Parallel Algorithms for Finding the Center and the median of
Interval and Circular-arc Graphs

F.R. Hsu * and M. K. Shan **

Department of Information Technology,
Taichung Healthcare and Management University,
Taiwan, Republic of China

Abstract. The center problem of a graph is motivated by a number of facility location problems. In this
paper, we propose parallel algorithms for finding the center of interval graphs and circular-arc graphs. We
also consider the median problem of the interval graph. Our algorithms run in O(log n) time algorithm using
O(n/logn) processors while the intervals and arcs are given in sorted order. Qur algorithms are on the
EREW PRAM model.

keywords: Parallel Algorithms, EREW PRAM, Center Problem, Interval Graph, Circular-arc Graph.

1 Introduction

A graph G = (V, E) is an interval graph if its vertices can be put in a one-to-one corresponded with a set
F of intervals on a real line such that two vertices are adjacent in G if and only if their corresponding
intervals (circular-arcs) have nonempty intersection. Such a set F' is called an interval model of the
interval graph G. The definition of circular-arc graphs is the same as that of interval graphs, with the
exception that the set of intervals on the real line is replaced by a set of circular-arcs on a unit circle
C. Interval graphs and circular-arc graphs arise in many application areas, such as scheduling, traffic
control, biology, and VLSI design. There is an extensive discussion on these graphs in [9].

The center problem of a graph is motivated by a number of facility location problems. For the interval
graph, Olariu proposed an O(|V| + |E|) algorithm to compute its 1-center [10]. In [3], Bespamyatnikh
et al. proposed an O(pn) time algorithm, where n is the number of vertices, for the p-center problem
on a circular-arc graph. Yet, their algorithm does not work while p = 1. In this paper, we consider
the 1-center problem for both interval and circular-arc graphs. Once the interval and arcs are given in
sorted order, our algorithms run in O(logn) time to find the center of interval and circular-arc graphs

using O(n/logn) EREW PRAM processors.

* Corresponding Author, Department of Information Technology, Taichung Healthcare and Management University, Tai-
wan, ROC frhsu@thmu.edu.tw
** Department of Computer Science, National Chengchi University, Taiwan, R.O.C.



The 1-median problem is to find a vertex such that the sum of the distances to the remaining vertices
is minimized. In [3], Bespamyatnikh et al. proposed an O(n) time algorithm for the median problem on
interval graphs with sorted intervals. We propose an O(logn) time algorithm using O(n/logn) EREW
PRAM processors for interval graphs.

The rest of this paper is organized as follows. Section 2 describes basic notations and some interesting
properties and data structures on interval graphs. Sections 3 gives algorithms for the center problem on
interval and circular-arc graphs respectively. Section 4 gives the algorithm for the median problem on

interval graphs. Finally, we conclude our results in Section 5.

2 Preliminaries

In this section, we propose how to compute some useful data structures on interval graphs which will be
used in our algorithms. Assume that the interval graph is given by its interval model F' = {I1, Is, ..., I,;}
with sorted order, where I; = [a;, b;]. Let M be the sorted array containing the endpoints of the intervals
in F. In case there is no confusion, we also use 7 to denote interval I;. Let M = (p1,po,...,pon), where
every p; is either the left or right endpoint for some I;. Note that from M it is not difficult to obtain
the list of all intervals in F' that are sorted by the als (respectively, b.s). Hence, we can label intervals
in F such a way that b; < b; if and only if ¢ < j. By doing parallel prefix computation [1], such
labelling can be easily obtained from the sorted array of F' in O(logn) time using n/logn processors.
Since all endpoints are sorted, we can replace the real value of an endpoint by its rank in the sorted
order. Therefore, we can assume all endpoints are distinct with coordinates of consecutive integer values
1,2,...,2n. We also assume that the input interval graph is connected. Our algorithms can be easily
modified to handle the cases when the input graph is not connected.

