
Submit to: Workshop on Computer Networks

Design of a Network Layer Protocol
Transformer Between IP and ATM
Tzeng-Yi Lin, Yeu-Horng Shiau, Shiann-Rong Kuang, and Jer-Min Jou

Abstract

Recently, network grows explosively and its scope extends rapidly so tha t the

interconnection and communication between each type of network are more important.

This paper presents a technique and its hardware implementation for network layer

protocol transform between IP and ATM. Experimental results show that the proposed

architecture can quickly transform the data format between IP and ATM network to

meet the real-time requirement.

Key words: TCP/IP, ATM UTOPIA, Network Layer, IP over ATM

Tzeng-Yi Lin, (the contact author)

Current affiliation: Department of Electrical Engineering, National Cheng Kung

University, Tainan, Taiwan, R. O. C.

Postal address: ASIC LAB, EE 10F, NCKU, NO.1, Ta-Hsueh Road, Tainan,

701 Taiwan

E-mail address: vitamin@j92a21.ee.ncku.edu.tw

Telephone number: 06-2757575-62431-821

Yeu-Horng Shiau,

Current affiliation: Department of Electrical Engineering, National Cheng Kung

University, Tainan, Taiwan, R. O. C.

Postal address: ASIC LAB, EE 10F, NCKU, NO.1, Ta-Hsueh Road, Tainan,

701 Taiwan

E-mail address: huh@j92a21.ee.ncku.edu.tw

Telephone number: 06-2757575-62431-821

Shiann-Rong Kuang,

Current affiliation: Department of Electronic Engineering, Southern Taiwan

University of Technology, Tainan, Taiwan, ROC

Postal address: as above

E-mail address: kuangsr@mail.stut.edu.tw

Telephone number: 06-2533131-3131-232

Jer-Min Jou

Current affiliation: Department of Electrical Engineering, National Cheng Kung

University, Tainan, Taiwan, R. O. C.

Postal address: ASIC LAB, EE 10F, NCKU, NO.1, Ta-Hsueh Road, Tainan,

701 Taiwan

E-mail address: jou@j92a21.ee.ncku.edu.tw

Telephone number: 06-2757575-62365

1. Introduction

ATM network communication technology includes the advantage of dynamic

bandwidth location, low transmission delay, bandwidth and quality of service

guarantee. It can provide different transmission medium such as optical fiber, twisted

pair, and coaxial cable, so that it can be applied to LAN (Local Area Networks), MAN

(Metropolitan Area Network), and WAN (Wide Area Network). By the reason of

above description, ATM is regarded as one of the most important technology in the

future network, and it is almost possible to play the role of the backbone of Wide Area

Network. And Broadband— Integrated Service Digital Networks will also build ATM

network.

However, the most important communication protocol in the internet is IP at

present. It is entirely different from the type of ATM. IP is connectionless; but ATM is

connection— oriented. Hence it is a very important subject about how to transmit IP

packet in ATM network. Although ATM has many advantages, the network structure

advance also must consider existed network device. Therefore, when we want to use

ATM backbone to connect WAN and traditional LAN, it is necessary to design

hardware architecture and software system of the edge router.

The main concern in this paper is the data format transformation between IP and

ATM. First, we must realize the data format transmitted in IP and ATM network. The

IP packet length is not fixed, the minimum is 64 bytes and the maximum is 1492 bytes.

The ATM packet is called a cell, and it has a fixed length of 48 bytes. In addition to

data length, another object that we must realize is the header because the protocol

behavior and data relay both depend on the content of the header. The IP and ATM

headers are shown in Fig. 1 and Fig. 2, respectively.

2. System Architecture

The system architecture of the proposed protocol transformer is shown in Fig. 3.

The following paragraphs describe its function in detail.

When it receives the first 4 bytes of an IP packet from the Ethernet Network

Interface Card, the first work is checking that whether its version is 4 and whether its

header length is equal to 5 or greater than 5. If one of the two conditions doesn’t

satisfy, the IP packet must be discarded. If both conditions are satisfied, the remainder

of the IP packet is received continually and its checksum is calculated at the same

time. Until the packet header is received completely, if its checksum is wrong, the

packet must be discarded; otherwise the receiving action continues until the packet

end is being received.

It must be decided that whether the IP packet needs to be fragmented into ATM cell.

