
 - 0 -

Submit to: Workshop on Cryptology
and Information Security

Paper Title: Clustered Architecture for
High-Speed IPsec Gateway

Shiuhpyng Shieh and Yung-Zen Lai

Contact author: Shiuhpyng Shieh

Department of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan 300

E-mail: {ssp, yzlai}@csie.nctu.edu.tw
Phone: (03) 5744788
Fax: (03) 5734176

Abstract
Due to the increasing demand of secure communications over the Internet, IPsec

gateway becomes one of the popular methods to provide security services to all clients in
a protected subnet. The processing speed of an IPsec gateway is critical to the overall
network throughput. To accelerate processing speed and improve reliability, cluster
technology was inherently applied to the design of a modern IPsec gateway. Traditional
dispatcher/master-based cluster technique must have a centralized dispatcher to handle all
incoming and outgoing messages. The failure of single point, that is the dispatcher, will
cause the crash of the entire gateway. The dispatcher will also become the bottleneck if
its computation power cannot handle all messages. With the proposed clustered
architecture, the speed of IPsec gateway increases drastically and almost linearly. As
the experiment results showed, the proposed clustered architecture provides better
performance and can scale up easily.

Keywords: Security gateway, VPN, IPsec, Cluster, load balancing

 - 1 -

Clustered Architecture for High-Speed
IPsec Gateway

Shiuhpyng Shieh and Yung-Zen Lai

Department of Computer Science and Information Engineering

National Chiao Tung University, Hsinchu, Taiwan 300
E-mail: {ssp, yzlai}@csie.nctu.edu.tw

Phone: (03) 5744788
Fax: (03) 5734176

Abstract
Due to the increasing demand of secure communications over the Internet, IPsec

gateway becomes one of the popular methods to provide security services to all clients in

a protected subnet. The processing speed of an IPsec gateway is critical to the overall

network throughput. To accelerate processing speed and improve reliability, cluster

technology was inherently applied to the design of a modern IPsec gateway. Traditional

dispatcher/master-based cluster technique must have a centralized dispatcher to handle all

incoming and outgoing messages. The failure of single point, that is the dispatcher, will

cause the crash of the entire gateway. The dispatcher will also become the bottleneck if

its computation power cannot handle all messages. With the proposed clustered

architecture, the speed of IPsec gateway increases drastically and almost linearly. As

the experiment results showed, the proposed clustered architecture provides better

performance and can scale up easily.

Keywords: Security gateway, VPN, IPsec, Cluster, load balancing

 - 2 -

1 Introduction

With the rapid advance in communication technologies, many emerging Internet

applications have accentuated the need for security mechanism in the Internet. To

relieve software engineers of developing proprietary secure protocols, IP security

protocol (IPsec) suites [1] [2] [3] provide security services such as authentication,

integrity and confidentiality. One of the most popular applications of IPsec is the

construction of Virtual Private Network (VPN), which allow two subnets to build secure

connections over the public Internet.

However, the traffic handled by the gateway also becomes heavier than the early

period with the rapid growth of data transmission technologies. To be capable of

dealing out the increasing load, cluster technologies are adopted on the design of IPsec

gateways.

In a clustered IPsec gateway, packets are distributed to different devices to achieve

load balance among them. In such an environment, how to synchronize SA information

between these machines is the most important thing we concerned.

With the purpose of increasing the throughput of VPN gateways, some vendors also

implement their VPN gateway products by using cluster technologies, such as Cisco and

NetScreen [4] [5]. However, most of them use the session-based load-balancing scheme

for their implementation. To provide better load balancing for clustered IPsec gateway,

we also apply packet-based traffic dispatching schemes for clustered IPsec gateway.

To implement a high-speed IPsec gateway, clustering technology has been adopted

to parallelize the IPsec encryption/decryption procedures. Traditional cluster

technology means a dispatcher and lots of slave nodes. Typically, the dispatcher would

handle all incoming and outgoing messages, and it would dispatch time-consuming

 - 3 -

operations to slave nodes. But in IPsec environments, it’s difficult to design a

dispatcher-based cluster using an existing commercial Load Balancer. Because IPsec

SPI sequence number assigning is an important issue for IPsec’s anti-replay mechanism.

As a result, design a dispatcher to fit IPsec environment is needed for clustered IPsec

gateway.

Traditional clustering technique provides the ability to perform parallel processing

of CPUs that reside in discrete devices. In this kind of cluster, a dispatcher is

responsible for all of the operations performed throughout the cluster; only

time-consuming calculations are distributed to other slaves. This technology could

cause single point of failure straightforwardly if dispatcher was crashed. And if

computation power of the dispatcher cannot be capable to deal all incoming packets, it

would become the bottleneck.

New cluster technology, such as [9] and [10], could offer truly load-balance and

fault-tolerance. It can also have lower latency for packet transmit. But it could only be

suitable for operations that have no co-relationship, such as different http request.

