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Abstract 
The Generic Cell Rate Algorithm (GCRA) is recommended by the ATM Forum to 

perform Usage Parameter Control at the User Network Interface in ATM network. In order 

to facilitate the Call Admission Control and resource allocation procedure, it is important to 

investigate the characteristics of the model that GCRA-enforced sources are merged 

together by a multiplexer. Such a multiplexer may stand for the one set in front of a switch 

so as to concentrate user traffic and reduce the required input ports. It may also stand for the 

logical multiplexer at the output port of a switch that collecting cells routed from different 

input ports. Moreover, it may represent the service function of the edge router between the 

integrated-services (IntServ) networks and the backbone networks that provides 

differentiated-services (DiffServ). 

In this paper, the worst traffic pattern based on the criteria of average waiting time in 

the multiplexer is found out. The average waiting time is expressed as the function of the 

GCRA parameters and number of connections. Especially, the analysis also takes the 

speed-up function into consideration, which is a widely-used technique for ATM 

multiplexers and switches. The results are the same if the GCRA enforcer is replaced by the 

GCRA shaper with the same parameter set.  
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1. Introduction 
Call Admission Control (CAC) and Usage Parameter Control (UPC) are two 

important steps for congestion control in ATM networks [1]. During the CAC phase, the 

network user declares the source traffic parameters and the required Quality of Service 

(QoS), so as for the network to decide whether to accept the connection or not. After a 

connection is admitted, some UPC scheme must be utilized to monitor and control traffic by 

detecting whether it conforms to the declared parameters. At the edge node of the network, 

traffic enforced by the UPC scheme is usually multiplexed by a multiplexer before entering 

the network. Such a multiplexer may stand for the one set in front of a switch (private or 

public) so as to concentrate user traffic and reduce the required input ports. On the other 

hand, it may stand for the logical multiplexer at the output port of a switch that collecting 

cells routed from different input ports. It may also represent the service function of the edge 

router between the broadband connection-oriented access network that provides integrated 

services (IntServ) and the backbone network that provides differentiated services (DiffServ) 

[2, 3, 4]. 

In the past, the Leaky Bucket (LB) is the most popular UPC scheme due to its simple 

algorithm [5, 6]. Based on the cell loss ratio at the multiplexer, [7] has discussed whether 

the full rate periodic on/off pattern is the worst pattern. Based on the criteria of average 

queueing delay at the multiplexer, [8] found out the worst pattern under the assumption that 

multiple cells can pass through a LB at the same time as long as there are sufficient tokens 

in the pool. 

Based on the principle of LB, the ITU-T Recommendation I.371 [1] utilized the 

Generic Cell Rate Algorithm (GCRA) to define the traffic parameters Peak Cell Rate (PCR) 

and Cell Delay Variation Tolerance (CDV Tolerance) of an ATM connection. The ATM 

Forum UNI-specification [9] even applied the algorithm to define Sustainable Cell Rate 

(SCR, the upper bound of average rate) and Burst Tolerance (BT) so as to facilitate UPC 

function. There are two pairs of parameters based on GCRA for conformance testing at the 
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User Network Interface (UNI). The PCR (represented by the peak interarrival time pI ) and 

the CDV Tolerance (denoted as pL ) are tested by GCRA( pI , pL ). In the same way, the 

SCR (represented by the mean interarrival time sI ) and the BT are tested by the GCRA( sI , 

sL ), where sL  is the sum of BT and the specified CDV Tolerance ( pL ) at the UNI. While 

the parameter BT is converted by ( )( )ps IIMBSBT −−= 1 , where MBS is the expected 

Maximum Burst Size that can be transmitted at peak cell rate. 

So far, the performance characteristic about the multiplexer fed with worst traffic 

pattern after the GCRA enforcer has not been fully discussed in the literature. This paper is 

devoted to find out upper bound of the average waiting time at the multiplexer. 

