
 - 0 -

Submit to: Workshop on Cryptology 
and Information Security  

Paper Title: Clustered Architecture for 
High-Speed IPsec Gateway 

 
Shiuhpyng Shieh and Yung-Zen Lai 

Contact author: Shiuhpyng Shieh 
 

Department of Computer Science and Information Engineering 
National Chiao Tung University, Hsinchu, Taiwan 300 

E-mail: {ssp, yzlai}@csie.nctu.edu.tw 
Phone: (03) 5744788 
Fax: (03) 5734176 

 

Abstract 
Due to the increasing demand of secure communications over the Internet, IPsec 

gateway becomes one of the popular methods to provide security services to all clients in 
a protected subnet.  The processing speed of an IPsec gateway is critical to the overall 
network throughput.  To accelerate processing speed and improve reliability, cluster 
technology was inherently applied to the design of a modern IPsec gateway.  Traditional 
dispatcher/master-based cluster technique must have a centralized dispatcher to handle all 
incoming and outgoing messages.  The failure of single point, that is the dispatcher, will 
cause the crash of the entire gateway.  The dispatcher will also become the bottleneck if 
its computation power cannot handle all messages.  With the proposed clustered 
architecture, the speed of IPsec gateway increases drastically and almost linearly.  As 
the experiment results showed, the proposed clustered architecture provides better 
performance and can scale up easily. 

Keywords: Security gateway, VPN, IPsec, Cluster, load balancing 



 - 1 -

Clustered Architecture for High-Speed 
IPsec Gateway 

 
Shiuhpyng Shieh and Yung-Zen Lai 

 
Department of Computer Science and Information Engineering 

National Chiao Tung University, Hsinchu, Taiwan 300 
E-mail: {ssp, yzlai}@csie.nctu.edu.tw 

Phone: (03) 5744788 
Fax: (03) 5734176 

 

Abstract 
Due to the increasing demand of secure communications over the Internet, IPsec 

gateway becomes one of the popular methods to provide security services to all clients in 

a protected subnet.  The processing speed of an IPsec gateway is critical to the overall 

network throughput.  To accelerate processing speed and improve reliability, cluster 

technology was inherently applied to the design of a modern IPsec gateway.  Traditional 

dispatcher/master-based cluster technique must have a centralized dispatcher to handle all 

incoming and outgoing messages.  The failure of single point, that is the dispatcher, will 

cause the crash of the entire gateway.  The dispatcher will also become the bottleneck if 

its computation power cannot handle all messages.  With the proposed clustered 

architecture, the speed of IPsec gateway increases drastically and almost linearly.  As 

the experiment results showed, the proposed clustered architecture provides better 

performance and can scale up easily. 

Keywords: Security gateway, VPN, IPsec, Cluster, load balancing 



 - 2 -

1  Introduction 

With the rapid advance in communication technologies, many emerging Internet 

applications have accentuated the need for security mechanism in the Internet.  To 

relieve software engineers of developing proprietary secure protocols, IP security 

protocol (IPsec) suites [1] [2] [3] provide security services such as authentication, 

integrity and confidentiality.  One of the most popular applications of IPsec is the 

construction of Virtual Private Network (VPN), which allow two subnets to build secure 

connections over the public Internet. 

However, the traffic handled by the gateway also becomes heavier than the early 

period with the rapid growth of data transmission technologies.  To be capable of 

dealing out the increasing load, cluster technologies are adopted on the design of IPsec 

gateways. 

In a clustered IPsec gateway, packets are distributed to different devices to achieve 

load balance among them.  In such an environment, how to synchronize SA information 

between these machines is the most important thing we concerned. 

With the purpose of increasing the throughput of VPN gateways, some vendors also 

implement their VPN gateway products by using cluster technologies, such as Cisco and 

NetScreen [4] [5].  However, most of them use the session-based load-balancing scheme 

for their implementation.  To provide better load balancing for clustered IPsec gateway, 

we also apply packet-based traffic dispatching schemes for clustered IPsec gateway. 

To implement a high-speed IPsec gateway, clustering technology has been adopted 

to parallelize the IPsec encryption/decryption procedures.  Traditional cluster 

technology means a dispatcher and lots of slave nodes.  Typically, the dispatcher would 

handle all incoming and outgoing messages, and it would dispatch time-consuming 
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operations to slave nodes.  But in IPsec environments, it’s difficult to design a 

dispatcher-based cluster using an existing commercial Load Balancer.  Because IPsec 

SPI sequence number assigning is an important issue for IPsec’s anti-replay mechanism.  