While processing related requests, this cluster technique fails or needs more operation for

synchronization. In other words, it lacks some mechanisms for operations that need

real-time synchronization, e.g., SPI sequence number assigning.

 Hierarchical architecture Flat architecture

Synchronization Easy Hard

Transfer latency High Low

Fault-tolerance Bad Good

Scalability High Medium High

Possible bottleneck Dispatcher Not obviously

Table 1-1. Comparison for two cluster technologies

 - 4 -

Since there is a dispatcher/master in hierarchical architecture, it may be ease of

control, management, and synchronization, but it also need some mechanism to inform

slaves some information. And because the existence of dispatcher, it could become the

bottleneck and could cause single point of failure easily. On the contrary,

synchronization in flat architecture is more difficult. Since all nodes would receive all

packets, it would cause more CPU overhead to process them, but it could have better

fault-tolerance, (Microsoft claims their NLB has (N-1)-way failover in a cluster with N

hosts). More over, filtering unwanted packets is faster than examining, rewriting, and

resending packets, so, flat architecture would have low latency than hierarchical one.

In this paper, we propose a load balancing approach to implement a high speed IPsec

gateway. The design is simplified by using the new clustering technology architecture.

With layer-two multicast technique, all cluster nodes received all packets. To evenly

distribute traffic to cluster nodes, there was a filter driver running on all the cluster nodes.

This driver would also keep track of all incoming packets and synchronize IPsec SA SPI.

This paper is organized as follows. In the next section, we present a flat clustered

IPsec gateway architecture and estimate its overhead. Section 3 discusses the dispatch

schemes, session-based vs. packet-based and round-robin vs. shortest-queue-first. In

Section 4, we present the performance of this proposed architecture and some comparison

with others. Finally, Section 5 gives a conclusion and our future work.

 - 5 -

2 Proposed Flat Clustered IPsec Gateway

In the proposed flat architecture, IPsec protocol is executed in a clustered

architecture. Microsoft suggests using layer-two broadcast or multicast to

simultaneously distribute incoming network traffic to all cluster nodes in environment

using a switch instead of a hub. We also try to use layer-2 multicast MAC address for

our IPsec gateway, but thus it causes other problems.

In Linux, if an interface wants to receive packets whose destination address is a

multicast MAC address without adding a multicast group, it should enable the

promiscuous mode or all-multicast mode. Or packets addressed to a multicast MAC

address would be dropped in Linux kernel. Enable the promiscuous mode or

all-multicast mode would make NIC to receive all network packets and cause kernel to

process all of them. Since not all of the received packets are addressed to this cluster, it

causes more overhead for kernel. Packets sent by cluster nodes would be sent back to

all of them if their destination MAC addresses were multicast ones. This is the

condition we do not want to expect.

In a clustered IPsec environment, how to assign the proper SPI sequence number

and let this value synchronized in all nodes are the most important things we concerned.

Sending messages between cluster nodes for every incoming packet, such as Nokia IP

clustering, seems cost too many operations and may not catch up the speed in high speed

environment. In this section, we introduce the overall architecture and estimate the

possible overhead as well as the operations of its components.

2.1 System Architecture

We adopt de-centralized, clustered architecture with packet-based load balancing

 - 6 -

approach for system architecture. Thus, there is only one major component, a set of

cluster nodes, in proposed clustered IPsec gateway.

Each node in this cluster is capable of processing all incoming packets, either

forwarding them or encapsulating/extracting them in/out IPsec tunnel. Figure 2-1 shows

a pair of proposed clustered IPsec gateways and the traffic flows. All of the cluster

nodes are connected via gigabit Ethernet switch. And they must share two IP addresses

in order to deliver packets directly to the destination node (one for outgoing traffic and

one for incoming). To improve performance, each cluster node has two network

interface cards. Two Ethernet switches are used to separate the connections between the

router and local intranet, so that the distributed IPsec gateway can act as a virtual router

to the local network. By intercepting ARP request to router, this IPsec gateway can act

as a default router of the subnet transparently to control all the traffic across it.

Figure 2-1. Architecture for Proposed IPsec Gateway

To illustrate how packets flow through the clustered IPsec gateway, we assume that

the packet is originated from the left subnet and its destination is on the right one. First,

packet coming from the left side local network is delivered to the IPsec gateway using

layer-two multicast. All of the cluster nodes would receive this packet and locate the

Cipher Text
Plain Text

 - 7 -

correspondent SA first.

SA specifies sequence number information as well as the algorithm and key used to

generate or validate the integrity check value (ICV). Since every node in this cluster

would receive all and the same count of packets, all of them would assign the same value

of sequence number for the current packet. Then some dispatching scheme would be

calculated and find only one node of them to continue processing it. Other cluster nodes

would update IPsec SA database only and then drop current packet. The

encrypted-packet would then directly forward to the router of local area network by the

node processing it. The router forwards this packet to the right side IPsec gateway

according to its routing table.

