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Abstract — In this paper, we investigated the problem of distributed program reliability in various classes
of digtributed computing systems. We showed that this problem is computationdly intractable for arbitrary
distributed computing systems, even when it is restricted to the class of star distributed computing systems.
One paticular solvable case for star distributed computing systems is identified, in which data files are
distributed with respective to a consecutive property, and a polynomiad-time agorithm is developed for this
case. We also proposed a linear-time agorithm to test whether or not an arbitrary star distributed

computing system has this consecutive file digtribution property.
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1. INTRODUCTION

A distributed computing system (DCS), in generd, is considered to be one in which the computing
functions are digributed among severa physicdly distinct computing eements [4]. These elements or
resources (eg. processng elements, data files, and programs) may be geographically separated or
co-located. Thus, each program can run on one or more computers and may frequently access files stored
in other dtes. Banking systems, travel agency systems, and power control systems are just a few examples
of such adigtributed computing environment [15]. There are many measures to eva uate the performance of
DCS's. Rdiahility is an important issue [5]. For traditional networks, many reiability indices have been
proposed. They include two-termind rdiability, dl-termind rdidbility, and K-termind reigbility [1, 7, 12,
13, 18]. However, these measures are not applicable to practicd DCS's since the reliability measure for
DCS's should capture the effects of redundant distribution of datafiles.

Kumar et d. [8, 9] introduce anew riability measure, namely, distributed program reliability (DPR)
to accurately moded the reiability of DCS's. The DPR is defined as the probability that a program with
digributed files can run successfully in spite of some faults occurring in the communication edges. A model
used to represent such situations is a probabilistic graph. A probabilistic graph has a collection of nodes
representing the processing eements (sites) which contain some data files and programs, together with a
collection d edges representing communication links. Each edge fails independently with known failure
probability. As an example, consider apossible DCS of a banking system [8, 15] shown in figure 1. Each
local disk stores some of the following information:

e consumer accountsfile (CAF),

e automated teller machine accountsfile (TAF),
e adminigrative adsfile (ADF), and

e interest and exchange ratesfile (IXF).

Management report generation (MRG) in computer A indicates a query (program) to be executed for

report generation. Figure 2 shows the graph mode for this system. A node represents any computer



location and the links show the communication network. We assume that the query (program) MRG
requires data files CAF, TAF, ADF and I XF to complete its execution, and it is running a node v, which
holds data files CAF, ADF and IXF. Hence, it must access data file TAF, which is stored in both nodes v,
and vs. Therefore, the DPR of MRG shown in figure 2 can be formulated as:

DPR = Prob[ (v, and v, are connected) or (v, and v3 are connected)].
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Figure 1: A distributed banking system.
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Figure 2: The graph model for the distributed banking systemin
figure 1.

Most network rdiability problems (eg., K-termind rdiability) are #P-complete. The class of
#P-complete problems was introduced by Vdiant [16]. The class #P contains those problens that involve
counting the accepting computations for problems in NP; the class of #P-complete problems contains the
hardest problems in #P. As widdy recognized, dl known exact dgorithms for these problems have

exponentia time complexity, thereby making it unlikdy that efficient (polynomid time) dgorithms can be
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developed for this class of problems. Clearly, computing the DPR for genera DCSsis dso #P-complete.
This complexity can be averted by considering only a restricted class of DCSs. Our overal objective will
be to examine the boundary of problem classes separating the polynomidly solvable cases from the
#P-complete cases. However, polynomid-time agorithms have been developed for computing the DPR
over the DCSswith linear and ring topologies [10].

Classes of interest here include star, 2tree, seriad-pardld, and planar topologies. The results of
section 2 show that most of them continue to be #P-complete. In section 3, we propose a polynomialy
solvable case of the DPR problem for star topologies in which data files are redtricted to a certain type of
digtribution. Section 4 shows a linear time agorithm to verify whether or not a sar DCS has this redtricted

class of file digribution.