As a result, design a dispatcher to fit IPsec environment is needed for clustered IPsec 

gateway. 

Traditional clustering technique provides the ability to perform parallel processing 

of CPUs that reside in discrete devices.  In this kind of cluster, a dispatcher is 

responsible for all of the operations performed throughout the cluster; only 

time-consuming calculations are distributed to other slaves.  This technology could 

cause single point of failure straightforwardly if dispatcher was crashed.  And if 

computation power of the dispatcher cannot be capable to deal all incoming packets, it 

would become the bottleneck. 

New cluster technology, such as [9] and [10], could offer truly load-balance and 

fault-tolerance.  It can also have lower latency for packet transmit.  But it could only be 

suitable for operations that have no co-relationship, such as different http request.  

While processing related requests, this cluster technique fails or needs more operation for 

synchronization.  In other words, it lacks some mechanisms for operations that need 

real-time synchronization, e.g., SPI sequence number assigning. 

 Hierarchical architecture Flat architecture 

Synchronization Easy Hard 

Transfer latency High Low 

Fault-tolerance Bad Good 

Scalability High Medium High 

Possible bottleneck Dispatcher Not obviously 

Table 1-1. Comparison for two cluster technologies 
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Since there is a dispatcher/master in hierarchical architecture, it may be ease of 

control, management, and synchronization, but it also need some mechanism to inform 

slaves some information.  And because the existence of dispatcher, it could become the 

bottleneck and could cause single point of failure easily.  On the contrary, 

synchronization in flat architecture is more difficult.  Since all nodes would receive all 

packets, it would cause more CPU overhead to process them, but it could have better 

fault-tolerance, (Microsoft claims their NLB has (N-1)-way failover in a cluster with N 

hosts).  More over, filtering unwanted packets is faster than examining, rewriting, and 

resending packets, so, flat architecture would have low latency than hierarchical one. 

In this paper, we propose a load balancing approach to implement a high speed IPsec 

gateway.  The design is simplified by using the new clustering technology architecture.  

With layer-two multicast technique, all cluster nodes received all packets.   To evenly 

distribute traffic to cluster nodes, there was a filter driver running on all the cluster nodes.  

This driver would also keep track of all incoming packets and synchronize IPsec SA SPI. 

This paper is organized as follows.  In the next section, we present a flat clustered 

IPsec gateway architecture and estimate its overhead.  Section 3 discusses the dispatch 

schemes, session-based vs. packet-based and round-robin vs. shortest-queue-first.  In 

Section 4, we present the performance of this proposed architecture and some comparison 

with others.  Finally, Section 5 gives a conclusion and our future work. 
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2 Proposed Flat Clustered IPsec Gateway 

In the proposed flat architecture, IPsec protocol is executed in a clustered 

architecture.  Microsoft suggests using layer-two broadcast or multicast to 

simultaneously distribute incoming network traffic to all cluster nodes in environment 

using a switch instead of a hub.  We also try to use layer-2 multicast MAC address for 

our IPsec gateway, but thus it causes other problems. 

In Linux, if an interface wants to receive packets whose destination address is a 

multicast MAC address without adding a multicast group, it should enable the 

promiscuous mode or all-multicast mode.  Or packets addressed to a multicast MAC 

address would be dropped in Linux kernel.  Enable the promiscuous mode or 

all-multicast mode would make NIC to receive all network packets and cause kernel to 

process all of them.  Since not all of the received packets are addressed to this cluster, it 

causes more overhead for kernel.  Packets sent by cluster nodes would be sent back to 

all of them if their destination MAC addresses were multicast ones.  This is the 

condition we do not want to expect. 

In a clustered IPsec environment, how to assign the proper SPI sequence number 

and let this value synchronized in all nodes are the most important things we concerned.  

Sending messages between cluster nodes for every incoming packet, such as Nokia IP 

clustering, seems cost too many operations and may not catch up the speed in high speed 

environment.  In this section, we introduce the overall architecture and estimate the 

possible overhead as well as the operations of its components. 

2.1 System Architecture 

We adopt de-centralized, clustered architecture with packet-based load balancing 
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approach for system architecture.  Thus, there is only one major component, a set of 

cluster nodes, in proposed clustered IPsec gateway. 