Upon receipt of this packet, this encrypted-packet would also be received by all the

cluster nodes in the right side IPsec gateway. All of them would check its IPsec ICV

value and update the IPsec anti-replay windows. But only one of them would decrypt

this packet and forwards it to the ultimate destination by deploying dispatching schemes.

Other nodes would drop it after anti-replay window updates. Since all of the cluster

nodes, either in sender side or receiver side, would receive all the packets, the problem of

run-time assigning of IPsec sequence number is preserved.

Figure 2-2 shows some processing steps for an original IPsec Gateway; and Figure

2-3 shows the modified processing steps for our IPsec Gateway, which after adding a

filter driver to filter out unwanted packets within IPsec processing step.

 - 8 -

Figure 2-2. Processing steps for an IPsec Gateway

Figure 2-3. Processing steps for our IPsec Gateway

In the proposed architecture, the computation power of the IPsec gateway scales up

with the number of cluster nodes increasing in the system. Adding a new node can be

achieved by setting the same IP addresses with other nodes. And other nodes would

know there is new node added by the heartbeat messages sending by the new node.

Then the default host would organize new dispatching scheme and deploy it the all the

nodes by adding some options of heartbeat messages. Moreover, since there is no

modification to the standard IPsec protocol, compatibility with other IPsec systems is

preserved.

IPsec ProcessingIPsec Processing

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer
IPsec ProcessingIPsec ProcessingIPsec Processing

filter

 - 9 -

2.2 Synchronization Between Cluster Nodes

Each node in this cluster would have its own unique host-identity. They would

elect one node as default host to interact ARP with clients and handle other interactive

operations. This default host must communicate with other IPsec

hosts/gateways/devices to perform key exchange protocols, e.g., IKE [8]. It is also

responsible for sending heartbeat messages to all of the cluster nodes and then receiving

all acknowledgements from them. Other cluster nodes would expect receiving heartbeat

messages from default host and then trying to reply them. If they did not receiving any

heartbeat messages from default host in a period of time. They would assume that the

default host was down, and would try to re-elect one node as a new default host.

There are some problems while performing encryption/authentication key exchange.

For instance, how to reduce packet lost while key renewing and prevent lost of

synchronization between two end devices. Some solutions have been propounded to

solve these problems in IETF IPsec working group. Our goals are trying to ease our

proposed IPsec gateway as a simple IPsec device, not cluster ones.

We propose a simple scheme to reduce our proposed IPsec gateway as a simple

IPsec device. For IKE packets which directly addressed to the IPsec gateway itself, all

the cluster nodes would accept them, but only the default host would try to response them.

As a result, the entire cluster nodes would have the new encryption/authentication key at

the same time. Thus, problems of key renewing are reduced as a simple IPsec device

would face up.

 - 10 -

2.3 Overhead Estimate and Service Rate Prediction

Since the entire cluster nodes would receive all the packets through the IPsec

gateway, but only one of them would really process them. It obviously causes some

overhead for nodes that are not responsible for processing them.

Take IPsec outbound traffic as example, Figure 2-4 shows some steps for a machine

to process IPsec tunneling packets.

Figure 2-4. Processing overhead for packet of size S

Assume it would take Q(s) units of time for one machine from receiving a s-byte

packet, passing it to Physical layer, MAC layer, IP layer, updating IPsec SA database, and

finally our filter driver, which decide drop this packet or not (as darker region in Figure

2-4). Assume the following steps — encapsulate and encrypt the current packet, and

pass it back to physical medium – would take another R(s) unit of time. As a result,

processing one s-byte packet would take R(s)+Q(s) unit of time.

If each cluster node can process P units per second, the maximum number of s-byte

packets one node can process within one second, C1,s, is P/(R(s)+Q(s)). Therefore,

Steps for all incoming packets

Other steps for packets the current node is responsible for

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer

Physical layer

MAC layer

IP layer
IPsec ProcessingIPsec ProcessingIPsec Processing

filter

 - 11 -

while feeding s-byte packets, the maximum number for units one node can process within

one second, C1,s, is
)()(sQsR

P
+

 and the maximum service rate measured in

bytes/second is ………………………………………………………
)()(,1 sQsR

sP
s +

×
=µ

Assume we have n cluster nodes(s) and use round-robin filtering algorithm. While

receiving n s-byte packets, each node would receiving all of them but processing only

one of them. We can just simplify it to that it would take R(s)+nQ(s) unit of time to

process one packet. As a result, while feeding s-byte packets, the maximum number of

units a cluster node can process within one second, Cn,s, is
)()(snQsR

P
+

. Then we

have the maximum service rate of n cluster nodes(s) measured in bytes/second

is ……………………………………………………………………
)()(, snQsR

sPn
sn +

××
=µ

2.4 Modeling by Queuing theory

Since our architecture is several parallel servers sharing a single limited queue.