 

2. Description of system model 
The model under discussion is shown in Figure 1. Before the sN  traffic sources are 

merged by the multiplexer, every source is enforced by a dual-stage GCRA enforcer with a 

parameter set ( )sspp LILI ,,, . In this article, the parameters are normalized to the unit cell 

time Iη  corresponding to the input link and they may be non-integer. The speed of the 

output link may be higher than that of the input one. The corresponding unit cell time, which 

is represented as Oη , is also normalized to Iη . The flow chart of the dual-stage GCRA 

enforcer is shown in Figure 2. It comprises two single-stage GCRA UPCs.  

For the sake of convenient manipulation, the following assumptions are made for the 

system. 

(1). For the system to be stable, the total sustainable cell rate must be less than the output 

link capacity, i.e., 
Os

s

I
N

η
1

< . 

(2). For the purpose of nontrivial discussing, the relation, 
Op

s

I
N

η
1

> , is assumed to ensure 

the existance of bursty level congestion. 

(3). The enforcer only discards non-conforming cells, while keeps transparent to 

conforming cells. 
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(4). The transmission time of the source, the processing time of the enforcer and the 

propagation delay time are neglected. So, any cell departing from a source would be 

immediately sent out of the enforcer and be multiplexed to the buffer as long as it is a 

conforming one. It will be explained in section 5 that these items of delay time would 

not effect the average waiting time.  

(5). Any cell found at the input port of the multiplexer is stored in the buffer. If more than 

one cells arrive at the multiplexer at the same time, the arrival times of these cells at the 

buffer are treated as the same.  

3. Most Clumping Pattern (MCP) 
The first step for discussing the upper bound of delay is to find out that how soon 

can an arrival process passes through a dual-stage GCRA.  

As the flow chart shown in Figure 2, if there are some non-conforming cells before 

the k -th arriving cell, then lk > . However, the non-conforming cell would neither pass 

through the enforcer nor bring a new ( )1+lTATp  or ( )1+lTATs . As a result, for 

convenient discussion, it is assumed that the sources only send out conforming cells. That is 

to say, we may ignore the blocks enclosed by the dashed lines by substituting k for l and 

assuming that  
( ) ( ) ( ){ }sspp LkTATLkTATkt −−= ,max . (1) 

As we can see from Figure 2,  

( )
( ) ( ) ( )

( ) ( ) ( )



>+
≤+

=+
                                  ,
                           ,

1
kTATktifIkt
kTATktifIkTAT

kTAT
pp

ppp
p  

As a result, for the k -th cell to minimize ( )1+kTATp , ( )kt  must be subject to 

( ) ( )kTATkt p≤ . (2)  

Similarly, for the k -th cell to minimize ( )1+kTATs , ( )kt  is subject to 

( ) ( )kTATkt s≤ . (3) 

Besides, the inherent limitation on the input transmission line is  

( ) ( ) Iktkt η+−= 1  (4) 
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Combining Eqs (1), (2), (3) and (4), the earliest time for the k-th cell to be a conforming cell 

and to minimize the allowable arrival time of the ( )1+k -th cell can be expressed as 

 ( ) ( ) ( ) ( ){ }Issppe ktLkTATLkTATkt η+−−−= 1,,max . (5) 

Without loss of generality, we may let the arrival time of the first cell be ( ) 01 =t  

and set the initial value ( ) ( ) 011 == sp TATTAT  such that the first arrival cell is conforming. 

It results in ( ) pp ITAT =2  and ( ) ss ITAT =2 . Similar as the above derivation, we may let 

the arrival time of the second cell be  
( ) { }Isspp LILIt η,,max2 −−= . (6) 

 Here comes out the problem of determining the maximum of the three terms. 

Similar problem would be encountered when determining the arrival time of the following 

cells. It involves the comparison among the GCRA parameters and Iη . It is complicated 

due to too many conditions. However, we may simplify it by the following procedures.  

At first, we define 

( ) IX ωηω = , 

( )Y I Lp pω ω= −  and  

( )Z I Ls sω ω= − , where ω ∈ +R . 