Each node in this cluster is capable of processing all incoming packets, either 

forwarding them or encapsulating/extracting them in/out IPsec tunnel.  Figure 2-1 shows 

a pair of proposed clustered IPsec gateways and the traffic flows.  All of the cluster 

nodes are connected via gigabit Ethernet switch.  And they must share two IP addresses 

in order to deliver packets directly to the destination node (one for outgoing traffic and 

one for incoming).  To improve performance, each cluster node has two network 

interface cards.  Two Ethernet switches are used to separate the connections between the 

router and local intranet, so that the distributed IPsec gateway can act as a virtual router 

to the local network.  By intercepting ARP request to router, this IPsec gateway can act 

as a default router of the subnet transparently to control all the traffic across it. 

Figure 2-1. Architecture for Proposed IPsec Gateway 

To illustrate how packets flow through the clustered IPsec gateway, we assume that 

the packet is originated from the left subnet and its destination is on the right one.  First, 

packet coming from the left side local network is delivered to the IPsec gateway using 

layer-two multicast.  All of the cluster nodes would receive this packet and locate the 
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correspondent SA first. 

SA specifies sequence number information as well as the algorithm and key used to 

generate or validate the integrity check value (ICV).  Since every node in this cluster 

would receive all and the same count of packets, all of them would assign the same value 

of sequence number for the current packet.  Then some dispatching scheme would be 

calculated and find only one node of them to continue processing it.  Other cluster nodes 

would update IPsec SA database only and then drop current packet.  The 

encrypted-packet would then directly forward to the router of local area network by the 

node processing it.  The router forwards this packet to the right side IPsec gateway 

according to its routing table. 

Upon receipt of this packet, this encrypted-packet would also be received by all the 

cluster nodes in the right side IPsec gateway.  All of them would check its IPsec ICV 

value and update the IPsec anti-replay windows.  But only one of them would decrypt 

this packet and forwards it to the ultimate destination by deploying dispatching schemes.  

Other nodes would drop it after anti-replay window updates.  Since all of the cluster 

nodes, either in sender side or receiver side, would receive all the packets, the problem of 

run-time assigning of IPsec sequence number is preserved. 

Figure 2-2 shows some processing steps for an original IPsec Gateway; and Figure 

2-3 shows the modified processing steps for our IPsec Gateway, which after adding a 

filter driver to filter out unwanted packets within IPsec processing step. 
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Figure 2-2. Processing steps for an IPsec Gateway 

Figure 2-3. Processing steps for our IPsec Gateway  

In the proposed architecture, the computation power of the IPsec gateway scales up 

with the number of cluster nodes increasing in the system.  Adding a new node can be 

achieved by setting the same IP addresses with other nodes.  And other nodes would 

know there is new node added by the heartbeat messages sending by the new node.  

Then the default host would organize new dispatching scheme and deploy it the all the 

nodes by adding some options of heartbeat messages.  Moreover, since there is no 

modification to the standard IPsec protocol, compatibility with other IPsec systems is 

preserved. 
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2.2 Synchronization Between Cluster Nodes 

Each node in this cluster would have its own unique host-identity.  They would 

elect one node as default host to interact ARP with clients and handle other interactive 

operations.  This default host must communicate with other IPsec 

hosts/gateways/devices to perform key exchange protocols, e.g., IKE [8].  It is also 

responsible for sending heartbeat messages to all of the cluster nodes and then receiving 

all acknowledgements from them.  Other cluster nodes would expect receiving heartbeat 

messages from default host and then trying to reply them.  If they did not receiving any 

heartbeat messages from default host in a period of time.  They would assume that the 

default host was down, and would try to re-elect one node as a new default host. 

There are some problems while performing encryption/authentication key exchange.  

For instance, how to reduce packet lost while key renewing and prevent lost of 

synchronization between two end devices.  Some solutions have been propounded to 

solve these problems in IETF IPsec working group.  Our goals are trying to ease our 

proposed IPsec gateway as a simple IPsec device, not cluster ones. 

We propose a simple scheme to reduce our proposed IPsec gateway as a simple 

IPsec device.  For IKE packets which directly addressed to the IPsec gateway itself, all 

the cluster nodes would accept them, but only the default host would try to response them.  

