?,STATEITEM+)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT STATEITEM (#PCDATA)>
<!ELEMENT INPUTSIGNAL (DESCRIPTION?,SIGNAL+)>
<!ELEMENT SIGNAL (NAME?,TYPE+)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>
<!ELEMENT IDL (DESCRIPTION?,NAME, STATEMENT+)>
<!ELEMENT STATEMENT (#PCDATA)>
<!ELEMENT EVENTLIST (EVENT+)>
<!ELEMENT EVENT (CURRENTSTATE,CURRENTEVENT+,ACTION)>
<!ELEMENT CURRENTSTATE (#PCDATA)>
<!ELEMENT CURRENTEVENT (TIMEUP, SWITCH)>
<!ELEMENT TIMEUP (#PCDATA)>
<!ELEMENT SWITCH (#PCDATA)>
<!ELEMENT ACTION (#PCDATA)>

List 2: An DTD for Alarm Clock control system

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ALARM CLOCK CONTROL SYSTEM “alarmclock.dtd”>
<ALARMCONTROL>
<TITLE>Alarm Clock Control Requirement Specification </TITLE>
<STATE>

<DESCRIPTION>Alarm clock control system has three states. </DESCRIPTION>
<STATEITEM>Reset</STATEITEM>
<STATEITEM>Idle</STATEITEM>
<STATEITEM>Alarm</STATEITEM>

</STATE>
<INPUTSIGNAL>

<DESCRIPTION>Alarm clock control system has two input signals. </DESCRIPTION>
 <SIGNAL>
 <NAME>TimeUp</NAME>

 <TYPE>Yes</TYPE>
 <TYPE>N0</TYPE>

</SIGNAL>
 <SIGNAL>
 <NAME>Switch</NAME>
 <TYPE>On</TYPE>
 <TYPE>Off</TYPE>

</SIGNAL>
</INPUTSIGNAL>

<EVENTLIST>
<DESCRIPTION> Each state will have four events, which consist of a pair of input
signals, respectively. The signature of each event is: (TimeUp, Switch).
</DESCRIPTION>
<EVENT>

 <CURRENTSTATE>Reset</CURRENTSTATE>
 <CURRENTEVENT>
 <TIMEUP>Yes</TIMEUP>
 <SWITCH>On</SWITCH>

</CURRENTEVENT>
 <ACTION>Alarm</ACTION>

</EVENT>
<EVENT>
 <CURRENTSTATE>Reset</CURRENTSTATE>
<CURRENTEVENT>

 <TIMEUP>Yes</TIMEUP>
 <SWITCH>Off</SWITCH>

</CURRENTEVENT>
 <ACTION>Idle</ACTION>
</EVENT>

:
:

<EVENT>
 <CURRENTSTATE>Idle</CURRENTSTATE>
<CURRENTEVENT>

List 3: An ELD for Alarm Clock control system

3.3 How to Execute the ELD via Programming

After the XML formatted literate software

document imported, we using DOM to navigate
the document. The whole document is consists of
several levels of nodes. In Figure 4, alarm clock
control system software document (ELD) can be
drawn as a tree-like structure. The first level node
is a document root, ALARMCLOCK that contains
four child nodes. Each child nodes may or may not
have its child nodes. Node is the fundamental
technical of DOM. There are several different kind
nodes such as element node, text node, and so on.
In Figure 4, for example, “CURRENTSTATE” is
an element node tag name and “Reset” is text
node value.

Figure 4: Object Model of Alarm clock control
system

Since literate software document deals with
executable business logic, it simplifies the
programming logic of implementation. In List 5,
Java programming language examples, it contains
necessary variables such as the location of
software document, states, time, and switch. The
programming functions part can be divided to six
parts as following:
1. Show the software document: parse the

markup document (List 3) to literate rendering
document (List 1).

2. Parse software document to object document.
It also navigates and finds specific business
logic. The result is stored the twelve EVENT
nodes into a vector and then return the vector.

3. Sorting the vector using the criteria
“CURRENTSTATE” and its value. The result
is stored the four EVENT nodes into a vector
and then return the vector.

4. Sorting the vector using the criteria

“TIMEUP” and its value. The result is stored
the two EVENT nodes into a vector and then
return the vector.

5. Sorting the vector using the criteria
“SWITCH” and its value. The result is stored
the one EVENT nodes into a vector and then
return the vector.