In [5], Chen et al. defined a successor function on intervals. In [3], Bespamyatnikh et al. defined a
right successor and a left successor of an endpoint. In [4], Chao et al. defined similar functions and using
these functions to define a successor tree. For each interval I;, among intervals intersect I;, consider

intervals with rightmost and leftmost endpoints respectively. Formally, let RMOST (i) = max{j|I;



contains b;} and LM OST (i) = k where a;, is equal to min{a;|I; contains a;}. For example, in Figure 1,
the array RMOSTI1,..., n] is equal to (4,4,6,8,9,9,9,11,11,11,11). Besides, the array LM OSTT1,

..,n] is equal to (1,1,1,1,4,3,4,4,6,8,8).

5 11

Fig. 1. A set of intervals.

According to the RMOST array, the successor tree Traost is defined as follows: each interval I;
corresponds a node i in Trpsos7 and its parent is RM OST (3). For node i and its sibling j, 4 is on the left
side of j if and only if i < j. Consider Figure 1 again. Its corresponding Trarost is shown in Figure 2.

Let PreOrder(i) and LEV (i) denote the pre-order number and the level of interval 7 in tree TrarosT

5 A e
L Sd

Fig. 2. The tree TrmoST-

respectively. In this example, the pre-order traversal of Tryrosr would be (11,8,4,1,2,9,5,6,3,7,10)
and PreOrder = (4,5,9,3,7,8,10,2,6,11,1) and LEV = (3,3,3,2,2,2,2,1,1,1,0). Chao et al. showed

that these data structure can be found efficiently.

Lemma 1. [/] For an interval graph, its corresponding arrays RMOST, LMOST, LEV and PreOrder

can be computed in O(logn) time using O(n/logn) processors on the EREW PRAM. O



An interval is called proper if it is not contained by any other interval. Let LENp(i,j) denote the
shortest path length between I; and I; on F. The following lemmas show how to query the length

between I; and I;.

Lemma 2. [4] For any two intervals I; and I;, i < j, if LENg(i,j) > 2, then LENp(i,j) =

LENp(RMOST(i), LMOST(j)) + 2. 0

Lemma 3. [//For any proper intervals I; and I;, i < j,

LEV(i) — LEV(j) + 1,

if PreOrder(i) < PreOrder(j),
LEV (i) — LEV(j),

otherwise. O

LENg(i,j) =

For each interval I;, consider intervals on its right side. Let RminB(i) denote the interval with the
minimum right endpoint. If no such interval exists, let RminB(i) = n + 1. Formally, RminB(i) =
min({j|la; > b;} |U{n + 1}). For example, consider Figure 1. The array RminB[l,...,n] is equal to
(5,5,5,9,10,10,10,12,12,12,12). Using the list of all intervals in F' sorted by the als, we can apply
the parallel prefix computations [1] to compute the array RminB in O(logn) time using O(n/logn)

processors on the EREW PRAM model. Therefore, we have the following lemma

Lemma 4. For an interval graph, its corresponding array RminB can be computed in O(logn) time

using O(n/logn) processors on the EREW PRAM. O

3 Finding the Center

The p-center problem is to locate p facilities on a graph so as to minimize the largest distance between
the other vertices and the p facilities.

For the interval graph, Olariu proposed an algorithm linear to numbers of vertices and edges to
compute its 1-center [10]. In [3], Bespamyatnikh et al. proposed an O(pn) time algorithm for the p-
center problem on a circular-arc graph. Yet, their algorithm does not work while p = 1. In this paper,
we consider the 1-center problem for both interval and circular-arc graphs. We propose O(logn) time

algorithms using O(n/logn) EREW PRAM processors for interval and circular-arc graphs.