As a result, the entire cluster nodes would have the new encryption/authentication key at 

the same time.  Thus, problems of key renewing are reduced as a simple IPsec device 

would face up. 
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2.3 Overhead Estimate and Service Rate Prediction 

Since the entire cluster nodes would receive all the packets through the IPsec 

gateway, but only one of them would really process them.  It obviously causes some 

overhead for nodes that are not responsible for processing them. 

Take IPsec outbound traffic as example, Figure 2-4 shows some steps for a machine 

to process IPsec tunneling packets. 

Figure 2-4. Processing overhead for packet of size S 

Assume it would take Q(s) units of time for one machine from receiving a s-byte 

packet, passing it to Physical layer, MAC layer, IP layer, updating IPsec SA database, and 

finally our filter driver, which decide drop this packet or not (as darker region in Figure 

2-4).  Assume the following steps — encapsulate and encrypt the current packet, and 

pass it back to physical medium – would take another R(s) unit of time.  As a result, 

processing one s-byte packet would take R(s)+Q(s) unit of time. 

If each cluster node can process P units per second, the maximum number of s-byte 

packets one node can process within one second, C1,s, is P/( R(s)+Q(s) ).  Therefore, 
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while feeding s-byte packets, the maximum number for units one node can process within 

one second, C1,s, is 
)()( sQsR

P
+

 and the maximum service rate measured in 

bytes/second is ………………………………………………………
)()(,1 sQsR

sP
s +

×
=µ  

Assume we have n cluster nodes(s) and use round-robin filtering algorithm.  While 

receiving n s-byte packets, each node would receiving all of them but processing only 

one of them.  We can just simplify it to that it would take R(s)+nQ(s) unit of time to 

process one packet.  As a result, while feeding s-byte packets, the maximum number of 

units a cluster node can process within one second, Cn,s, is 
)()( snQsR

P
+

.  Then we 

have the maximum service rate of n cluster nodes(s) measured in bytes/second 
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2.4 Modeling by Queuing theory 

Since our architecture is several parallel servers sharing a single limited queue.  

And while incoming packets have Poisson (i.e. ``random'') arrivals and exponential 

service times, we can model our service queue as a (M/M/c):(GD/K/∞) queuing model 

[12] [13] [14] [15]. 

Thus, whatever how many cluster nodes we have, the arrival rate λn equals λ.  

Because each node would get more overhead while more packets coming, we have 

service rate µµ cn = , where c < n.  And we have the traffic intensity ρ = [(λ)/(µ)];  the 

proportion of time the system is idle 0!
P

cc
P cn

n

n −=
ρ , where 
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3 Dispatch Schemes 

This section discussed the dispatch schemes we used in the filter driver; we simply 

divide them to two kinds – session-based vs. packet-based and round-robin vs. 

shortest-queue-first.  Session-based and packet-based dispatching schemes are used to 

locate which cluster node should process the coming packets according to which session 

it belongs or just ignoring session information.  While new session or new packet comes, 

round-robin and shortest-queue-first dispatch schemes are used to find which cluster node 

should responsible for it. 

3.1 Session-based versus Packet-based 

The granularity used for load balancing will dominate the performance of the 

clustered system.  Current load balancing systems can be divided into two classes: 

session-based and packet-based.  In session-based load balancing, it will result in 

unbalanced load sharing if the loads of sessions are lopsided.  In this case, the cluster 

nodes serving heavy-load sessions may be overwhelmed while other nodes remain idle.  

Moreover, throughput of any single session is limited by the computation power of a 

cluster node. 

In contrast, packet-based load balancing systems can distribute packets to any one of 

the cluster nodes that is capable of processing it.  Thus, packet-based load balancing 

share load more evenly than session-based systems.  In the worse case, the clustered 

system will still be fully utilized even there is only a single network session.  According 

to RFC2451 [16], each IPsec packet can be encrypted/decrypted independently.  This 

flexibility enables the cluster nodes to processing packets autonomously without 

considering the chaining relationships. 
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Another serious problem in session-based systems is that no one knows which 

session an encrypted packet belongs before decrypt it in IPsec inbound gateway.  In 

receiver side, find a node using other schemes rather than session-based scheme is needed.  

This denotes that session-based schemes can only be adopted in IPsec outbound traffic.  

Table 3-1 lists some comparisons between these two schemes.  Since packet-based 

schemes have more pros, thus, we prefer to use packet-based scheme to dispatch traffic.  

But session-based scheme is also tested in our experiments. 