The inherent relation between the mean interarrival time, peak interarrival time and the unit 

cell time is 

Ips II η≥≥ . (7) 

They respectively correspond to the slopes of ( )ωX , ( )ωY  and ( )ωZ  with respect to ω . 

Three possible relationship among ( )ωX , ( )ωY  and ( )ωZ  are shown in Figure 3. Indeed, 

Figure 3-(c) would not appear because 0>+= ps LBTL . Let 

( )sspp LILIA ,,, : the minimum positive integer such that ( ) ( )ωω XY ≥  and ( ) ( )ωω ZY ≥ ,  

( )sspp LILIB ,,, : the minimum positive integer such that ( ) ( )ωω XZ ≥  and ( ) ( )ωω YZ ≥ .  

Evidently, B does exist. However, A may not always exist. Now, the relationship between 

the GCRA parameters and Iη  may be divided into two classes. For class ‘a,’ A does exist 

and for class ‘b,’ A does not exist. As a result, Figure 3-(a)'s is classified as class ‘a’ while 
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Figure 3-(b)'s is classified as class ‘b.’ 

Class a: 

Because both A and B exist, we may describe the discrete characteristics in this class 

as  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )






≤≥≥
∈≤≤≥≥

−≤≤≥≥

                                 , , and 
  where,1- , and 

                      ,10 , and 

WBWXWZWXWZ
NWBWAWXWYWXWY

AWWZWXWYWX

 

So, in this class, we can obtain the result of Eq (6) as ( ) Iat η=2  (i.e., W = 1), where the 

subscriptor 'a' means class ‘a’. From Eq (7) and figure 2, we have 

( ) ( )TAT TAT I Ip p p p3 2 2= + =  and  

( ) ( )TAT TAT I Is s s s3 2 2= + = .  

Then, according to Eq (5), let the third cell arrives at the earliest time ( W = 2), i.e.,  

( ) { } IIssppa LILIt ηη 22,2,2max3 =−−= . 

Similarly, let the i-th cell arrive at the earliest time ( W i= −1), i.e., 
( ) ( ) ( ){ }

( ) . ,1  ,1    
1.1,1max

NiAii
iLIiLIit

I

Issppa

∈≤≤−=

−−−−−=

η

η
 

Following the same principle we obtain the earliest arrival time of other cells and express 

them as,   

( )
( )
( )
( )






≤+−−
≤≤+−−

≤≤−
=

         .1 ,1
 ,1 ,1

                ,1 ,1

iBLIi
BiALIi

Aii
it

ss

pp

I

a

η

   

The corresponding pattern is illustrated in Figure 4-(a). If we denote the interarrival times 

as ( ) ( ) ( )ititi aaa −+=∆ 1 , then  

( )
( )

( )
  

,1                                   ,
, ,1

,11                                   ,
,         ,1

,11                                     ,















≤+

=+−−−

−≤≤+

=−−−
−≤≤

=∆

iBI
BiLIBLBI

BiAI
AiALAI

Ai

i

s

ppss

p

Ipp

I

a

η
η

    

where ( ) pIppI IALAI <−−−< ηη 1  and ( )I BI L B I L Ip s s p p s< − − − + <1 . For an arrival 

pattern with such a sequence of interarrival time, all cells (except the first one) arrive with 
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the shortest allowable time apart from the first one. So, such a pattern is named “Most 

Clumping Pattern (MCP) of class a.” 

Class b: 

Because only B exists as shown in Figure 3-(b), we may describe the discrete 

characteristics in this class as  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )




≤≥≥
−≤≤≥≥

           , , and 
,10 , and 

WBWYWZWXWZ
BWWZWXWYWX

         W N∈ . 