4



3.1 The Center Problem on interval graphs

Now consider the 1-center problem for interval graphs. Given the interval model F', with sorted end-

points, let 7(F') denote the radius of the interval graph. That is

F) = mi Len(i, §).
r(F) min max en(i, 7)

Therefore, k is the center of F, if and only if

Len(k, 7) = r(F).
max en(k,j) = r(F)

Note that the distance between the interval with the leftmost right endpoint and the interval with
the rightmost left endpoint is the maximum distance between any two intervals. Therefore we have the

following lemma.

Lemma 5. Given an interval model F', suppose I is the interval with largest left endpoint and d =

Len(1,k). Then r(F) = [d/2] and RMOST!4?1(1) is the center of the interval graph.

Proof. Suppose I is the interval with largest left endpoint and d = Len(1,k). Let t = [d/2]. Note
that Len(l,RMOST!(1)) = t and Len(RMOST'(1),k) = d —t = |d/2]. Tt is easy to see that
maxjcp Len(RMOST'(1),j) = t. Suppose that I, is the center. It follows that Len(1,q) < r(F) and
Len(q, k) < r(F). Therefore, Len(1,k) < Len(1,q) + Len(q, k) < 2*r(F). Hence Len(1,k) < 2 xr(F).
Assume that r(F) < t. That is r(F) < t — 1. Hence d = Len(1,k) < 2(t — 1) — a contradiction.
Therefore r(F) > t. Since max;cr Len(RMOST! (1), j) = t, we have r(F) = t and RMOST"(1) is the

center of the interval graph. O

The following lemma shows how to find RMOST" (i) for any interval I; efficiently.
Lemma 6. For any non-root interval I;, RMOST!(i) = max{j|PreOrder(j) < PreOrder(i) and

L(j) = L(i) - 1}.

Proof. For any non-root interval I;, by definition, RMOST'(i) is at level L(i) — ¢t in TraposT- Since

RMOST!(i) is an ancestor of i in TgryosT, PreOrder(RMOST(i)) < PreOrder(i). By definition,



the pre-order numbers of RMOST"(i)’s siblings on its left side are less than PreOrder(RMOST!(i)).
Besides, the pre-order numbers of RM OST"(i)’s siblings on its right side are greater than PreOrder (i).

Therefore, RMOST" (i) = max{j|PreOrder(j) < PreOrder(i) and L(j) = L(i) — t}. O

Note that 7 < j if and only if b; < b;. We have the following lemma:

Lemma 7. For any two intervals I; and I;, if i < j, then RMOST (i) < RMOST(j).

Proof. Supposei < j. It follows b; < b;. Assume that RMOST (i) > RMOST(j). It follows brrrost(j) <
brvosT()- By definition, agyosTi) < bi and bj < bruyost(j)- Therefore, agpposriy < bi < bj <
brvost(j) < brmosty- We have ararosty < bj < bramost(i)- 1t follows I; intersects Irarost(i)- Be-
sides, RMOST (i) > RMOST(3j). This contradicts the definition of RMOST(j). Therefore, RMOST (%)

< RMOSTj). O

By Lemma 7, we observe that the children of each internal node in TrposT Occupy consecutive
ranges. For example, in Figure 2, the children of node 9 are from node 5 to node 7. Hence we can decide
whether a given node is the leftmost child of its parent in constant time using a single processor. In

short, we have the following lemma.

Lemma 8. In Trymost, the children of each internal node in TryrosT occupy consecutive ranges. Be-
sides, for any non-root vertex i,i > 1, 1 is the leftmost child of its parent if and only if RMOST(i—1) <

RMOST(i).

Proof. First, we will prove that the children of each internal node in TryosT OCCupy consecutive
ranges. Suppose that the leftmost and rightmost child of vertex j’s are s and ¢ respectively. Therefore,
RMOST(s) = RMOST(t) = j. If there exists any node k, s < k < t. By Lemma 7, RMOST(s) <
RMOST (k) < RMOST(t). It follows RMOST(s) = RMOST(k) = RMOST(t). Therefore, vertex k
is also a child of vertex j.