And while incoming packets have Poisson (i.e. ``random'') arrivals and exponential

service times, we can model our service queue as a (M/M/c):(GD/K/∞) queuing model

[12] [13] [14] [15].

Thus, whatever how many cluster nodes we have, the arrival rate λn equals λ.

Because each node would get more overhead while more packets coming, we have

service rate µµ cn = , where c < n. And we have the traffic intensity ρ = [(λ)/(µ)]; the

proportion of time the system is idle 0!
P

cc
P cn

n

n −=
ρ , where

 - 12 -

()
11

1

0
0

1!

1

!

−+−

−

=



























 −













−

+= ∑
c

c

c
n

P

cK
c

c

n

n

ρ

ρρ
ρ . Finally, we have the effective arrival rate into

 the system ()neff P−= 1λλ .

 - 13 -

3 Dispatch Schemes

This section discussed the dispatch schemes we used in the filter driver; we simply

divide them to two kinds – session-based vs. packet-based and round-robin vs.

shortest-queue-first. Session-based and packet-based dispatching schemes are used to

locate which cluster node should process the coming packets according to which session

it belongs or just ignoring session information. While new session or new packet comes,

round-robin and shortest-queue-first dispatch schemes are used to find which cluster node

should responsible for it.

3.1 Session-based versus Packet-based

The granularity used for load balancing will dominate the performance of the

clustered system. Current load balancing systems can be divided into two classes:

session-based and packet-based. In session-based load balancing, it will result in

unbalanced load sharing if the loads of sessions are lopsided. In this case, the cluster

nodes serving heavy-load sessions may be overwhelmed while other nodes remain idle.

Moreover, throughput of any single session is limited by the computation power of a

cluster node.

In contrast, packet-based load balancing systems can distribute packets to any one of

the cluster nodes that is capable of processing it. Thus, packet-based load balancing

share load more evenly than session-based systems. In the worse case, the clustered

system will still be fully utilized even there is only a single network session. According

to RFC2451 [16], each IPsec packet can be encrypted/decrypted independently. This

flexibility enables the cluster nodes to processing packets autonomously without

considering the chaining relationships.

 - 14 -

Another serious problem in session-based systems is that no one knows which

session an encrypted packet belongs before decrypt it in IPsec inbound gateway. In

receiver side, find a node using other schemes rather than session-based scheme is needed.

This denotes that session-based schemes can only be adopted in IPsec outbound traffic.

Table 3-1 lists some comparisons between these two schemes. Since packet-based

schemes have more pros, thus, we prefer to use packet-based scheme to dispatch traffic.

But session-based scheme is also tested in our experiments.

 Session-based schemes Packet-based schemes

State keeping Yes No

Extra storage overhead Yes No

Extra time overhead Yes No

Concurrent sessions limited Unlimited

Bursty session
utilization limit

One node All nodes

Table 3-1. Comparison between session-based and packet-based schemes

3.2 Round-Robin versus Shortest-Queue-First

In both packet-based and session-based schemes, while new packet or new session

comes, what fashion to deploy is another point. Round-Robin (RR) scheme is the

simplest one, but when different size packets come, another sort of unbalance would

come into sight. Shortest-Queue-First (SQF) scheme is the best schemes in some way.

Since every cluster node in our architecture will receive all coming packets, so how to get

the load or queue length of every other node is not the issue. But SQF would cause

more overhead to calculate which the shortest queue is then RR fashion. We’ve tested

both RR and SQF fashions in our experiments.

The pseudo codes of our algorithms in filter driver to dispatch incoming packets

 - 15 -

using packet-based scheme in RR and SQF fashions are shown below.

PROCEDURE Packet_based_RR_DISPATCH

begin

 for all packet

 begin

 update IPsec SA database

 assign NEXT_TURN to THIS_TURN

 increase NEXT_TURN in Round-Robin fashion

 if THIS_TURN equals MY_HOSTID

 process this packet

 else

 drop this packet and terminate

 endif

 end

end

The above pseudo-codes describe for all incoming IPsec packets, we must update

IPsec SA database first. Then all the nodes would assign a NEXT_TURN value to

THIS_TURN to denote which machine should be responsible for the current packet,

where the value of NEXT_TURN is initially 0. After knowing which node should

process the current packet, they would increate the value of NEXT_TURN in RR fashion.

This NEXT_TURN value would be used for the next coming packet. Finally, each node

would compare THIS_TURN value and its host-identity. If these two values are

identical, it means this cluster node should do the IPsec processing for the current packet.

For other cluster nodes, they should drop the current packet and terminate all the process.