 Session-based schemes Packet-based schemes 

State keeping Yes No 

Extra storage overhead Yes No 

Extra time overhead Yes No 

Concurrent sessions limited Unlimited 

Bursty session 
utilization limit 

One node All nodes 

Table 3-1. Comparison between session-based and packet-based schemes 

3.2 Round-Robin versus Shortest-Queue-First 

In both packet-based and session-based schemes, while new packet or new session 

comes, what fashion to deploy is another point.  Round-Robin (RR) scheme is the 

simplest one, but when different size packets come, another sort of unbalance would 

come into sight.  Shortest-Queue-First (SQF) scheme is the best schemes in some way.  

Since every cluster node in our architecture will receive all coming packets, so how to get 

the load or queue length of every other node is not the issue.  But SQF would cause 

more overhead to calculate which the shortest queue is then RR fashion.  We’ve tested 

both RR and SQF fashions in our experiments. 

The pseudo codes of our algorithms in filter driver to dispatch incoming packets 
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using packet-based scheme in RR and SQF fashions are shown below. 

PROCEDURE Packet_based_RR_DISPATCH 

begin 

 for all packet 

 begin 

  update IPsec SA database 

  assign NEXT_TURN to THIS_TURN 

  increase NEXT_TURN in Round-Robin fashion 

  if THIS_TURN equals MY_HOSTID 

   process this packet 

  else 

   drop this packet and terminate 

  endif 

 end 

end 

The above pseudo-codes describe for all incoming IPsec packets, we must update 

IPsec SA database first.  Then all the nodes would assign a NEXT_TURN value to 

THIS_TURN to denote which machine should be responsible for the current packet, 

where the value of NEXT_TURN is initially 0.  After knowing which node should 

process the current packet, they would increate the value of NEXT_TURN in RR fashion.  

This NEXT_TURN value would be used for the next coming packet.  Finally, each node 

would compare THIS_TURN value and its host-identity.  If these two values are 

identical, it means this cluster node should do the IPsec processing for the current packet.  

For other cluster nodes, they should drop the current packet and terminate all the process. 

PROCEDURE Packet_based_SQF_DISPATCH 

begin 

 for all packet 
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 begin 

  update IPsec SA database 

  assign NEXT_TURN to THIS_TURN 

  add the size of the packet to QueueLength for THIS_TURN 

  select NEXT_TURN in Shortest-Queue-First fashion by QueueLength 

  if THIS_TURN equals MY_HOSTID 

   process this packet 

  else 

   drop this packet and terminate 

  endif 

 end 

end 

The pseudo-codes above express for all incoming IPsec packets, we must update 

IPsec SA database first.  Then all the nodes would assign a NEXT_TURN value to 

THIS_TURN to denote which machine should be responsible for the current packet, 

where the value of NEXT_TURN is initially 0.  After knowing which node should 

process the current packet, they would increase the value of queue length associate with 

THIS_TURN.  Then they would count the value of NEXT_TURN in SQF fashion.  

This NEXT_TURN value would be used for the next coming packet.  Finally, each node 

would compare THIS_TURN value and its host-identity.  If these two values are 

identical, it means this cluster node should do the IPsec processing for the current packet.  

For other cluster nodes, they should drop the current packet and terminate all the process. 

Session-based algorithms are similar to packet-based algorithms.  For existent 

sessions, it would try to locate which node should process.  For new sessions, it would 

try to use RR or SQF fashion to assign a node to do the processing.  The pseudo codes 

of our algorithms are listed below. 

PROCEDURE Session_based_RR_DISPATCH 
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begin 

 for all packet 

 begin 

  update IPsec SA database 

  find existent session for this packet from session_table 

  if session found 

   if the responsible node equals MY_HOSTID 

    process this packet 

   else 

    drop this packet and terminate 

   endif 

  else 

   assign NEXT_TURN to THIS_TURN 

   add THIS_TURN and packet session information to session_table 

   increase NEXT_TURN in Round-Robin fashion 

   if THIS_TURN equals MY_HOSTID 

    process this packet 

   else 

    drop this packet and terminate 

   endif 

  endif 

 end 

end 

The pseudo-codes above illustrate for all incoming IPsec packets, we update IPsec 