Hence, i is the leftmost child of its parent if and only if RMOST (i — 1) < RMOST(i). O



Since the pre-order number of nodes in the same level are increasing from left to right and by
Lemma 5, 6 and 8, we can perform binary search to locate RMOST?(i) for any interval I;. Therefore,

we have the following corollary.

Corollary 1. Given the interval model F' of an interval graph G with sorted order, the center can be

found in O(logn) time using O(n/logn) processors on the EREW PRAM. O

3.2 The Center Problem on Circular-arc Graphs

The circular-arc model of a circular-arc graph consists of a set S = {I1, Is,...,I,} of n circular-arcs on

the unit circle C. For example, see Figure 3.

Fig. 3. A circular-arc model on circle C.

Now consider the center problem for circular-arc graphs. Without loss of generality, we assume that
the union of all arcs is equal to C' (otherwise, the problem becomes one on interval graphs). Besides, we
assume that there is no arc equal to C (otherwise, the problem becomes trivial). Given the circular-arc
model S, let r(S) denote the radius of the circular-arc graph. That is r(S) = min;cs max;cgs Len(i, 7).
Therefore, k is the center of S, if and only if max;cg Len(k, j) = r(S).

Similar to the RM OST function on an interval graph, for an arc I; on a circular-arc graph, we define
CMOST(i) as follows. Let N(i) denote the set {I;|b; in I;}. Starting from b;, we visit right endpoints
of arcs in N (%) clockwise one by one. Let CMOST (i) denote the last arc visited. For example, consider
Figure 3. The arrays CMOSTY(1,...,n] is equal to (2,4,4,6,1,1,1). Similar to the LM OST function on

an interval graph, for an arc I; on a circular-arc graph, we define DM OST (i) as follows. Let N'(7) denote



the set {I;]a; in I;}. Starting from a;, we visit left endpoints of arcs in N'(%) counter clockwise one by
one. Let DM OST (%) denote the last arc visited. Consider Figure 3 again. The arrays DM OSTT1,...,n|
is equal to (6,1,2,2,4,4,6). For ease of reference, let CMOST* (i) denote CMOST(CMOST*~1())
and CMOST' (i) = CMOST(i). Besides, CMOST (i) = i. DMOST"(i) is defined similarly.

In the following, we will show many problems on circular-arc graphs can be transformed into prob-
lems on interval graphs. We describe how to map S into an interval model F”. This mapping is done as
if circle C' is open at a1 and unrolled onto the real line twice. Any arc I is mapped into two intervals J, ,i
and J,f as follows. If the interior of I} does not contain a1, then J,% = [ak, bg] and J,? = [ak + 2n, b, + 2n].
If the interior of Iy contains ai, then J} = [ay — 2n,b;] and J? = [ak, by, + 2n]. For example, consider
Figure 3. Its corresponding interval model is shown in Figure 4. Note that the mapping can be found

71
61 41 72

1 1 ) — )2
1 3 5 7 2 P

o
3 E)

Fig. 4. The corresponding interval model of the circular-arc model in Figure 3.

by checking every endpoint in S to see whether it is an endpoint of an arc that contains a1. This can
be done in O(logn) time using O(n/logn) EREW PRAM processors.

The following lemma shows how to compute array CMOST of S through the help of F'. Here, for
an arc I; on S, we choose Ji1 as its corresponding interval on F”. For an interval on F’, its corresponding

arc on S is the arc which mapped into the interval.

Lemma 9. Given a circular-arc model S, I; is an arc on it. Suppose the corresponding interval of I;

on F' ist. Then, CMOST(7) is equal to the corresponding arc of RMOST(t) on F'. O

Similar to the RminB function on an interval graph, for an arc I; on a circular-arc graph, we
define CminB(i) as follows. Starting from b;, we visit right endpoints of arcs which do not intersect I;

clockwise. Let CminB(i) denote the first arc visited. In Figure 3, array CminB = (3,5,5,7,2,2,2).