PROCEDURE Packet_based_SQF_DISPATCH

begin

 for all packet

 - 16 -

 begin

 update IPsec SA database

 assign NEXT_TURN to THIS_TURN

 add the size of the packet to QueueLength for THIS_TURN

 select NEXT_TURN in Shortest-Queue-First fashion by QueueLength

 if THIS_TURN equals MY_HOSTID

 process this packet

 else

 drop this packet and terminate

 endif

 end

end

The pseudo-codes above express for all incoming IPsec packets, we must update

IPsec SA database first. Then all the nodes would assign a NEXT_TURN value to

THIS_TURN to denote which machine should be responsible for the current packet,

where the value of NEXT_TURN is initially 0. After knowing which node should

process the current packet, they would increase the value of queue length associate with

THIS_TURN. Then they would count the value of NEXT_TURN in SQF fashion.

This NEXT_TURN value would be used for the next coming packet. Finally, each node

would compare THIS_TURN value and its host-identity. If these two values are

identical, it means this cluster node should do the IPsec processing for the current packet.

For other cluster nodes, they should drop the current packet and terminate all the process.

Session-based algorithms are similar to packet-based algorithms. For existent

sessions, it would try to locate which node should process. For new sessions, it would

try to use RR or SQF fashion to assign a node to do the processing. The pseudo codes

of our algorithms are listed below.

PROCEDURE Session_based_RR_DISPATCH

 - 17 -

begin

 for all packet

 begin

 update IPsec SA database

 find existent session for this packet from session_table

 if session found

 if the responsible node equals MY_HOSTID

 process this packet

 else

 drop this packet and terminate

 endif

 else

 assign NEXT_TURN to THIS_TURN

 add THIS_TURN and packet session information to session_table

 increase NEXT_TURN in Round-Robin fashion

 if THIS_TURN equals MY_HOSTID

 process this packet

 else

 drop this packet and terminate

 endif

 endif

 end

end

The pseudo-codes above illustrate for all incoming IPsec packets, we update IPsec

SA database firstly. Then all the nodes would find the corresponding entry in session

table. If the current packet is not belonged to any sessions, they figure it belongs to a

new session. For packets belongs to existent sessions, cluster nodes would find the

responsible node according to the corresponding entry in session table. Only the

 - 18 -

responsible node would continue processing the current packet, others would drop it and

terminate. For packets belong to new session, they would assign a NEXT_TURN value

to THIS_TURN to denote which machine should be responsible for the current

packet/session, where the value of NEXT_TURN is initially 0. After knowing which

node should process the current packet/session, they would increate the value of

NEXT_TURN in RR fashion. This NEXT_TURN value would be used for the next

new coming session. Finally, each node would compare THIS_TURN value and its

host-identity. If these two values are identical, it means this cluster node should do the

IPsec processing for the current packet. For other cluster nodes, they would drop the

current packet and terminate all the process.

PROCEDURE Session_based_SQF_DISPATCH

begin

 for all packet

 begin

 update IPsec SA database

 find existent session for this packet from session_table

 if session found

 if the responsible node equals MY_HOSTID

 process this packet

 else

 drop this packet and terminate

 endif

 else

 assign NEXT_TURN to THIS_TURN

 add THIS_TURN and packet session information to session_table

 increase NEXT_TURN in Round-Robin fashion

 if THIS_TURN equals MY_HOSTID

 - 19 -

 process this packet

 else

 drop this packet and terminate

 endif

 endif

 end

The pseudo-codes above show we update IPsec SA database firstly for all incoming

packets. Then all the nodes would find the corresponding entry in session table. If the

current packet is not belonged to any sessions, they figure it belongs to a new session.

For packets belongs to existent sessions, cluster nodes would find the responsible node

according to the corresponding entry in session table. Only the responsible node would

continue processing the current packet, others would drop it and terminate. For packets

belong to new session, they would assign a NEXT_TURN value to THIS_TURN to

denote which machine should be responsible for the current packet/session, where the

value of NEXT_TURN is initially 0. After knowing which node should process the

current packet/session, they would increase the value of queue length associate with

THIS_TURN. Then they would count the value of NEXT_TURN in SQF fashion.

This NEXT_TURN value would be used for the next new coming session. Finally, each

node would compare THIS_TURN value and its host-identity. If these two values are

identical, it means this cluster node should do the IPsec processing for the current packet.

For other cluster nodes, they would drop the current packet and terminate all the process.

 - 20 -

4 Performance Measurement

Since the performance of many single machines and products can catch up the wire

speed of Fast Ethernet. And migrating to high-speed environment is the trend in few

years. It’s meaningless and out of fashion to test cluster technologies in 100 Mbps

environment this time. Consequently, we choose Gigabit Ethernet as our testing

environment [17] [18] [19]. Although Princeton University has proved that

compression improves performance when encryption is employed in high-speed

environment [20], but our main purpose is to test the scalability and try to prove it. So,

IPComp [21] is not used in our testing.