6. Output the final result and print out the
propriety action.

import java.io.*;
import java.util.*; // for store node
public class alarm_clock {
 public static void main(String argv []) {
String location="file:c:/clock.xml";
 String cevent_v = argv[0];

String timeup_v = argv[1];
String setsw_v = argv[2];
Vector content, ss, vv, vv1,vv2;
FindNode FN, FN1;

 FindVector FV1,FV2,FV0;
 writeout WO;

//1. Show the software document
WO= new writeout(location);
 content= (Vector) WO.pop();
 WO.pop_node_value(content);

//2. Parse software document, Select
business logic:Event =>12 nodes
FN= new FindNode(location, "EVENT");
 ss= (Vector) FN.find_T();

//3. Sorting vector, criteria
CURRENTSTATE and value =>4 nodes
FV0= new
FindVector(ss,"CURRENTSTATE",cevent_v);
vv = (Vector)FV0.find_V();

//4. Sorting vector, criteria TIMEUP and
value =>2 nodes
 FV1= new FindVector(vv,"TIMEUP",
timeup_v);
 vv1 = (Vector)FV1.find_VP();

//5. Sorting vector, criteria SWITCH and
value =>1 nodes (Final)
FV2= new FindVector(vv1,"SWITCH",
setsw_v);
 vv2 = (Vector)FV2.find_VP();

//6. Output Final Result
String fire_action= (String)
FV2.store_single(vv2,"ACTION");
System.out.println("The Action will be ==>"
+fire_action);
}}

List 4: An Implementation of Alarm Clock control

system using Java

List 4 has two reusable utility classes, FindNode
and FindVector, which we wrote for processing

EVENT

TIMEUP

TIMEUP

SWITCH

SWITCH

Yes

On

No

On

Reset

Alarm

EVENT

EVENT

EVENT

EVENT

EVENT

EVENT

EVENT

EVENT

EVENT

EVENT

EVENT

EVENTLIST

Idle

Idle

TIMEUP

SWITCH

No

On

Alarm

Alarm

:
:

:

CURRENTSTATE

CURRENTEVENT

ACTION

CURRENTSTATE

CURRENTEVENT

ACTION

CURRENTSTATE

CURRENTEVENT

ACTION

DESCRIPTION …..

INPUTSIGNAL

TITLE

STATE

…..

…..

…..
ALARMCLOCK

Document
Root

Node (Document Object Model)

literate business logic. If the customer
requirements are change, developers simply
revised the contents of document without the
effort in the other process. If the control system
becomes very complex, for examples one hundred
switches, it also easily be done by reusing utility
classes. Since the literate software document share
business logic that is also executable, it is possible
to reduce many unnecessary iterations of software
development process.

4 Conclusion

This paper introduces a new design of literate
software document that is also machined readable
and executable document. The major contribution
in this paper emphasized that executable literate
document (ELD) retrieved business rules from
traditional application development. We utilize
markup and DOM mechanisms to process literate
document; therefore, an ELD become possible.
This design addresses inconsistency and
inaccuracy problems in life cycle of software
development. ELD also has many potential
advantages for software testing, integration, and
maintenance. Consequently, ELD is expected to
address the ambiguous issues among transforming
specifications and reduce unnecessary iterations
during software process life cycle.

References

[1] Jonathan Bowen. Formal Specification and

Document using Z: A Case Study Approach.
International Thomson Computer Press,
1996.

[2] Jim Davies and Jim Woodcock. Using Z:
Specification, Refinement and Proof.
Prentice Hall International Series in
Computer Science, 1996.

[3] ISO/IEC, Information technology -

Programming languages, their environments
and system software interfaces - Z notation ,
ISO/IEC FCD 13586, 2001

[4] Dept. of Defense (DoD). Common Operating
Environment. http://diicoe.disa.mil/coe/

[5] Nancy Leveson. Completeness in Formal
Specification Language Design for
Process-Control Systems. Proceedings of
Formal Methods in Software Practice
Conference, 2000.

[6] Nancy Leveson. Intent Specifications: An
Approach to Building Human-Centered.
IEEE Trans. On Software Engineering, 2000.

[7] NancyLeveson, Mats Heimdahl, Holly
Hildreth, and Jon Reese. Requirements
Specification for Process-Control Systems.
IEEE Transactions on Software Engineering,
1994

[8] Nancy Leveson, Heimdahl, M.P.E., Reese,
J.D. Designing Specification Languages for
Process Control Systems: Lessons Learned
and Steps to the Future. ACM/Sigsoft
Foundations of Software Engineering
/European Software Engineering Confernce,
Touluse, 1999.

[9] Kotonya, G. and Sommerville, I. The
Requirements Engineering: Processes and
Techniques, John Wiley & Sons, Chichester,
England, 1998.

[10] Guerrieri E.., “Software Document Reuse
with XML,” In P. Devandu and J. Poulin,
editors, Pro. 5 th Int. Conf. on Software
Reuse, 1998.

[11] Laurent, S., XML: A Primer, MIS: Press,
Foster City, CA, 1997.