Similar to Lemma 9, for the CminB function, we have the following lemma.

Lemma 10. Given a circular-arc model S, I; is an arc on it. Suppose the corresponding interval of I;

on F' ist. Then, CminB(i) is equal to the corresponding arc of RminB(t) on F'. O

By Lemma 9 and 10, we can compute arrays CMOST and CminB on a circular-arc graph by com-
puting its corresponding arrays RM OST and RminB on its corresponding interval graph. Regarding
to DMOST, we can apply the techniques on CMOST to find them. By Lemma 1 and 4, we have the

following lemma.

Lemma 11. For a circular-arc graph, its corresponding array CMOST, CminB and DMOST can be

computed in O(logn) time using O(n/logn) processors on the EREW PRAM model. O

For arc I; in S, let R(7) denote the shortest path length walking from I; clockwise and visiting I;
again. For example, in Figure 3, (1, Iy, I4, I, I1) is a path and R(1) = 4. For ease of reference, let r;(.5)
denote the largest distance between arc I; and other arcs. That is r;(S) = max;cg Len(s, j). Suppose
|R(i)/2] = k. We define the detecting area of I; as Da(i) = [bearosrr—1(:) @pmosrs—1(iy]- We have the

following lemma.

Lemma 12. For arc I;, suppose |R(i)/2] = k. If there is no arc contained in Da(3), then r;(S) = k.

Otherwise r;(S) = k + 1.

Proof. For arc I;, suppose |R(i)/2| = k. Consider CMOST*(i). The shortest path length from I; to
CMOSTE(i) clockwise is k. Since the shortest path length walking from I; clockwise and visiting I;
again is R(7), the shortest path length from I; to CMOST* (i) counter-clockwise is at least k. Therefore,
Len(i, CMOST*(i)) = k. It follows that r;(S) > k. Consider the arcs which are not contained in Da(3).
Their distances to I; are less than or equal to k. If there is no arc contained in Da(i), CMOST*(i) is
the arc with the largest distance between arc I; and other arcs and r;(S) = k.

Suppose there exits some arcs contained in Da(i). See Figure 5. These arcs intersect CMOST* (i)
or DMOST*(i). Therefore, their distance to I; is k + 1. Hence, r;(S) = k + 1. O

Note that r(S) = min;cg r;(S). By Lemma 12, we have the following lemma.



Fig. 5. The illustration of Lemma 12.

Lemma 13. Given a circular-arc model S, there exists a center I; such that R(j) = min;eg R(i) or

min;cg R(’L) + 1. U

By the above lemma, the center can be found by computing min{r;(S)|R(j) = min;es R(7) or

min;es R(7) + 1,57 € S}. Now, we list steps for computing the center of a circular-arc graph.

Step 1. For every arc I; in S, compute R(7).

Step 2. Find min;es R(7). Let t = min;es R(7). Let the set of arcs CA = {I;|R(i) =t or R(i) = t+ 1}.

Step 3. For every arc I; in CA, compute Da(j).

Step 4. For every arc I; in CA, if there exists no arc in Da(j), then let 7;(S) = [R(j)/2], otherwise
let 75(8) = | R(7)/2] + 1.

Step 5. Find the center I, where r.(S) = min{r;(S)|I; € CA}.

Now, we consider Step 1. Recall that when we map the circular-arc model § into its corresponding
interval model F’', we map each arc I; into two intervals, say Jil and JiQ. It is not difficult to see that

R(i) is equal to Len(J},J?) in F'. We have the following lemma.

17%1

Lemma 14. Given a circular-arc model S and its corresponding interval model F', R(%) is equal to

Len(J}, J?) in F'. a

1%

As described in Section 2, we can use one processor to query Len(Jil, Jf) in constant time. Note

that in order to avoid read conflict, for every interval I; in F’, we need to store PreOrder(RMOST(3)),

PreOrder(LMOST(i)), L(RMOST(i)) and L(LMOST (7)) for future query during the preprocessing

10



phase. Therefore, Step 1. can be performed in O(logn) time using O(n/log n) EREW PRAM processors.