The test bed is six machines with 1 AMD XP1800+ CPU, 256 MB RAM, 2 Intel

PRO/1000 XT Gigabit NIC running on 66 MHz/64-bit PCI bus, and 1 SafeNet SafeXcel

140-PCI encryption acceleration card. One 3Com SuperStack 3 4900 12-port Gigabit

Switch with one 4-port 1000BASE-TX module is configured as 2 or 4 VLANs for testing.

The operating system of these machines is Red Hat Linux 7.2 with 2.4.18 kernel.

FreeS/WAN 1.97 is used as implementation of IPsec on this clustered IPsec gateway.

And Smartbits-200 of Spirent Communications with 2 GX-1420B Gigabit modules acts

as the Traffic Analyzer.

4.1 Fixed-Size Traffic

The larger packet sizes, the less overhead caused by IP stack. Thus, the overhead

would be different by feeding packets with different size. So, we first generate a set of

fixed-size streams from Smartbits-200 to test our IPsec gateway in this ideal testing

environment. Because we only have six machines for testing, three of them must act as

 - 21 -

sender side gateway and the other three machines must act as receiver side gateway.

After testing from one node to three nodes, we found that the performance of this

testing was bounded by the sender side. It denotes that the performance was bounded

by encryption operations; the speed of decryption can always catch up encryption. So

we change our settings to that our entire six machines act as sender side IPsec gateway.

We test its performance after they encrypt the packets then deliver they to the router.

Table 4-1 shows performance results using simple round-robin dispatching scheme.

We gained these results by setting Smartbits-200 to send timed-burst packets in specified

Databits/sec for 30 seconds. If no packet lost, we assume our IPsec gateway can handle

such traffic. The performance was measured by the Databits/sec, which we configured

in SmartWindows, after subtracting 14-byte Ethernet header.

Table 4-1. Throughput for fixed-size traffic

ESP/3DES-MD5 ESP/DES-MD5 AH/MD5
Number of

cluster
nodes

512
bytes/frame

(Mbps)

1024
bytes/frame

(Mbps)

1446
bytes/frame

(Mbps)

1446
bytes/frame

(Mbps)

1446
bytes/frame

(Mbps)
1 47.2 72.4 87.2 265.2 366.6
2 93.3 141.3 172.1 503.5 686.8
3 138.1 207.1 253.7 716.3 969.9
4 182.3 269.2 333.2 913.9 974.4
5 223.7 329.6 405.3 974.4 974.4
6 265.5 387.9 480.1 974.4 974.4

 - 22 -

Figure 4-1. Throughput for fixed-size traffic

We also draw a comparison figure with ideal linear scale up in Figure 4-2. It shows

that our performance of this flat architecture can scale up almost linearly. Taking the

1446 bytes/packet 3DES/MD5 testing data for further evaluation using the proposed

overhead estimating formula –
)()(, snQsR

sPn
sn +

××
=µ – which we mentioned in Section 3.

Table 4-2 shows results we evaluated.

Figure 4-2. Comparison with ideal linear scale up

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

0 1 2 3 4 5 6 7
Number of nodes

frames/sec Total Per node Ideal linear

Performance for fixed-size frame

0
100
200
300
400
500
600
700
800
900

1000

0 1 2 3 4 5 6 7
Number of cluster nodes

Mbps

1446 bytes/frame
(AH/MD5)
1446 bytes/frame
(ESP/DES-MD5)
1446 bytes/frame
(ESP/3DES-MD5)

 - 23 -

Table 4-2. Overhead evaluate for 1446 bytes/packet, ESP/3DES-MD5 mode

Assume R(1446) take 1 unit of time, by using binomial for different number of

cluster nodes, we can have the average number of P is 7665.3 packets/sec (standard

division = 8.57) and the average number of Q(1446) is 0.0172 packets (standard division

= 0.0011). This means that without receiving packets and update SA database, our

machine can encapsulating and transmitting 7665.3 packets per second in average. As

the number of incoming packets increasing, our machine would spend its time on

handling incoming packets, it costs about 0.0172 degrades per packet.

Therefore, if we assume R(512) take 1 unit of time, we can have the average number

of P is 12018.3 packets/sec (standard division = 6.97) and the average number of Q(512)

is 0.0134 packets (standard division = 0.0006); if R(1024) take 1 unit of time, we can

have the average number of P is 9187.8 packets/sec (standard division = 4.02) and the

average number of Q(1024) is 0.0252 packets (standard division = 0.0004).

Since the standard divisions of P and Q are so small, it denotes that the proposed

overhead estimating formula has been verified. This flat cluster architecture can

achieve high performance and the performance of it is nearly scalable while adding new

cluster nodes. In our computation, when the number of cluster nodes is larger than 14, it

could handle 1000.3 Mbps, more than the wire speed of Gigabit Ethernet.