Similar as the derivation for class a, we may assign the earliest arrival time of each cell as 

( ) ( )
( )



≤+−−
≤≤−

=
,1 ,1

,1          ,1
iBLIi
Bii

it
ss

I
b

η
 

The corresponding pattern is illustrated in Figure 4-(b). Similarly, 

( ) ( ) ( )ititi bbb −+=∆ 1  and  

( ) ( )








≤+
=−−−

−≤≤
=∆

,1                               ,
,   ,1

,11                              ,

iBI
BiBLBI

Bi
i

s

Iss

I

b η
η

  

For an arrival pattern with such a sequence of interarrival time, all cells (except the first one) 

arrive with the shortest allowable time apart from the first one. So, such a pattern is named 

“Most Clumping Pattern (MCP) of class b.” 

4. Average waiting time 
In this section, we shall derive the upper bound for the average waiting time in the 

buffer of figure 1. Before that, we shall define some notations and introduce two lemmas. 

( )α t  : It is a funtion representing the number of arriving cells in [ ]0, t . It also stands for 

the arrival process. 

 Nb  : The number of busy periods. 
( )( )W t

u
α  : It is the average waiting time of the cells in the µ-th busy period as a result of the               

arrival process ( )α t . 

( )( )W tα  : It is the average waiting time of the cells as a result of the arrival process ( )α t . 
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Lemma 1. 

For a constant rate server with sufficient buffer size, 
( )( ) ( )( )W t W t

u N ub

α α≤
≤ ≤
max

1 . 

This lemma has been proved in lemma 2 of [8]. It allows us to find the upper bound 

of average waiting time only by observing the worst busy period. In the following, we shall 

investigate how to maximize the average waiting time. Similarly, we consider only the 

worst busy period which starts at time t = 0 .  

This lemma reveals that the arrival pattern with larger arrival process would result in 

longer mean waiting time. 

 

Lemma 2. 

Assume an arrival process ( )α t  feeding to a constant-rate server with sufficient 

buffer size and resulting in an unique busy period 0, tprd . If any of the cell arrival 

time (except the first one) is shifted forward, and the resulted arrival process is 

represented as ( )α fw t , then 

( )( ) ( )( )W t W tfwα α≥ . 

Proof:  

Lemma 1 in [10] has shown that the total delay of all cells of ( )α fw t  is larger than 

that in ( )α t . Due to the same total transmitted cells, average waiting time of ( )α fw t  

is also larger than that of ( )α t .  

4.1 Synchronous Clumping Condition (SCC) 

We first define the condition that all sources synchronously send out MCP as 

Synchronous Clumping Condition (SCC). Under this condition, all of the transmitted cells 

would transparently pass through the dual-stage GCRA. The N s  cells that simultaneously 

arrive at the multiplexer are called a “bulk.” For such an aggregated traffic process, we 

would like to find that how many bulks must arrive at the buffer so as to maximize the 

average waiting time. The derivation must include two classes corresponding to that of 
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MCP. 

4.1.1 Class a 

To find the maximum of average waiting time for class-a arrival pattern, we shall 

divide the arrival pattern into three parts according to interarrival time. For convenience, we 
let the arrival time of the first bulk be 0=t  and denote that of the i -th bulk as ( )ita 1, , 

where the subscript ‘a’ means class ‘a.’     

Part 1:  For the beginning A bulks, the arrival time of the i -th bulk is 

( ) ( )



≤≤−
=

=
Aii

i
it

I
a 2    ,1

1            ,0
1, η     

The waiting time of the n -th cell of the i -th bulk, ( )niWa ,1, , is obtained as 

( ) ( ) ( )[ ] ( ) IOsa inNiniW ηη 111,1, −−−+−=  

The total waiting time for the i -th bulk is  

( ) ( ) ( ) ( ) IsOs
s

Os

N

n
aa NiNNNiniWid

s

ηηη ⋅−−
−

+⋅−== ∑
=

1
2

11, 2

1
1,1,   

The total waiting time of the beginning i bulks in this part is  

( ) ( ) ( ) iNiiNNNiikd IsOs
s

Os

i

k
a ⋅⋅

−
−⋅⋅

−
+⋅⋅

−
=∑

=

ηηη
2

1
2

1
2

1 2

1
1,  (8) 

The corresponding average waiting time can be obtained by dividing Eq (8) by ( )iN s ⋅ . It is 

evident that the average waiting time of a cell is increasing with i. So, the maximal value for 

this part of arrival pattern must occur at the A-th bulk. 