If it need not be fragmented, during the receiving process in “IP to IP” block it

inquires into the output port/next hop from the routing table according its destination

address, then is transmitted to the IP switch fabric. If it needs to be fragmented,

waiting for ATM connection during receiving. We suppose that the router or switch

maintains an IP-ATM connection mapping table, so the VPI、VCI and port obtained

after connecting completely are part of input signals. When the packet is received

Version IHL Type of service Total length

Identification Fragment offset

Time to live Protocol Header checksum

Source address

Destination address

Options (0 or more words)

D
F

M
F

~~ ~~

32 Bits

Figure 1 IP header

Version IHL Type of service Total length

Identification Fragment offset

Time to live Protocol Header checksum

Source address

Destination address

Options (0 or more words)

D
F

M
F

~~ ~~

32 Bits

Figure 1 IP header

VPI VCI PTI CLP

12 16bits 3 1

UDF1 UDF2 UDF3 UDF4
8 8 8 8

Figure 2 ATM header

VPI VCI PTI CLP

12 16bits 3 1

UDF1 UDF2 UDF3 UDF4
8 8 8 8

VPI VCI PTI CLP

12 16bits 3 1

UDF1 UDF2 UDF3 UDF4
8 8 8 8

Figure 2 ATM header

completely and enough information is got, the “IP to ATM” block starts to fragment

and transmit.

When receiving cells from the ATM UTOPIA interface, it is not necessary to check

them because error detection has proceeded in Physical Layer. It must also be decided

that whether the cells need to be reassembled in order to transform into IP packets or

directly switched to the output port. In the former, “ATM to ATM” block takes the

VPI in the ATM cell header as the index to inquire VPI mapping table, in order to

decide output port and new VPI, and transmit the cell to the ATM switch after the rest

has been received completely. In the later, instead of providing queue for every VPI to

reassemble the cells, “ATM to IP” block uses the management memory of VPI

reassemble information to store reassembling status of individual VPI and the

memory address link between reassembled cells. This can save memory resource. The

IP packet that is reassembled completely will be transmitted to corresponding output

port according to which VPI it is reassembled.

Ingress
port

Egress
port

Rx Tx

Ethernet
NIC

Rx Tx

ATM
PHY

Ingress
port

Egress
port

IP Switch Fabric ATM Switch Fabric

. . . .

. . . .

. . . .

. . . .

. . . .

IP Network ATM Network

NIC: Network Interface Card
PHY: Physical Layer

IP
to

ATM

IP
to
IP

ATM
to

ATM

ATM
to
IP

IP
Tx

ATM
Tx

IA_trsfm AI_trsfm Transformer

Figure 3 System architecture

Ingress
port

Egress
port

Rx Tx

Ethernet
NIC

Rx Tx

ATM
PHY

Ingress
port

Egress
port

IP Switch Fabric ATM Switch Fabric

. . . .

. . . .

. . . .

. . . .

. . . .

IP Network ATM Network

NIC: Network Interface Card
PHY: Physical Layer

IP
to

ATM

IP
to
IP

ATM
to

ATM

ATM
to
IP

IP
Tx

ATM
Tx

IA_trsfm AI_trsfm Transformer

Ingress
port

Egress
port

Rx Tx

Ethernet
NIC

Rx Tx

ATM
PHY

Ingress
port

Egress
port

IP Switch Fabric ATM Switch Fabric

. . . .

. . . .

. . . .

. . . .

. . . .

IP Network ATM Network

NIC: Network Interface Card
PHY: Physical Layer

IP
to

ATM

IP
to
IP

ATM
to

ATM

ATM
to
IP

IP
Tx

ATM
Tx

IA_trsfm AI_trsfm Transformer

Figure 3 System architecture

3. Implementation

The main work of Fig. 3. can be classified by function into four parts: packet

receiving process, cell receiving process, packet transmitting process, and cell

transmitting process. The modules to perform these processes will be explained in

detail in the following subsections.

3.1 Packet Inbound Process

The first module is IA_trsfm module shown in Fig. 4, including “IP to IP” block

and “IP to ATM” block in Fig. 3. When this module and Ethernet network interface

card are both ready, the packet is written to the memory, and the counter that

generates receiving addresses of the memory starts to count. At the same time, this

module checks the last byte of the first received 4 bytes of the packet (data width is 4

bytes). The last 4 bits of the checked byte are IP version, and its value must be 4. The

first 4 bits of the checked byte are packet header length, and per unit equals to 4 bytes.

An IP packet header length is at least 20 bytes, so the value of the first 4 bits must be

equal to or greater than 5. The counter that generates receiving addresses of the

memory continues counting if the two conditions described above are both satisfied.