SA database firstly.  Then all the nodes would find the corresponding entry in session 

table.  If the current packet is not belonged to any sessions, they figure it belongs to a 

new session.  For packets belongs to existent sessions, cluster nodes would find the 

responsible node according to the corresponding entry in session table.  Only the 
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responsible node would continue processing the current packet, others would drop it and 

terminate.  For packets belong to new session, they would assign a NEXT_TURN value 

to THIS_TURN to denote which machine should be responsible for the current 

packet/session, where the value of NEXT_TURN is initially 0.  After knowing which 

node should process the current packet/session, they would increate the value of 

NEXT_TURN in RR fashion.  This NEXT_TURN value would be used for the next 

new coming session.  Finally, each node would compare THIS_TURN value and its 

host-identity.  If these two values are identical, it means this cluster node should do the 

IPsec processing for the current packet.  For other cluster nodes, they would drop the 

current packet and terminate all the process. 

PROCEDURE Session_based_SQF_DISPATCH 

begin 

 for all packet 

 begin 

  update IPsec SA database 

  find existent session for this packet from session_table 

  if session found 

   if the responsible node equals MY_HOSTID 

    process this packet 

   else 

    drop this packet and terminate 

   endif 

  else 

   assign NEXT_TURN to THIS_TURN 

   add THIS_TURN and packet session information to session_table 

   increase NEXT_TURN in Round-Robin fashion 

   if THIS_TURN equals MY_HOSTID 
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    process this packet 

   else 

    drop this packet and terminate 

   endif 

  endif 

 end 

The pseudo-codes above show we update IPsec SA database firstly for all incoming 

packets.  Then all the nodes would find the corresponding entry in session table.  If the 

current packet is not belonged to any sessions, they figure it belongs to a new session.  

For packets belongs to existent sessions, cluster nodes would find the responsible node 

according to the corresponding entry in session table.  Only the responsible node would 

continue processing the current packet, others would drop it and terminate.  For packets 

belong to new session, they would assign a NEXT_TURN value to THIS_TURN to 

denote which machine should be responsible for the current packet/session, where the 

value of NEXT_TURN is initially 0.  After knowing which node should process the 

current packet/session, they would increase the value of queue length associate with 

THIS_TURN.  Then they would count the value of NEXT_TURN in SQF fashion.  

This NEXT_TURN value would be used for the next new coming session.  Finally, each 

node would compare THIS_TURN value and its host-identity.  If these two values are 

identical, it means this cluster node should do the IPsec processing for the current packet.  

For other cluster nodes, they would drop the current packet and terminate all the process. 
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4 Performance Measurement 

Since the performance of many single machines and products can catch up the wire 

speed of Fast Ethernet.  And migrating to high-speed environment is the trend in few 

years.  It’s meaningless and out of fashion to test cluster technologies in 100 Mbps 

environment this time.  Consequently, we choose Gigabit Ethernet as our testing 

environment [17] [18] [19].  Although Princeton University has proved that 

compression improves performance when encryption is employed in high-speed 

environment [20], but our main purpose is to test the scalability and try to prove it.  So, 

IPComp [21] is not used in our testing. 

The test bed is six machines with 1 AMD XP1800+ CPU, 256 MB RAM, 2 Intel 

PRO/1000 XT Gigabit NIC running on 66 MHz/64-bit PCI bus, and 1 SafeNet SafeXcel 

140-PCI encryption acceleration card.  One 3Com SuperStack 3 4900 12-port Gigabit 

Switch with one 4-port 1000BASE-TX module is configured as 2 or 4 VLANs for testing.  

The operating system of these machines is Red Hat Linux 7.2 with 2.4.18 kernel.  

FreeS/WAN 1.97 is used as implementation of IPsec on this clustered IPsec gateway.  

And Smartbits-200 of Spirent Communications with 2 GX-1420B Gigabit modules acts 

as the Traffic Analyzer. 

 

4.1 Fixed-Size Traffic 

The larger packet sizes, the less overhead caused by IP stack.  Thus, the overhead 

would be different by feeding packets with different size.  So, we first generate a set of 

fixed-size streams from Smartbits-200 to test our IPsec gateway in this ideal testing 

environment.  Because we only have six machines for testing, three of them must act as 
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sender side gateway and the other three machines must act as receiver side gateway. 

After testing from one node to three nodes, we found that the performance of this 

testing was bounded by the sender side.  It denotes that the performance was bounded 

by encryption operations; the speed of decryption can always catch up encryption.  So 

we change our settings to that our entire six machines act as sender side IPsec gateway.  