 

Part 2:  The bulk arrival time in this part is expressed as  
( ) ( ) BiALIiit ppa ≤≤+−−= 1  ,12,     

Thus the waiting time of the n -th cell in the i -th bulk is obtained as 

( ) ( )[ ] ( ) sppOsa NnBiALiInNiniW ≤≤≤≤++−−−+−= 1 ,1for   ,111,2, η  

The total waiting time of the all cells in the i -th bulk is  

( ) ( ) ( ) ( )[ ] sppOs
s

Os

N

n
aa NLIiNNNiniWid

s

−⋅−−⋅
−

+⋅−== ∑
=

1
2

11, 2

1
2,2, ηη  (9) 

The average waiting time of a cell in this part can be obtained by dividing Eq (9) by sN . 
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Because we assume that 0>− pOs IN η , it can be easily proven that the average waiting time 

of a cell in this part is increasing with i . Besides, it is larger than that of the cell in the A-th 

bulk, which is the maximum value of part 1. As a result, the maximum average waiting time 

up to the B-th bulk happens at the B-th bulk and it is expressed as  

 ( ) ( ) ( )s

B

Ak
a

A

k
aBa NBkdkd ⋅







 += ∑∑
+== 1

2,
1

1,,ω   

 

Part 3: From the ( )1+B -th bulk on, the arrival time of the i -th bulk is ( ) ( )t i i I Ls s1 1= − − .  

To maintain a busy period, any bulk must arrive before its previous bulk is completely 

served. Thus, we have ( )[ ] ( ) OsIss NiLIi ηη ⋅−≤⋅−− 11  and obatin the maximum number 

of bulk of a busy period as 

( ) 1,,, +







⋅−⋅

⋅
=

OsIs

Is
sspp NI

LLILI
ηη

ηε
 

The waiting time of the n -th cell in the i -th bulk is obtained as  

( ) ( )[ ] ( ) sssosa NniBLiInNiniW ≤≤≤≤++−−−+−= 1   and  1for   ,111,3, εη  

The total waiting time of the all cells in the i -th bulk in part 3 is 

( ) ( ) ( ) ( )[ ] sssOs
s

Os

N

n
aa NLIiNNNiniWid

s

−⋅−−⋅
−

+⋅−== ∑
=

1
2

11, 2

1
3,3, ηη  (10) 

The average waiting time of a cell in the i -th bulk in part 3 can be obtained by 

dividing Eq (10) by ( )iN s ⋅ . Since we assumed sOs IN <η , it can be proven to decrease 

with i. As a result, the maximum average waiting time in this part is happen at the 

( )1+B -th bulk, and is expressed as 

( ) ( ) ( ) ( )[ ]s

B

Ak
aa

A

k
aBa NBBdkdkd ⋅+








+++= ∑∑

+==

+ 11
1

3,2,
1

1,1,ω  

Comparing the result in part 2 and part 3, whether the maximum value happens at 

the B-th or (B+1)-th bulk depends on the relation between Ba ,ω  and 1, +Baω , which depends 

on the GCRA parameters and the system parameters. So, the maximum of average waiting 

time under the synchronous clumping condition (SCC) is expressed as 
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



 ≥

=
+

+

otherwise     ,

  if     ,~
1,

1,,,

Ba

BaBaBa
aW

ω

ωωω

  (11) 

 

4.1.2 Class b 

To find the maximum of average waiting time corresponding to class b pattern, we 

shall divide the arrival pattern into two parts for discussion. 