When data is written to the memory, it simultaneously is sent to IP checksum block.

Until the packet header is received completely, IP checksum block generates the

check result. If the result is correct, the packet is received continually; otherwise the

receiving address of the memory returns to the state before receiving.

Checksum

Because data width is 32 bits, so we use 32-bit algorithm for checksum. The

detailed checksum block is shown in Fig. 5. During receiving the packet, IP checksum

block simultaneously takes 4 bytes in the header as a unit to accumulate the checksum.

When the header is received completely, the block goes into the next state and then

checks whether the last accumulative result overflows. If the result overflows, the

value of the last 32 bits and the first 32 bits in the 64-bit sum will be added. This

action is repeated until no overflow, then this block goes into the next state. In this

state, IP checksum block checks whether the value of the last 16 bits in the 32-bits

result is zero. If the value is not zero, as the previous state, the value of the last 16 bits

and first 16 bits in the 32-bit result will be added and this action is repeated until the

value of the last 16 bits is zero. Finally, IP checksum block checks whether the first 16

bits are 16’hFFFF. If they are 16’hFFFF, the packet is valid; otherwise the receiving

E
thernet N

IC
 Interface

dem
ux

IA Version and
Header length

check

II Version and
Header length

check

Routing
Table

II Checksum

cellTranspktRec

IA_cksum

pktRx pktSend

II_cksum

IA Checksum

IA Packet Memory

II Packet Memory

V
C

 Interface

ATM
Switch Fabric

V
C

 Interface

M
ux

Finite
State

Machine

queue

IP to ATM

IP to IP

IA_trsfm

IP
Switch Fabric

E
thernet N

IC
 Interface

dem
ux

dem
ux

IA Version and
Header length

check

II Version and
Header length

check

Routing
Table

II Checksum

cellTranspktRec

IA_cksum

pktRx pktSend

II_cksum

IA Checksum

IA Packet Memory

II Packet Memory

V
C

 Interface

ATM
Switch Fabric

V
C

 Interface

M
ux

M
ux

Finite
State

Machine

queue

IP to ATM

IP to IP

IA_trsfm

IP
Switch Fabric

Figure 4 IA_trsfm module

address of the memory returns to the state before receiving as the packet is discarded.

Routing Table

If the IP packet need not be fragmented, it is essential to inquire Routing Table to

get next output port. Routing Table shown in Fig. 6 includes three memories that has

256 words (word width is 4 bits). The initial contents of them are all wrote in advance.

The operation of inquiry is as follows (based on original intention of verification, this

block simply uses the first 24 bits of the IP address as the index)： the first 24 bits of

the IP address are separated into three 8-bit, each of them is the individual

read-address of the three memories described above. The width of the memory is 4

bits, the first bit represents that whether the last 3 bits are the final routing result (this

similarly means the Longest Prefix Match), and the last 3 bits represent the output

ports. The Next Hop outputted is stored in one queue, and is taken out when this

packet is transmitted out.

Figure 5 Checksum block

Mux

Mux

Mux

++

0
32

32

64

32

32
32

32
16

16

IP packet header

16 bits 16 bits 16 bits 16 bits

checksum register

Checksum
Finite
State
Machine

32

16

48

16

32

Mux

Mux

Mux

++

0
32

32

64

32

32
32

32
16

16

IP packet header

16 bits 16 bits 16 bits 16 bits

checksum register

Checksum
Finite
State
Machine

32

16

48

16

32

Packet Fragmenting (Controlled by FSM)

While the packet is received, its length would be stored. And, as the packet is

transmitted, the length is used for the judgment that whether the packet fragmenting is

over. Since the packet would be segmented into ATM cells, the finite state machine

takes 48 bytes as a unit, adds a cell header for each unit, and then transmits them.

Because the data width is 32 bits, the ATM cell length is a multiple of 4 bytes (52

bytes or 56 bytes). We adopt the mode of 56 bytes. The first 4 bytes in the header are

composed of VPI, VCI, PT, and CLP, and the last 4 bytes are UDF (User Define

Field). Due to the ability of the ATM cell reassembling at end, UDF is used to judge

that whether it is the last cell in the fragmented IP packet. If UDF is 32’hFFFFFFFF,

this cell is not the packet end; else if UDF is 32’h00000000, it is the packet end.

Process described above is illustrated in Fig. 7.

Routing
table1

Routing
table3

M
ux

3

1

M
ux

3

1

3

Routing
table2

Next Hop

IP Address [31:24]

[23:16]

[15:8]

1

Figure 6 Routing Table

Routing table1
(Routing table2,
Routing table3)

valid Next hop

.