Obviously, Step 2. can be done in the same time and processor complexity.

Regarding Step 3, we need to find Da(j). That is we need to query CMOST*(j) and DM OST*(5)
where k = | R(j)/2] — 1. Note that CMOST*(5) is equal to RMOST*(j) in its corresponding Tra0sT
tree. We can use the technique of the level-ancestor query in trees introduced by Berkman and Vishkin [2]

to solve these queries. However, it is a fairly hard implemented algorithm and run on the CREW PRAM.

In stead of answering these queries individually, we perform these queries in batch. With the help

of Traost, the following lemma shows how to find CMOST*(j) for all I; in S for some fixed k.

Lemma 15. Given a circular-arc model S and a positive integer k, CMOST* (i) and DMOST* (i) for

all I; in S can be found in O(logn) time using O(n/logn) EREW PRAM processors.

Proof. First, we map the circular-arc model S into corresponding interval model F’. Given arc I; on S,
suppose the corresponding interval of I; on F' is t. By Lemma 9, it follows CMOST* (i) is equal to the

corresponding arc of RMOST*(t) on F'.

Now, consider how to compute RMOST*(t) on F’ for all t. Note that RMOST*(t) is the ancestor
of t on level L(t) — k in TryosT- By Lemma 6, we can compute RMOST*(t) on F' for all node t
at level j as follows. We merge the nodes on level j — k and j according to their pre-order number in
Tramost- For nodes on level j — k and on level j, define JK (t) such that JK(t) =t if node ¢ is on level
j, otherwise JK (t) = 0. Then, the prefix maximum of JK on the merged list is equal to RMOST*(t)
for node ¢ on level j. The merging process for two sorted lists and prefix computation can be performed
in O(log h) time using O(h/log h) EREW PRAM processors [1, 6], where h is the size of lists. The total
size for all levels is at most 2n. Then, RMOST*(t) on F' for all ¢ can be computed in O(logn) time

using O(n/logn) EREW PRAM processors.

It follows CMOST* (i) for all arc I; on S can be found in the same time and processor complexity.

The proof of DMOST®(i) is similar and omitted. O

11



Suppose t = minjcg R(i) and CA = {I;|R(i) = t or R(i) = t+ 1}. We can find Da(j) for every
arc I; in CA, by performing batch query (as described in Lemma 15) twice, where k = [¢/2] — 1 and
k = |(t+1)/2] — 1. Therefore, Step 3 can be done in O(logn) time using O(n/logn) EREW PRAM
Processors.

Now, consider Step 4. We need to test if there exists any arc in Da(j) for arc I;. The following

lemma shows how to perform this test efficiently.

Lemma 16. For arc I; in S, there exist any arc contained in Da(j) if and only if

CminB(CMOSTE1)/21=1(4)) is contained in Da(j). O

Recall that when we compute Da(j), we store CMOSTLE)/21=1(5) for node j. To avoid read
conflict, in Step 3, when we compute Da(j), we can also store CminB(CMOSTLE)/21=1(5)) for node
j. Therefore, Step 4 be done in O(logn) time using O(n/logn) EREW PRAM processors. Obviously,
Step 5 can be performed in the same time and processor complexity. Therefore, we have the following

corollary.

Corollary 2. Given the circular-arc model S of an interval graph G with sorted order, the center can

be found in O(logn) time using O(n/logn) processors on the EREW PRAM. O

4 Finding the Median of an Interval Graph

4.1 Definition

In order to compute some of the structure of F, we define the following notations. For any endpoint ¢,
let LaNo(q) and LbNo(q) denote the number of als and bls to the left of ¢ respectively. Similarly, let
RaNo(q) and RbNo(q) denote the number of a}s and b}s to the right of ¢ respectively. For example,
in Figure 1, ag = 7,LaNo(7) = 4. Note that all these arrays can be computed in O(logn) time using
O(n/logn) EREW PRAM processors by parallel prefix computation [1].