Part 1:  For the beginning B bulks, the arrival time of the i-th bulk is 

( ) ( )



≤≤−
=

=
Bii

i
it

I
b 2    ,1

1            ,0
1, η     

Because the arrival pattern in this part is the same as that in part 1 of class a, we have 

( ) ( )niWniW ab ,, 1,1, =  and ( ) ( )idid ab 1,1, = , except that the maximum value of i is B rather 

than A. As a result, the average waiting time of a cell is increasing with i and is maximized 

at the B-th bulk. The average waiting time of the beginning B bulks is obtained as 

( ) ( ) ( ) ( )
IO

s
Oss

B

k
bBb

BNNBNBkd ηηηω
2

1
2

1
2

1
1

1,,
−

−
−

+⋅
−

=⋅= ∑
=

  

Part 2: The bulk interarrival time in this part is denoted as 
( ) ( ) ε≤≤+−−= iBLIiit ssb 1for  ,12, . 

Because the arrival pattern in this part is the same as that in part 3 of class a, we have 
( ) ( )niWniW ab ,, 3,2, =  and ( ) ( )idid ab 3,2, = . Similarly, the average waiting time of a cell in the 

i-th bulk of this part is decreasing with i. So, the maximum average waiting time in this part 

is happened at B+1, and is expressed as 

( ) ( ) ( )[ ]sb

B

k
bBb NBBdkd ⋅+








++= ∑

=

+ 112,
1

1,1,ω  

As a result, the maximum of average waiting time for class b pattern can be expressed as 





 ≥

=
+

+

otherwise     ,

  if     ,~
1,

1,,,

Bb

BbBbBb
bW

ω

ωωω

 (12) 

 

4.2 Any condition other than SCC 
We assume the first cell of all sources arrives at the reference origin of time ( )t = 0 , 
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while the first cell of source n arrives at time 0≥nd . Recalling the SCC, because all of the 

MCP's are sent out synchronously, we may denote and express the arrival time of the i -th 

cell of n-th source as 
( ) ( )itnit S =, ,  

where the subscript ‘S’ denotes SCC and ( )t i  may be ( )ita  or ( )itb , depending on the 

class. 

Let's now consider one of the general conditions other than SCC. For convenience, 

we denote it as a G condition. Then, we can denote and express the arrival time as 

( ) ( )itdnit n
G +=, . 

Evidently, ( ) ( )t i n t i n i n NG S
s, , , ,≥ ≤ ≤ ≤ ≤  1 1ε , 1≤ ≤i ε , 1≤ ≤n N s . It follows that the 

relation between the corresponding arrival processes of n-th source is  

( ) ( )α αG St n t n, ,≤ . (13) 

From the viewpoint of the multiplexer, the aggregated arrival process is expressed as 

( ) ( )α αG G

n

N

t t n
s

=
=
∑ ,

1
 and ( ) ( )α αS S

n

N

t t n
s

=
=
∑ ,

1
. 

From Eq (13), ( ) ( )α αG St t≤ . According to Lemma 2, we may say that the maximum of 

average waiting time resulted by G condition is upper bounded by SCC. 

Now we consider any of the condition similar as G condition, except that some of  

the sources does not send out MCP's. As we have described, MCP is the pattern that all the 

cells arrive with the shortest interval apart from the first cell. As a result, if the n-th source 

does not send out MCP, then the corresponding arrival time of the i-th cell would be larger 

than ( )t i nG , . The resulted arrival process at the multiplexer is less than ( )αG t  and ( )αS t  

accordingly. From Lemma 2, we may say that the maximum of average waiting time for the 

system in Figure 1 is upper bounded by aW~  of Eq (11) for class-a arrival pattern or by bW~  

of Eq (12) for class-b arrival pattern, which is obtained under SCC. 

 

5. Numerical results and discussion  
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According to the results obtained in the last section, we run some data for different 

conditions. The maximal average waiting time with respect to the parameter sI  is shown in 

figure 5-(a). In this figure, the arrival pattern may be classified to class ‘a’ or ‘b’ depending 

on the value of sI . The ‘x’ mark is made on the x-axis if the pattern belongs to class ‘a.’ 