.

.

.

.

.

.

.Routing
table1

Routing
table3

M
ux

3

1

M
ux

3

1

3

Routing
table2

Next Hop

IP Address [31:24]

[23:16]

[15:8]

1

Routing
table1

Routing
table3

M
ux

3

1

M
ux

M
ux

3

1

3

Routing
table2

Next Hop

IP Address [31:24]

[23:16]

[15:8]

1

Figure 6 Routing Table

Routing table1
(Routing table2,
Routing table3)

valid Next hop

.

.

.

.

.

.

.

.
Routing table1

(Routing table2,
Routing table3)

valid Next hop

.

.

.

.

.

.

.

.

 Figure 7 Packet fragment example

3.2 Cell Inbound Process

The second module is AI_trsfm module shown in Fig. 8, including “ATM to IP”

block and “ATM to ATM” block in Fig. 3. Between physical layer and ATM layer is

UTOPIA interface. If the ATM cell received from this interface need not be

reassembled, “ATM to ATM” block inquires VPI table and then transmits it to ATM

switch fabric.

.

.

.

.

.

.

packet1

packet2

...

Header1
Header2

Payload

VPI=N
FFFFFFFF

Header1
Header2

Payload

VPI=N
FFFFFFFF

.

.

.
Header1
Header2

Payload

VPI=N
00000000 or

Header1
Header2

Payload

VPI=N
00000000

Memory

Packet Fragment

.

.

.

.

.

.

packet1

packet2

...

Header1
Header2

Payload

VPI=N
FFFFFFFF

Header1
Header2

Payload

VPI=N
FFFFFFFF

.

.

.
Header1
Header2

Payload

VPI=N
00000000 or

Header1
Header2

Payload

VPI=N
00000000

Memory

Packet Fragment

Cell Reassembling

(1) Receiving

The cell reassembling relies on a memory that manages VPI reassembling information.

While the cell is received, VPI in the header would be the index to read out its

reassembling information stored in the memory. The width of the memory of VPI

management is 17 bits, the MSB represents if this cell is the first reassembling cell. If

the MSB is 0, this cell is the first cell, and MSB would be changed into 1 and written

into the memory at next clock to mean that each following cell received with this VPI

is not the first cell about this VPI. The 8 bits— [15:8] in the memory width represent

the start address of the first cell of some VPI. So while the first 4 bytes of the first cell

arrives, these 8 bits read out must be replaced with the value of the counter generating

receiving addresses of the memory at that time and then written into the memory. This

value then is maintained until the cell reassembling terminates. The last 8 bits— [7:0]

in the memory width represent the address next to the address of the last 4 bytes of the

preceding received cell. If the received data is not the first cell with this VPI, at that

IP
Switch Fabric

ATM
Switch Fabric

U
T

O
PIA

 Interface(R
x)

dem
ux

VPI
Reassemble
Management

Memory

register

M
ux

VPI
Table

Cell Memory 1

Cell Memory 2

cellRx

cellRec pktTrans pktTransfifo

Packet FIFO

cellbuf

Queue1 Queue2

Port
Queue

V
C

 Interface
V

C
 Interface

AI_trsfm

ATM to ATM

ATM to IP

Finite
State
Machine

IP
Switch Fabric

ATM
Switch Fabric

U
T

O
PIA

 Interface(R
x)

U
T

O
PIA

 Interface(R
x)

dem
ux

dem
ux

VPI
Reassemble
Management

Memory

register
register

M
ux

M
ux

VPI
Table

Cell Memory 1

Cell Memory 2

cellRx

cellRec pktTrans pktTransfifo

Packet FIFO

cellbuf

Queue1 Queue2

Port
Queue

V
C

 Interface
V

C
 Interface

AI_trsfm

ATM to ATM

ATM to IP

Finite
State
Machine

Figure 8 AI_trsfm module

time the receiving address generated from the counter should be written into the cell

memory location that its address is the value of the 8 bits— [7:0] in the width of the

VPI management memory, for the purpose of being the information of link list.

While the UDF in the incoming ATM cell header is 32’h00000000, it is the last

reassembling cell, and the MSB in the width of the memory of VPI reassembling

information should be changed into 0 to mean that the next received cell with this VPI

is the first cell of the next IP packet. Process described above is illustrated in Fig. 9.

 Figure 9(a) Cell receiving

Time

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
0
0

0
0

0
0

4
5
6

Output port
table

VPI Output port

4
5
6

...