Assumptions

1. The nodes are perfect.
2. The edges are s-independent and ether function or fail with known probabilities.

Acronyms & Abbreviations

DCS distributed computing system
DPR distributed program rdiability
KTR K-termind rdiability

HEC number of edge covers

FST file goanning tree

Notation (Generd)

G agenera graph (of anetwork).
D aDCSgraph

E st of edges

Vv Set of nodes

e acomponent of E



Vi acomponent of V

K subset of V

A st of filesavallable a node v,

pi probability that edge g functions

i probability that edge g fals © 1—p
f; daafilei

Notation (Star DCS)

D astar DCSwithn+ 1nodes{s, v1, v2, ..., vn} and n edges{(s,v1), (sv2), ...(s, vn)}
n  number of edgesin D

e %edge(s Vi), 1£i£n

m number of distinct filesin D
t total number of filesin D
A-1] set of indexes of nodes which contain thefile fj

P ©°[n (), m(2),.., 1 (n)] apermutation of numbers {1, 2, ..., n} such that if file fd T Ap(i)
andfdT Ap(j), thenfdT Ap(k) for all k, i < k < j

F ordered set of all minimal file cutsets according to their minimal components

r number of minimal file cutsetsin F

Ci theith minimal filecutsetin F; L £i £r

ai ° min{k | ep(k) T Ci}, i.e., theindex of the minimal componentin Ci; 1£i £r
bi ° max{k | ep(k) T Ci}, i.e., theindex of the maximal component in Ci; 1L £i £r

H(G,j))  °{ep(i), ep(i+1), ..., ep()}; LEi £j £n ( note that Ci © H(ali, bi))
X(@,j) event: all edgesinH(i, j) fail

i
Wi o jlilx(aj ’bj) ( note that the DPR of D can be expressed as 1 — Pr(\W) )

Fi  event: the star DCS D' fails in which it consists of i + 1 nodes s, vp(1), vp(2), ..., vp(i) and i
edges ep(1), ep(2), ..., ep(i)

W complement of event W

Definitions (Star DCS)



e Consecutive file distribution: A star DCS D has the consecutive file digtribution property iff its
nodes can be linearly ordered such that, for each distinct file fq4, the nodes containing file fy4 occur
consecutively. More formally, a sar DCS D has the consecutive file digtribution property iff there
exigsapermutation P = [1t (1), 11 (2), ..., Tt ()] of numbers{1, 2, ..., n} suchthatif filefs T Ay
and de Ap(j),then de Ap(k) fordl k, Tt (I) < (k) <T (J)

e Filecutest: A set C, of edgesof D isreferred to as afile cutset for file fy if it condsts of dl edges (s,
v;) such that node v; containsfilefy, i.e., Ca={(s, v) [faT A}.

e Minimal file cutest: A file cutset C is referred to as minimal if there is no other file cutset C'
such that C' I C. Without loss of generality, we reorder the minimal file cutsets, if necessary,
by their minimal component, i.e., for two distinct minimal file cutsets Ci and Cj, i < j iff min{k |
(s vp(k) T Ci} < min{k | (s, vp(K)) T Cj}.

2. THE COMPUTATIONAL COMPLEXITY OF THE DPR PROBLEM

In this section we assume that the reader is familiar with the basic notions of NP-completeness. We
refer the reader to [6] for an excellent expostion of the theory of NP-completeness. First we state some
known #P-compl ete problems.

e K-Termind Reidhility (KTR) [12]

Input: an undirected graph G = (V, E) where V is the set of nodes and E is the set of edges
that fail s-independently of each other with known probabilities A set Ki V is
diginguished with [K| 3 2.
Output: R(Gk), the probability that the set K of nodes of G isconnectedin G.
e Number of Edge Covers (#£C) [2]
Input: an undirected graph G = (V, E).
Output: the number of edge coversfor G

°© HECI E:eachnodeof Gisanend of someedgein EC}|.