We test its performance after they encrypt the packets then deliver they to the router. 

Table 4-1 shows performance results using simple round-robin dispatching scheme.  

We gained these results by setting Smartbits-200 to send timed-burst packets in specified 

Databits/sec for 30 seconds.  If no packet lost, we assume our IPsec gateway can handle 

such traffic.  The performance was measured by the Databits/sec, which we configured 

in SmartWindows, after subtracting 14-byte Ethernet header. 

Table 4-1. Throughput for fixed-size traffic 

ESP/3DES-MD5 ESP/DES-MD5 AH/MD5 
Number of 

cluster 
nodes 

512 
bytes/frame 

(Mbps) 

1024 
bytes/frame

(Mbps) 

1446 
bytes/frame

(Mbps) 

1446 
bytes/frame 

(Mbps) 

1446 
bytes/frame

(Mbps) 
1 47.2 72.4 87.2 265.2 366.6 
2 93.3 141.3 172.1 503.5 686.8 
3 138.1 207.1 253.7 716.3 969.9 
4 182.3 269.2 333.2 913.9 974.4 
5 223.7 329.6 405.3 974.4 974.4 
6 265.5 387.9 480.1 974.4 974.4 
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Figure 4-1. Throughput for fixed-size traffic 

We also draw a comparison figure with ideal linear scale up in Figure 4-2.  It shows 

that our performance of this flat architecture can scale up almost linearly.  Taking the 

1446 bytes/packet 3DES/MD5 testing data for further evaluation using the proposed 

overhead estimating formula – 
)()(, snQsR

sPn
sn +

××
=µ  – which we mentioned in Section 3.  

Table 4-2 shows results we evaluated. 
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Table 4-2. Overhead evaluate for 1446 bytes/packet, ESP/3DES-MD5 mode 

Assume R(1446) take 1 unit of time, by using binomial for different number of 

cluster nodes, we can have the average number of P is 7665.3 packets/sec (standard 

division = 8.57) and the average number of Q(1446) is 0.0172 packets (standard division 

= 0.0011).  This means that without receiving packets and update SA database, our 

machine can encapsulating and transmitting 7665.3 packets per second in average.  As 

the number of incoming packets increasing, our machine would spend its time on 

handling incoming packets, it costs about 0.0172 degrades per packet. 

Therefore, if we assume R(512) take 1 unit of time, we can have the average number 

of P is 12018.3 packets/sec (standard division = 6.97) and the average number of Q(512) 

is 0.0134 packets (standard division = 0.0006); if R(1024) take 1 unit of time, we can 

have the average number of P is 9187.8 packets/sec (standard division = 4.02) and the 

average number of Q(1024) is 0.0252 packets (standard division = 0.0004). 

Since the standard divisions of P and Q are so small, it denotes that the proposed 

overhead estimating formula has been verified.  This flat cluster architecture can 

achieve high performance and the performance of it is nearly scalable while adding new 

cluster nodes.  In our computation, when the number of cluster nodes is larger than 14, it 

could handle 1000.3 Mbps, more than the wire speed of Gigabit Ethernet. 

According to the data, we found that while the number of cluster nodes increase, the 

# of Nodes(N) Frames/sec Percentage Cn,1446 
Cn,1446/ 
C1,1446 

1 7535.6 100.00 % 7535.6 100.00 % 
2 14817.4 196.63 % 7408.7 98.32 % 
3 21914.4 290.81 % 7304.8 96.94 % 
4 28801.8 382.21 % 7200.5 95.55 % 
5 35112.4 465.96 % 7022.5 93.19 % 
6 41500.7 550.73 % 6916.8 91.79 % 
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degradation increases geometrically instead of linearly.  It caused about 3.37%, 9.19%, 

17.79%, 34.04%, 49.27% degradation while the number of cluster nodes is 2, 3, 4, 5, and 

6, respectively, compared with linear scale up.  We can guess that while adding more 

cluster nodes, our IPsec gateway can handle more incoming packets, but it causes more 

overhead for each node.  As a result, the degradation increases geometrically, not 

linearly, we imaged before experiment. 