According to the data, we found that while the number of cluster nodes increase, the

of Nodes(N) Frames/sec Percentage Cn,1446
Cn,1446/
C1,1446

1 7535.6 100.00 % 7535.6 100.00 %
2 14817.4 196.63 % 7408.7 98.32 %
3 21914.4 290.81 % 7304.8 96.94 %
4 28801.8 382.21 % 7200.5 95.55 %
5 35112.4 465.96 % 7022.5 93.19 %
6 41500.7 550.73 % 6916.8 91.79 %

 - 24 -

degradation increases geometrically instead of linearly. It caused about 3.37%, 9.19%,

17.79%, 34.04%, 49.27% degradation while the number of cluster nodes is 2, 3, 4, 5, and

6, respectively, compared with linear scale up. We can guess that while adding more

cluster nodes, our IPsec gateway can handle more incoming packets, but it causes more

overhead for each node. As a result, the degradation increases geometrically, not

linearly, we imaged before experiment.

4.2 Real Traffic

In the following experiments, throughput of packet-based scheme and session-based

scheme are evaluated respectively using real traffic which collected from campus

backbone router. The characteristic of the traffic figured as follows: Total

1,328,780,468 bytes in 1,118,665 packets, 18,229 sessions. Average 1187.8 bytes per

packet (standard division = 524.623). Average 72615.0 bytes per session (standard

division = 460311.287). We only collect the IP header of these packets and then

regenerate them using SmartBits-200 as the data rate we want. In both session-based

and packet-based schemes, sessions and packets are assigned to cluster nodes in RR

fashion and SQF fashion. The throughput of each dispatching scheme is presented in

Table 4-3.

 - 25 -

Table 4-3. Throughput using real traffic

Figure 4-3. Throughput using real traffic

According to the results we got from experiments, it apparently shows that the

packet-based schemes scale up almost linearly while adding more cluster nodes. The

two fashions in packet-based scheme result similar result, we guess that it is because the

unbalance of different-size packets in RR fashion and searching shortest-queue overhead

in SQF fashion cause similar performance degradation.

For session-based schemes, not only unbalanced sessions would cause them to have

poor scalability, but also cause more overhead and performance degradation for searching

Number of
cluster nodes

Packet-based
Round-Robin

(Mbps)

Packet-based
SQF

(Mbps)

Session-based
Round-Robin

(Mbps)

Session-based
SQF

(Mbps)
1 83.4 83.4 83.4 83.4
2 161.7 161.7 154.5 161.6
3 235.3 235.3 185.9 230.3
4 304.7 304.6 220.0 284.0
5 370.1 370.1 253.4 323.1
6 431.8 432.0 311.0 362.2

Performance for real traffic

0

100

200

300

400

500

0 1 2 3 4 5 6 7
Number of cluster nodes

Mbps

Packet-based
Round-Robin
Packet-based
SQF
Session-based
Round-Robin
Session-based
SQF

 - 26 -

session information. Although there are faster schemes, such as hashing [22] [23], but it

would also caused some overhead. This means that the value of Q in session-based

scheme would be larger then that in packet-based scheme. As a result, we can conclude

those packet-based schemes are better than session-based one in our IPsec environment,

since layer-four session is meaningless for IPsec itself.

4.3 Saturation Prediction

In the meantime, the performance of our clustered IPsec gateway would be bounded

by the wire speed of Gigabit Ethernet. If ignoring this point, when will it saturate?

Since all packets must be transferred from NIC to system memory and from system

memory back to NIC through system bus, we guess it would be bounded by bandwidth of

system bus.

The bandwidth of PCI-64 bus is 64 bit * 66.6 MHz, 4266 Mbps. In our flat

architecture, all packets would be transferred from NIC to system memory, but only the

packets that this node is in charge of would be transferred back. Therefore, while there

are C cluster nodes, if ignoring the computation of each machine, the theoretically

maximum throughput of out flat architecture is
1+

×
C
CBandwidth . On the contrary,

all packets should be transferred IN and OUT dispatcher’s system bus in dispatcher-based

architecture. As a result, the theoretically maximum throughput of it is
2
1

×Bandwidth .

This denotes that while using PCI 64bit/66MHz system bus, the theoretically maximum

throughput of dispatcher-based IPsec gateway can only achieve about 2133 Mbps.

 - 27 -

5 Conclusion

In this paper, we proposed a flat clustered scheme for implementing a high speed

IPsec gateway and conclude a formula to estimate overhead in this architecture.

According to our methods, the performance of IPsec gateway can be easily scaled up by

increasing number of cluster nodes. In our analysis, while the overhead is significant

small compared with a machines computation power, it can scale up almost linearly.