Theorem 1. The KTR problem is polynomidly reducible to the DPR problem



Proof. Let G = (V, E) be anetwork graph with asubset of nodesK | V. Construct aDCS graph D = (V,
E) from G such that node v; of D containsfile f; iff rode v; T K in G. Clearly, dl digtinct filesin D are
interconnected iff al nodes of K are connected in G. In addition, let each edge of D have the same
operationd probahility as the corresponding edge of G. Then, the DPR of D isequd to the KTR of G. In
this case the DCS D can be obtained from G in polynomid time. Q.E.D.
By Theorem 1, if we have a polynomid-time agorithm for computing the DPR of D, then we can
obtan a polynomia-time adgorithm for computing the KTR of G usng this congruction. However,
Rosenthd [12] showed that the problem of computing the KTR in generd is #P-complete, o computing
the DPR in generd is dso #P-complete. Therefore, we have the following corollary.
Corallary 1. Computing the DPR for a generd DCSis#P-complete.
Coroallary 2. Computing the DPR for aplanar DCSis#P-complete.
Proof. From the proof of Theorem 1, it is clear that the KTR problem is just a specid case of the DPR
problem. It has been shown that computing the KTR over a planar network is#P-complete [11]. Thisdso
immediately implies that computing the DPR over aplanar DCSis ill #P-complete. Q.E.D.
For the KTR problem, polynomia-time (or linear-time) agorithms have been developed for other
restricted networks, such as a star network, a 2-tree network, and a series-parale network [14]. If there
are no replicated filesin DCSs, i.e, if thereis only one copy of each file in DCSs, the DPR problem can
be transformed into the equivadent KTR problem in which the K set isthe set of nodes that contain the data
files needed for the program under consideration. However, data files are usudly replicated and distributed
in DCSs, s0 these two problems are different. In the remainder of this section, we will see that computing
the DPR over astar DCS, atree DCS, or a series-pardld DCSin generd is dill #P-complete.
Theorem 2. The #EC problem is polynomidly reducible to the DPR problem over astar DCS.
Proof. Given agraph G withn edges e, &, ..., €, and nodes vy, V», ..., we shall congtruct a sar DCS D

such that the number of edge coversin G can be expressed as afunction of the DPR of D. Construct a star



DCSD = (V', E)whereV' ={s, V'3, V'a,..., V'n}, E' = {(S, V'), (S, V2), ..., (S, Vn)} and node v'; contains
filesfy and f, iff & = (vg, Vi) in G. We now consider afile spanning tree (FST) T, which is a subgraph of

D and its nodes hold all the needed datafiles, i.e,

u {flvg containsfilef ;} = u {f|vg containsfile f }.
vl T vel Ve

It is easy to see that there is a one-to-one correspondence between one of the sets of edge coversin G

and one FST in D. The DPR of D can be expressed as

for all
FSTTinD

where p; isrdiability of edge (s, vi) of D, 1 £1 £ n. If we set each p; = % fordl 1 £i £ n, then we have

1 n
DPR= & (%) ,or
forall FST 2
TinD

DPR x" = al
for all FST
TinD

=#of FST'sin D
= # of edge coversin G
Since D can be constructed from G in polynomid time, the number of edge coversin G can be solved in
polynomid timeif we have a polynomid-time agorithm for computing the DPR of D.
Q.E.D.
Coroallary 3. Computing the DPR for agtar DCS is #P-complete.
Proof. Follows from Theorem 2 and the fact that #EC have been shown to be #P-complete [2].
Q.E.D.
Now we shdl show that computing the DPR remains difficult for a 2tree topology. A 2-tree is

defined recursvely asfollows



e Thecomplete graph K2 (asingle edge) isa 2-tree.
e Givenany 2tree Gon n? 2 nodes, let (vi, vj) be an edge of G. Adding a new node vy and
two edges (v, Vi) and (vi, v;) produces a 2-treeon n + 1 nodes.

Corallary 4. Computing the DPR for a 2-tree DCS in generd is#P-complete.
Proof. Let D beastar DCSwith n + 1 nodes s, v1, Vo, ..., Vy ad n edges (S, V1), (S, V2), ...,(S, Vy). We
shdl congtruct from D a 2-tree DCS D' such that D and D' have the same DPR. Embed the 2-tree DCS D'
into the star DCS D by adding some virtua edges (v;, Vi+1), 1 £i £ n-1. Now, it is easy to see that D' is
a2-treeDCSon n + 1 nodes. If we stipulate that each virtual edge has operationa probability O, the DPR
of D isreduced to the DPR of D'. By corallary 3, since computing the DPR over a star topology in genera

is#P-complete, computing the DPR over a 2-tree topology is aso #P-complete. Q.E.D.
Coroallary 5. Computing the DPR over a series-paraled DCSis#P-complete.