 

4.2 Real Traffic 

In the following experiments, throughput of packet-based scheme and session-based 

scheme are evaluated respectively using real traffic which collected from campus 

backbone router.  The characteristic of the traffic figured as follows:  Total 

1,328,780,468 bytes in 1,118,665 packets, 18,229 sessions.  Average 1187.8 bytes per 

packet (standard division = 524.623).  Average 72615.0 bytes per session (standard 

division = 460311.287).  We only collect the IP header of these packets and then 

regenerate them using SmartBits-200 as the data rate we want.  In both session-based 

and packet-based schemes, sessions and packets are assigned to cluster nodes in RR 

fashion and SQF fashion.  The throughput of each dispatching scheme is presented in 

Table 4-3. 
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Table 4-3. Throughput using real traffic 

Figure 4-3. Throughput using real traffic 

According to the results we got from experiments, it apparently shows that the 

packet-based schemes scale up almost linearly while adding more cluster nodes.  The 

two fashions in packet-based scheme result similar result, we guess that it is because the 

unbalance of different-size packets in RR fashion and searching shortest-queue overhead 

in SQF fashion cause similar performance degradation. 

For session-based schemes, not only unbalanced sessions would cause them to have 

poor scalability, but also cause more overhead and performance degradation for searching 
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(Mbps) 

Session-based 
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(Mbps) 
1 83.4 83.4 83.4 83.4 
2 161.7 161.7 154.5 161.6 
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session information.  Although there are faster schemes, such as hashing [22] [23], but it 

would also caused some overhead.  This means that the value of Q in session-based 

scheme would be larger then that in packet-based scheme.  As a result, we can conclude 

those packet-based schemes are better than session-based one in our IPsec environment, 

since layer-four session is meaningless for IPsec itself. 

 

4.3 Saturation Prediction 

In the meantime, the performance of our clustered IPsec gateway would be bounded 

by the wire speed of Gigabit Ethernet.  If ignoring this point, when will it saturate?  

Since all packets must be transferred from NIC to system memory and from system 

memory back to NIC through system bus, we guess it would be bounded by bandwidth of 

system bus. 

The bandwidth of PCI-64 bus is 64 bit * 66.6 MHz, 4266 Mbps.  In our flat 

architecture, all packets would be transferred from NIC to system memory, but only the 

packets that this node is in charge of would be transferred back.  Therefore, while there 

are C cluster nodes, if ignoring the computation of each machine, the theoretically 

maximum throughput of out flat architecture is 
1+

×
C
CBandwidth .  On the contrary, 

all packets should be transferred IN and OUT dispatcher’s system bus in dispatcher-based 

architecture.  As a result, the theoretically maximum throughput of it is 
2
1

×Bandwidth .  

This denotes that while using PCI 64bit/66MHz system bus, the theoretically maximum 

throughput of dispatcher-based IPsec gateway can only achieve about 2133 Mbps. 
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5 Conclusion 

In this paper, we proposed a flat clustered scheme for implementing a high speed 

IPsec gateway and conclude a formula to estimate overhead in this architecture.  

According to our methods, the performance of IPsec gateway can be easily scaled up by 

increasing number of cluster nodes.  In our analysis, while the overhead is significant 

small compared with a machines computation power, it can scale up almost linearly. 

Two companion traffic-dispatch schemes are also presented in this paper.  As 

experiment results show, packet-based dispatching scheme provides better load balancing 

capability.  On the other hand, session-based dispatching schemes are not effective to 

implement an IPsec gateway using cluster architecture.  Moreover, total experiment 

equipments cost less than 5% of Cisco VPN 5008, which is a Cisco VPN gateway 

product that can achieve to 760 Mbps.  Table 5-1 shows some comparison with 

commercial products. 

Table 5-1. Comparison with commercial products 

At this moment, our flat architecture would be bounded by the Gigabit Ethernet wire 

speed (AH mode).  Since the processing time of 2*s-size packet would not probably 

Manufacturer/Model Scalable Throughput 
ESP/3DES-MD5 

Our Approach Yes 
6 nodes for 480Mbps 

Would be bounded by wire 
speed if adding more nodes 

Cisco VPN 5008 Yes Up to 760 Mbps 
NetScreen 1000SP Yes Up to 1000 Mbps(wire speed) 
SonicWALL GX-650  285 
Intel 3130 VPN  95 
Lucent VPN-FB1000  90 
Alcatel 7137  70 
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take two times than S-size packet, we would try to reduce the granularity to “load-based”.  

We believe that trying to figure out Q(s) and R(s) for different-size packets would be 

helpful for more balanced dispatch. 
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