The 1-median problem is to find a vertex such that the sum of the distances to the remaining vertices

is minimized. For an interval I;, let Cost(I;) = > LeF Len(i, j) denote the cost of I; . Since the cost of

12



a non-proper interval is not smaller than the cost of the proper interval containing it, we can consider
only proper intervals as candidates for the median.

For a candidate interval I;, Cost(I;) can be divide into two parts. For an endpoint ¢, which is an
endpoint of I;, we define LSUM (q) = ij<q Len(i,j) and RSUM/(q) = ij>q Len(i, 7). It follows
Cost(I;) = LSUM(b;) + RSUM (b;). Therefore, if we can compute LSUM (q) and RSUM (q) for each
endpoint of a proper interval, the median can be found efficiently. The following lemmas show key idea

about how to compute LSUM and RSUM efficiently.

Lemma 17. [8] For any proper interval I;, the following equations hold.

1. LSUM(GVL) = LSUM(G'LMOST(i)) + 2 % LbNo(az) — LbNO(a'LMOST(i))
9. LSUM (b)) = LSUM (a;) + LbNo(b;) — LbNo(a;)
3. RSUM(a;) = RSUM(b;) + LbNo(b;) — LbNo(a;)

For any proper interval I;, let’s discuss how to compute its corresponding RSU M (a;) and RSU M (b;).
The computation for LSUM (a;) and LSUM(b;) are similar and omitted. For every interval I;, let
wa; = LbNo(b;) — LbNo(a;) and wb; = RbNo(b;) + RaNo(b;) — RbNo(brrrost(i))-

By Lemma 17, RSUM (a;) = RSU M (b;) + wa;. Therefore, we can compute RSU M (a;) after finding
RSUM (b;) and wa;. Now, consider the computation method of RSUM (b;).

By Lemma 17, RSUM (b;) = RSUM (bgyost(iy) + wbi- Consider the tree TryosT again. For every
node 7 in TryrosT, We associate weight wb; with it. By this way, we get a weighted Trasos7- Note that
for any proper interval I;, RSUM (b;) is equal to the summation of all weights on the path from node 4
to the root in Tryros7- Therefor, we can reduce the problem of finding RSU M (b;) for proper intervals
into the following problem.

Prefix sum on weighted Tgryos7: For every node I; in TrayrosT, compute the summation of
weights in {wb;|j is on the path from node ¢ to the root in Tryos7}-

We can say that prefix sum on weighted TrarosT is a generalized prefix sum computation.

13



Recall that LbNo and RbNo value of all endpoints can be pre-computed in O(logn) time using
O(n/logn) EREW PRAM processors. Therefore, all wa}s and wbis can be computed in the same
processors and time bound. Note that when we compute wb;s, we read RbNo(bryrost(i))'s- It may
leads to read conflict. In order to avoid read conflict, we construct array BR such that BR(7) stores
RbNo(brrrost(i)) as follows. As shown in Lemma 8, the children of each internal node in Traros7 0ccupy
consecutive ranges. Therefore, we can apply prefix computation technique [1] to propagate RbNo(b;) to

j's children in O(logn) time using O(n/logn) EREW PRAM processors.

4.2 The Transformation of a General Tree to a Binary Tree

Instead of computing prefix sum on weighted TrarosT directly, we first transform the weighted TryrosT
into a weighted binary tree.
Given a sub-tree T', rooted at u and with children vy, vo, - - - , g, its corresponding transformed binary

sub-tree BT is defined as follows and is shown in Fig. 6:

1. For u,vq,vo,- -+, in T, their corresponding nodes in BT are u, v1,v2, - -, U, respectively. Besides,
their weights are the same as in 7.