Proof. From [17], a 2-tree grgph is a maximd series-pardle graph. A maximd series-pardld graph isa
series-pardld greph with neither loops nor pardld edges. Snce computing the DPR over a 2-tree

topology is#P-complete, computing the DPR over aseries-pardld DCSisdso #P-complete. Q.E.D.

3. APOLYNOMIAL-TIME ALGORITHM FOR COMPUTING THE DPR OF STAR DCS's

The results of the previous section indicate that computing the DPR over astar DCS is #P-complete.
These results imply that polynomid agorithms unlikdy exig for solving them. However, an efficient
agorithm possibly exists for computing the DPR over a sar DCS with a certain restricted class of file
digtribution. In this section we present a polynomid-time agorithm for computing the DPR of a star DCS
with a consecutive file distribution.

Let D be agtar DCS with the consecutive file distribution property. Then, the minima file cutsats can
be ordered by their minimal component, i.e. for two distinct minimd file cutsets C; and C;, 1 < j iff min{k |
(s Vo) T Ci} <minf{k | (s, Vo) T Ci}. By definition, D fallsiiff & least one event X(ay, by), 1£i £ 1,
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occurs, where a; and by are the indexes of the minima and maxima components in C;, respectively.
Clearly, if r =1, the unrdiability of D can be obtained as Pr[W;] = Pr[X(a;, b;)]. Next consider the case
withr 3 2. Theunrdiability of D with thefirg i'sfile cutsetsis
PrIW] = Priwi-1U X(aj, by)]
This expression can be decomposed using conditiona probahility as
PIW] = Priwi.q + Priwi-1G X(ai b))l (D

Consider theevent Wi-1G X (aj , by) , which implies

o EpjForexhk, 1E£KEi- 1, aleastoneedgeel H(ay,by) © Ckfunctionsand

e E;Alledgesi H(aj,by)° Cifal
By event E,, event E; can be rewritten as

e EForexhk,1£k£i- 1, aleastoneedgeel {H(ay,b,)- H(aj,b;)} functions

A fundamentd difficulty in calculating Pr(E; ) isthat eventsin E;' are not, in generd, digoint. However, we
can define events S's that are digoint by

§ ={ E1' occursand edgeep ( j) isthe last good one}, for a1 £ £ a;- 1.

ai-1
Thus Ei'l E2= U (Sj! Ep).and
I=aj-1
_ al_l
Priwi- 1€ X(ai.b)l = PT u  (Sj1 E2] e
j=aj-1
Since S's are digoint events, we have
aj-1 a-1
Pl u (Sj1 E2] = aPr(s;l E2 ©)
j=aj-1 j=ai-1

10



Theevent § 3 E,, ai£ | £ &- 1 can be decomposed into three independent eventsi{ no file cutset fails

between edges ep(1) and ep(j-1) }, {edge ep(j) functions}, and {all edges between ep(j+1) and
ep(b) fal}.So
Pr(sjl E2) = [1- Pr(F j- D] xppj)>PIX(j +1.by)]. (4)

Therefore, according to Egs. (2), (2), (3), and (4) , we have
a-1 ,
PHOWG) = Prwi. )+ & {[1 PHCF . 9] gy PX G+ 10y}

j=ai-1

The following theorem can now be established.

Theorem 3. For2£i£r:

-1
PrOw) = Prwi. D+ & {[1- PR 9] %pp PIXG +1B)), (9

j=ai1

with the boundary conditions.  Pr(\+) = Pr[ X (az,b;)], and Pr(Fk) =0 forO£ k<b, .

Before applying Theorem 3, initidly compute the valuesof  Pr[ X(j +1,I5)] and Pr(Fj) for 2 £

£randai, £ £ & - 1. By noting that ag< a,whenever g < h, the recursive formula can be obtained as

follows.
! B _
i PriX(aie b 9l* O dguy forj = aja
PX(j+1 b)) = | Pe@D bt ©
{—XPF[X(j,bi)] foraj <jfaj-1
t 9p(i)
b1
By satingwith Pr[ X(az,b)] = O qp(k),wesuvelydeterminethat
:al
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P X(a1*+1by)], P[X(a1t2,by)], . . .. P X(az.by)l

P X(az2+1by)], P[X(@az2+3by)], ..., P[X(asz by],

P X(ar.1+1b.)], P[X(ar-1+2,b)], ..., and P[X(a,,b)].
To obtain the values of Pr(F;.1) in Theorem 3, by definition, we have that

i Pr(w; . forb, ;EKE£Db,-1
Pr(Fk):io( 2 KEby-1 @

Hence, while computing Pr(W,) by Theorem 3, we can aso obtain Pr(Fy), for b4 £ k £ b;- 1.