Besides, the maximum value may be resulted by the B-th bulk or the (B+1)-th bulk. If the 

maximum value is resulted by the (B+1)-th bulk, there is a dot in the circle mark of the 

maximum value. It is predictable that the waiting time decreases with sI , which represents 

the mean interarrival time.  

Fig 5-(b) shows the result when the output server speeds up to double ( 5.0=Oη ). 

The corresponding waiting time is a little less than half of that of the normal speed (i.e., 

equal to that of the input link). However, the values of sI  that result in maximum waiting 

time at the (B+1)-th in figure 5-(a) do not always result in the similar result. Also, as we can 

expect, the values of A and B are independent of the speed of the output server.  

The waiting time with respect to the parameter sL  is shown in figure 6-(a). Because 

larger sL  means longer maximum burst size of the arrival process, the waiting time is 

longer accordingly. Similar as that of figure 5-(b), figure 6-(b) shows the result when the 

server speeds up to double. The corresponding waiting time is a little less than half of that of 

the normal speed. 

The more general pattern is shown in figure 7-(a), where the values of B are much 

larger than that of A. The speed-up characteristic shown in figure 7-(b) is similar to that of 

figure 5-(b) and 6-(b). 

Figure 8-(a) and 8-(b) show the waiting time corresponding to pI , where sI  being 

60 and 40, respectively. With different sI , the maximum waiting time may occur at different 

bulks – B-th bulk or (B+1)-th bulk. 

So far, the GCRA which is utilized in the system of Figure 1 is an enforcer rather 

than a shaper [11]. For an invalid cell, the shaper would store it in the buffer and then 

forward it as soon as it can be judged as a conforming cell. However, no matter whether the 
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GCRA shaper or enforcer is employed, the worst patterns that may appear at the output 

ports are the same.  

As we have revealed in section 3, many arrival patterns may result in the same 

departure pattern out of the GCRA enforcer. So, the SCC is not the only way for the sources 

to construct the maximum queue length in the buffer. Similarly, if a GCRA shaper is 

utilized, due to the shaping function, many arrival patterns may result in the same maximum 

queue length at the buffer. 

The derivations in this article are based on the assumption that the cell transmission 

time, GCRA processing time and propagation delay are neglected. If these quantities are not 

neglected and equal to DT , the same result would be obtained if the sent time of every cell 

is shifted forward by DT . As a result, this assumption has no effect on the obtained 

maximum of average waiting time. 

 

6. Conclusion 
In this article, we have found out the maximum of average waiting time for 

multiplexing sources enforced by the GCRA policing/shaping scheme. It is obtained when 

the Ns  sources send out cells under synchronous clumping condition (SCC). Although the 

relation between the GCRA parameters and unit slot time is so complicated, we find out the 

result by simply classifying as two classes only. Deterministic delay bounds for these 

two-class arrival patterns were obtained. Especially, the analysis also includes the speed-up 

index of the multiplexer. The results can be helpful to Call Admission Control and resource 

allocation. So far, they are obtained in the worst case of homogeneous environment (i.e., the 

parameters of all GCRA's are the same). Although it is very hard in our opinion, the further 

work is to find the probability density functions of waiting time even in the heterogeneous 

environment.  
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Figure 2.  Dual-stage GCRA 
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Figure 5-(a) Performance characteristics v.s. sI  (with normal speed o/p server) 

 
Figure 5-(b) Performance characteristics v.s. sI  (o/p server speed up to double) 
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Figure 6-(a) Performance characteristics v.s. sL  (with normal speed o/p server) 

 
Figure 6-(b) Performance characteristics v.s. sL  (o/p server speed up to double) 
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Figure 7-(a) Performance characteristics v.s. pL  (with normal speed o/p server) 

 
Figure 7-(b) Performance characteristics v.s. pL  (o/p server speed up to double) 
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Figure 8-(a) Performance characteristics v.s. pI  (with sI =60) 

 
Figure 8-(b) Performance characteristics v.s. pI  (with sI =40) 