2. If k=1, there is a dummy node v} in BT. If k > 2, there are dummy nodes u},uf,--,u}_, in BT.
The weight of any dummy node is zero.

3. The root of BT is u.

4. The parent of v1 and u} is u.

5. The parent of v; and v} is u}_, (for i=2 to k-2).

6. The parent of vy and vy is uj,_,.

7. If there is any sub-tree with v; as its root, apply the above rules recursively to transform it into a

binary tree.

The transformation of a tree T to a binary tree BT is now illustrated in Fig. 6. Fig. 6(a) is a general

tree. Its corresponding binary tree is in Fig. 6(b). All of the newly added nodes in this binary tree are

14



@ (b)

Fig. 6. The General Tree and the Corresponding Binary Tree.

dummy nodes. Throughout this paper, the original general tree is denoted T' and its transformed binary

tree as BT.

We apply the above transformation process on Trarost- Let BTrarosT denote the weighted binary
tree. With the arrays computed in Section 2, we can perform these transformation in O(logn) time
using O(n/logn) EREW PRAM processors. It is not difficult to see that for any non-dummy node
in BTrprosT, the summation of weights on the path from it to the root in BTrpos7 is equal to the
summation of weights on the path from its corresponding vertex to the root in Trasos7- Therefore, we
can reduce the problem about the prefix sum on Trp057 into the prefix sum on BTgp 057 in O(logn)

time using O(n/logn) EREW PRAM processors.

The computation of prefix sum on BTgryosT can be considered as computing downward accumula-
tion on a binary tree. Downward accumulation passes information downwards, from the root towards
the leaves. In [8], Gibbous et al. proposed an O(logn) time algorithm using O(n/logn) EREW PRAM

processors to solve downward accumulation on a binary tree. Therefore, we have the following corollary.

15



Corollary 3. Given the interval model F' of an interval graph G with sorted order, the median can be

found in O(logn) time using O(n/logn) processors on the EREW PRAM. O

5

Conclusion

In this paper, we propose parallel algorithms for center and median problems on interval and circular-arc

graphs. We define some useful data structures on interval graphs. The median problem on circular-arc

graphs is left for future study. The extension to trapezoid graphs [7] is also left for future study.

References

o

>

S.G. AKkl. Parallel computation: models and methods. Prentice Hall, Upper Saddle River, New Jersey, 1997.

O. Berkamn and U. Vishkin. Finding level-ancestors in trees. J. Comput. System Sci., 48:214-230, 1994.

S. Bespamyatnikh, B. Bhattacharya, J. Mark Keil, D. Kirkpatrick, and M. Segal. Efficient algorithms for centers and
medians in interval and circular-arc graphs. Networks, 39(3):144-152, 2002.

H. S. Chao, F. R. Hsu, and R. C. T. Lee. On the shortest length queries for interval and circular-arc graphs. Proc. of the
joint meeting of the Fifth World Multi-conference on Systemics, Cybernetics and Informatics (SCI 2001) and the 7th
International Conference on Information Systems Analysis and Synthesis (ISAS 2001), Orlando, USA, VII:331-336,
2001.

D.Z. Chen, D. T. Lee, R. Sridhar, and C. N. Sekharan. Solving the all-pair shortest path query problem on interval
and circular-arc graphs. Networks, pages 249257, 1998.

R. Cole. Parallel merge sort. SIAM J. on Computing, 17:770-785, 1988.

I. Dagan, M.C. Golumbic, and R.Y. Pinter. Trapezoid graphs and their coloring. Discr. Applied Math., 21:35-46,
1988.

J. Gibbons, W. Cai, and D. Skillcorn. Efficient parallel algorithms for tree accumulations. Science Computer Pro-
gramming, 23:1-18, 1994.

M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.

S. Olariu. A simple linear time algorithm for computing the center of an interval graph. International Journal of
Computer Mathematics, 34:121-128, 1990.

16