3.1 A Polynomial-Time Algorithm

The mgor dgorithm-related Strategies to compute the DPR of star DCS's are outlined. Assume a
given star DCS D and the file digtributions A; for each node. By asuming that D has the property of
consecutive file digtribution, let P be a permutation of numbers{1, 2, ...,n} such that if filefy T Ay and fq
T Ay, thenfy T Ay fordl k, i <k <j. All file cutsets can be enumerated from A in the fallowing manner:
if nodev; containsfilefy, then file cutset Cy contains edge . Subsequently, a; and b; vduesof C; can be
determined from the permutation P such that a; = min{k| e, T C; } and by = max{k| ey I C; }. The
next step removes the file cutsats which are not minima and rearranges the remaining minimd file cutsats
according to their a&; and bo; vdues. Findly Theorem 3, Egs. (6) and (7) are used to compute the DPR ( =

1- Pr[W] ). Thedgorithm is formaly described below.

Algorithm REL
Input: A star DCSD withn +1 nodes{ s, v, V2, ..., Vo} and n edges{(s,\v1), (SV2), ...,(SVn)}.
A permutation P =11 (1), 1T (2), ..., 1T ()] of numbers{1, 2, ..., n} suchthetif filefy 1 A,
fal Apg, thenfyT Ay fordl k, i <k <j, where A represents the st of files available at node vi.

Output : the DPR of D

12



begin
Sepl: // find dl file cutsets //
fori < 1tomdoCi <« A; [/l initidization sep; misthe number of digtinct files//
fori € 1tondo
foreachfy1 A do Cy€ CyE {e}; // For convenience, let & denote edge (s, v;) //
Sep 2. // stthevaduesof ayandbifor LEi £m//
fori € 1tomdo
begin
a; < minfk| ey 1 Ci};
b ¢ max{klexy 1 Ci};
end
Sep 3:  // find dl minimd file cutset //
F < A&
fori € 1tomdoF E {C};
for 1Ei,j£mdo
if (22 & and b £ b)) thenremove C; fromF;  // which impliesCi i C; //
Step 4: reorder the minimdl file cutsstsin F for two distinct minimd filecutssts G and G, i < iff & < &;;

Sep 5: // compute Pr[X(j +1b,)],for2E£i£randa.£] £ a - 1, by Eq. (6) //

by
PI’[X(al,bl)] - O qp(k);
k:al

fori € 2tordo // risthenumber of minimd file cutsatsin F //
begin

PX(@.+1 b)] € —=

b
PriX(@i-1,b.DI* Oy
Yp(ai-» "7 kb P
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forj € a;1+2to a;- 1do Pr[X(j + 1, by)] €« ixF’r[X(J',bi)] :

o)
end
Sep 6:  // Apply Theorem 3 and Eq. (7) to compute Pr(W) and Pr(F;) //
Pr(W,) = Pr[ X(a1,by)l; /I boundary condition //
for k € 0to bs- 1 do Pr(Fy) < O; // boundary condition //
fori €< 2tordo
begin

for k € by tobi- 1 do Pr(Fy) < Pr(W.y);

ai-1
POW) ~ Prwi-D+ & ([ PR - D) P X + L by

j=aj-1
end
Sep 7: DPR < 1-Pr(W,); Output(DPR);

end REL

3.2 Complexity Analysis

The time complexity of Algorithm REL is andyzed as follows. Step 1 peforms

n
Oo(m+ a |Ap(i)|) =0O(m+t) = O(t) time (dnce m< t) to identify dl file cutsats, where t denotes the
i=1

m
tota number of filesin D. Step 2 requires O(2 x4
i=1

C)) » O(t) timeto set & and by, 1 £i £ m and step

3 takes O(?) time to obtain al minimal file cutsets. Step 4 reqires the reordering of al minimal file cutsets