Two companion traffic-dispatch schemes are also presented in this paper. As

experiment results show, packet-based dispatching scheme provides better load balancing

capability. On the other hand, session-based dispatching schemes are not effective to

implement an IPsec gateway using cluster architecture. Moreover, total experiment

equipments cost less than 5% of Cisco VPN 5008, which is a Cisco VPN gateway

product that can achieve to 760 Mbps. Table 5-1 shows some comparison with

commercial products.

Table 5-1. Comparison with commercial products

At this moment, our flat architecture would be bounded by the Gigabit Ethernet wire

speed (AH mode). Since the processing time of 2*s-size packet would not probably

Manufacturer/Model Scalable Throughput
ESP/3DES-MD5

Our Approach Yes
6 nodes for 480Mbps

Would be bounded by wire
speed if adding more nodes

Cisco VPN 5008 Yes Up to 760 Mbps
NetScreen 1000SP Yes Up to 1000 Mbps(wire speed)
SonicWALL GX-650 285
Intel 3130 VPN 95
Lucent VPN-FB1000 90
Alcatel 7137 70

 - 28 -

take two times than S-size packet, we would try to reduce the granularity to “load-based”.

We believe that trying to figure out Q(s) and R(s) for different-size packets would be

helpful for more balanced dispatch.

 - 29 -

Reference

[1] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol,”

RFC 2401, Nov. 1998.

[2] S. Kent and R. Atkinson, “IP Authentication Header,” RFC 2402, Nov. 1998.

[3] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP),” RFC

2406, Nov. 1998.

[4] Cisco Systems, Inc., “Cisco VPN 5000 Series Concentrators,”

http://www.cisco.com/univercd/cc/td/doc/pcat/vp5000.htm

[5] NetScreen Technologies, Inc., “NetScreen-1000,”

http://www.netscreen.com/products/systems.html#ns1000

[6] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn,

“Point-to-Point Tunneling Protocol (PPTP),” RFC 2637, July 1999.

[7] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B.

Palter, ”Layer-Two Tunneling Protocol (L2TP),” RFC 2661, Aug. 1999.

[8] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” RFC 2409,

Nov. 1998

[9] Microsoft Corporation, “Network Load Balancing Technical Overview”,

http://www.microsoft.com/windows2000/techinfo/howitworks/cluster/nlb.asp, Jan.

2000.

[10] Nokia Corporation, IP Clustering Technology white paper,

http://www.nokia.com/vpn/pdf/ip_clustering.pdf, Feb. 2000.

[11] Joo-Kok Ng, “A Packet-based Load Balancing Approach for High-speed

Clustered IPsec Gateway,” M.S. Thesis, NCTU, June 2001.

[12] Robert B. Cooper, Introduction to Queueing Theory, Macmillan, 1972.

[13] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research,

 - 30 -

McGraw-Hill, 5th edition, 1990.

[14] H. A. Taha, Operations Research: An Introduction, Macmillan, 5th edition, 1992.

[15] W. L. Winston, Operations Research, Applications and Algorithms, Duxbury

Press, 3rd edition, 1994.

[16] R. Pereira and R. Adams, “The ESP CBC-Mode Cipher Algorithms,” RFC

2451, Nov. 1998.

[17] Mitchell Loeb, Andrew Rindos, William Holland, and Steven Woolet,

“Gigabit Ethernet PCI Adapter Performance," IEEE Network Magazine, vol.

15, No. 2, pp. 42-47, March/April 2001.

[18] Paul A. Farrell and Hong Ong, “Communication Performance over a

Gigabit Ethernet Network,” Proceedings the IEEE 2000 International

Performance, Computing, and Communications Conference, pp. 181-189,

Feb. 2000.

[19] Aamir Shaikh and Kenneth J. Christensen, “Traffic Characteristics of Bulk

Data Transfer using TCP/IP over Gigabit Ethernet,” Proceedings the IEEE

2001 International Performance, Computing, and Communications

Conference, pp. 103-111, April 2001.

[20] John P. McGregor and Ruby B. Lee, “Performance Impact of Data

Compression on Virtual Private Network Transactions,” Proceedings of the

25th IEEE Conference on Local Computer Networks, pp. 500-510, Nov. 2000.

[21] A. Shacham, R. Monsour, R. Pereira and M. Thomas, “IP Payload

Compression Protocol (IPComp),” RFC 2393, Dec. 1998.

[22] L. Aversa and A. Bestavros, “Load Balancing a Cluster of Web Servers

Using Distributed Packet Rewriting,” Proceedings the IEEE 2000

International Performance, Computing, and Communications Conference,

pp. 24-29, Feb. 2000.

 - 31 -

[23] Z. Cao, Z. Wang, E.Zegura, “Performance of Hashing-Based Schemes for

Internet Load Balancing,” IEEE INFOCOM 2000, vol. 1, pp. 332-341, March

2000.