in anondecreasing order of their index of the minima component. This ordering can be executed in O(r*og

r) usng an efficdent sorting agorithm, where r denotes the number of minima file cutsets. In step 5,

evauding Pr[X(j+1, b;)] by making use of Eq. (6) requires that

14



:‘:O{ "{‘[(bi - b, )+2]} =O(b, - b;+r)»O(n+r), forj=a;.;
2

\—n

Of & (M} =O(r - 1) = O(r), forai.1£ jEaj- 1
i=2

—

Hence, the totd time to evauate dl Pr[X(j+1, b)] istherefore O(n + r). In step 6, computing al Pr(Fy)

takes O[%El(bi-bl_l)]:O(br-bl)»O(n) time and computing dl  Pr(W) takes
i=2

of

1+(@aj- aj.- )8 =01+3Xa, - ap] » O(n) time. Therefore, the total time in step 6 is O(N).

I Qo—

[
2
Clearly, step 7 performsin congtant time. Findlly, the entire agorithm has time complexity Ot + t + m?+
rtogr + (n+r)+n].Sincet £ men, and r £ n, the complexity of Algorithm REL can be obtained as

O(m?+ mn).

3.3 An Example of Application of Algorithm REL

Toillusrate Algorithm REL as stated above, consider the star DCS in figure 3 in which there is a
consecutive file digtribution property and the associative permutation P =[3, 6, 4, 2, 5, 1, 7]. (In Section 4,
we will show how to identify the associative permutation when the star DCS has the consecutive file
digtribution property .) The overal procedureis as follows:

Sep 1: Thefile cutsats are found to be
Ci={e;, &5}, Co={ey, &, 7}, Cs={&y, &, &5}, Ca={e;, &}, Cs={e, &4, &5}
Sep 2: According to the permutation
n)=3, n1(2=6 @) =4nt@A=2 n1B)=5 n®G =1 1(7)=7
and the results of Step 1, we have
a;=4,b;=5a,=5b,=7,a3=4,b3=6,a, =1, by,=2, as = 3, bs=5,
Sep 3: SnceC; 1 CzandCy 1 Cs, remove C; and Cs. Thus, the set of minimadl file cutsetsis

F :{ C1, Cz, C4}

15



Step 4: Reorder the minimdl file cutsets in such amanner thet for C; and Cj, i < iff a; < &;,and we obtain
Ci={es, &}, a1=1,b,=2,
C={e, &}, a, =4, b,=5,
Ce={ey, &, e}, as =5, bs=7.
Sep 5: By usng Eq. (6), we have
PrX(1.2)] = 0a0e, Pr[X(2,5)] = 060uGz0ls, Pr[X(3,5)] = 020,
PrX(4,5)] = 0205, and Pr[X(5,7)] = 0s0uar.
Sep 6: We use Theorem 3 and Eq. (7) to compute Pr(W) and Pr(F) for2£i £ 3and by £ k £ by- 1,
and obtain
Pr(Wi) = g0, Pr(Fo) = Pr(F1) =0 (boundary condition)

i =2: Pr(F2) = Pr(Fs) = Pr(Fs) = Pr(W;) = g0,

PriW) = Pr(Wa) + [1- Pr(Fo)] xps XPr[X(2,5)] (j=2)
+ [1- Pr(F4)] xps XPr[X(3,5)] (j=3)
+ [1- Pr(F2)] s XPr[X(4,5)] (j=4)

= Qa0 + P30e040205 + Pe0aCz20s + (1- GsC6) PaTzCs
i =3: Pr(Fs) =Pr(\W,)
Pr(Ws)  =Pr(Wo) +[1- Pr(Fs)] 32 XPr[X(5,7)] (=5
= g0 + Palletu0l20s + PeClatl20s + (1- 0faCe) *Pa020s + (1- OsG6) 20501017
Sep 7: Therefore, DPRis
DPR=1- Pr(\W)

= 1- {0306 + Pa06TuTTs + P60a020s + (1- G306) XP40205 + (1- Qz06) 2050107}
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Figure 3 : A star DCS with the consecutive file distribution property

4. A LINEAR TIME ALGORITHM OF TESTING FOR THE CONSECUTIVE FILE
DISTRIBUTION PROPERTY IN A STAR DCS

The previous section has presented a polynomid-time agorithm for computing the DPR of a star
DCS when it has the consecutive file distribution property. In this section, we are interested in testing
whether or not astar DCS has the consecutive file distribution property. The problem statement would be:

Input: A sar DCS D withn + 1 nodess, vy, Va, ..., v, andfiledigributions A;, L£ i £ n.
Output: A permutation P = [1t (1), 1T (2), ..., Tt ()] of numbers {1, 2, ..., n} such thet if file fg 1
Ay and faT Ay, thenfy T A fordl k, 1t (i) < 11 (K) < 1t ().

Note that a solution does not always exist. To facilitate our search for the correct ordering of P, we
use a data structure of a PQ-tree proposed by Booth and Leuker [3]. A PQ-tree is arooted tree that has
nodes of two varieties. P-nodes and Q-nodes. A P-node is a node whose children can be arbitrarily
permuted. A Q-node is a node whose children are ordered or reverse ordered. The frontier of aPQ-treeis
the permutation of leaves from Ieft to right. Two PQ-trees are equivaent iff one can be transformed into the
other by applying a sequence of the following transformation rules.

e ahbitrarily permute the children of a P-node

e reversethe children of a Q-node
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Using a PQ-tree data structure, we have the following agorithm.

Algorithm Check Consecutive File Distribution
Input : A star DCS D withn + 1 nodess, vy, Va, ..., Vy, Nedgesey, &, ..., e, whereg = (s, vi) for 1 £ i
£ n, and file-available set A; = {f; | for each f; stored innode vi} for L£ 1 £ n.
Output : A permutation P = [1t (1), 1T (2), ..., Tt (n)] of numbers(1, 2, ..., nysuch that if file fa T Angy
and fq T Agg, then g T A fordl k, i <k <j.
begin
T < universd treg,  // a 9ngle P-node connected to al the leaf nodesof {1, 2, ..., n} //
forj ¢ Ltomdo A"} ¢ A& /I m denotes the number of distinct filesin D //
/I A, isthe set of indexes of nodes that contain the filef; //
fori € 1tondo
foreachf;T A do A% € {i};
forj € 1tomdoT ¢ REDUCE(T, A™Y);
if Tisanull tree
then
print out "D has no consecutive file distribution property” ;
else
print out the frontier of T ;

end Check_Consecutive File Distribution

The routine REDUCE attempts to apply a set of eeven templates. Each template conssts of a
pattern to be matched againgt the current PQ-tree and the set A and a replacement to be substituted for
the pattern. The templates are applied from the bottom to the top of the tree. The null tree may be returned

when no template applies. For details of the adgorithm, the reader is directed to Booth and Leuker [3].
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Complexity Analysis

n
For A%, 1 £ £ m, it can be obtained in O(m+ &
i=1

Ai|) steps. According to [3], the loop of the

A m
alAl = a‘A-lj‘=t
=1 j:l

m
REDUCE routine can be computed in O(m+n+ 3§ ‘A' 1j‘) steps. Further,
j:]_ |

(the totdl number of filesin D). Therefore, the time complexity for the above dgorithm isO(m + t) + O(m +

n+t)=0(m+n+t).

{2, 5}
\ Template P2 ‘\
1 2 3 4 5 6 7 ": 1 3 4 6 7
2 5
{157
Templates P3, P4
{1, 2,5}
Templates P3,Q2
3 4 6 3 4 6

2 5 1 7 2 5
{3, 6} 1 7
Template P2
{2, 4,5}
Template P4
4 —>
L]
3 6 25 1 7 3 6 4 2 5 1 7
>

Figure 4. The reduction steps by usng a PQ-tree

An lllustrative Example:

Congider the star DCS D shown in figure 3. Applying the above agorithm leads to
19



At ={2,5}, A%={1,57}, A%={1,2 5}, A4={3,6},As={2 4, 5}
Figure 4 displays the reduction steps. In an illudration of a PQ-tree, a P-node is drawn as a circle and a
Q-node as a rectangle. From this figure, we can conclude that the ssar DCS D of figure 3 has the
consecutive file digtribution property and one of the associative permutationsis:

P=[3642517
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