...

4
3
2

cell1
VPI=5

FFFFFFFF

payload1

cell2
VPI=6

FFFFFFFF

payload2

cell3
VPI=5

FFFFFFFF

payload3

cell4
VPI=4

FFFFFFFF

payload4

cell5
VPI=5

00000000

payload5

MemoryAddress

Empty

.

.

.

.

12

25

38

51

payload1

payload2

payload3

payload4

payload5

Packet Reassembling (Receiving)

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Time

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
0
0

0
0

0
0

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
0
0

0
0

0
0

4
5
6

Output port
table

VPI Output port

4
5
6

...

...

4
3
2

Output port
table

VPI Output port

4
5
6

...

...

4
3
2

cell1
VPI=5

FFFFFFFF

payload1

cell2
VPI=6

FFFFFFFF

payload2

cell3
VPI=5

FFFFFFFF

payload3

cell4
VPI=4

FFFFFFFF

payload4

cell5
VPI=5

00000000

payload5

MemoryAddress

Empty

.

.

.

.

12

25

38

51

payload1

payload2

payload3

payload4

payload5

MemoryAddress

Empty

.

.

.

.

12

25

38

51

payload1

payload2

payload3

payload4

payload5

Packet Reassembling (Receiving)

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

 Figure 9(b) Variation of VPI Management Memory and Trans_info queue

(2) Transmitting

As some packet is reassembled completely, its start address stored in the VPI

management memory would be queued, read out in sequence, and then the packet

starts being transmitted to a FIFO. Why is not the packet directly sent out and first

delivered to a FIFO instead? Because the transmission between reassembled cells

need to take one clock time to read out the next cell access address in the link list of

the former cell end, the direct transmission will cause IP switch received incontinually.

There is no problem about this if first store the packet in the FIFO and then transmit it.

Process of transmitting to packet FIFO is illustrated in Fig. 10.

VPI Management
Memory (Initial)

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
0
0

0
0

0
0

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
12
0

0
0

1
0

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
12
25

0
13

1
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

1 39 51
38
25

0
13

1
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
38
25

0
13

1
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

1 39 51
64
25

0
13

0
1

4
5
6

Trans_info
queue (Initial)

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

03

.

.

.

.

.

.

.

.

Start
address

Output
port

VPI Management
Memory (Initial)

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
0
0

0
0

0
0

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
12
0

0
0

1
0

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
12
0

0
0

1
0

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
12
25

0
13

1
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
12
25

0
13

1
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

1 39 51
38
25

0
13

1
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

1 39 51
38
25

0
13

1
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
38
25

0
13

1
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

0 0 0
38
25

0
13

1
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

1 39 51
64
25

0
13

0
1

4
5
6

VPI Management
Memory

071516
0

VPI

...
...

...

...
...

...

00

1 39 51
64
25

0
13

0
1

4
5
6

Trans_info
queue (Initial)

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue (Initial)

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

00

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

03

.

.

.

.

.

.

.

.

Start
address

Output
port

Trans_info
queue

03

.

.

.

.

.

.

.

.

Start
address

Output
port

 Figure 10 Transmitting a packet that is reassembled completely to FIFO

VPI Table Block

 The main work of the “VPI Table” block is to update the VPI. Its major structure is

a memory with the width of 8 bits. The VPI in the incoming cell header is the

read-address for this table. The last 4 bits in the content read out are new VPI, and the

first 4 bits are output port. Fig. 11 shows an example for VPI table.

Figure 11 VPI table
3.3 Packet Outbound Process

 The third module shown in Fig. 12 is “IP Tx” block in Fig. 3. As the packet would

MemoryAddress

Empty

.

.

.

.

12

25

38

51

payload1

payload2

payload3

payload4

payload5

Packet
FIFO

Packet Reassembling (Transmitting to Packet FIFO)

Packet1
(VPI=5)

payload1

payload3

payload5

26

52

MemoryAddress

Empty

.

.

.

.

12

25

38

51

payload1

payload2

payload3

payload4

payload5

Packet
FIFO

Packet Reassembling (Transmitting to Packet FIFO)

Packet1
(VPI=5)

payload1

payload3

payload5

26

52

 Outgoing
LineVPI

Incoming
VPI

0
1
2
3
4
5

~~ ~~
15

1
2
3
4
5

8
7
6
5
4

Line0

Outgoing
LineVPI

Incoming
VPI

0
1
2
3
4
5

~~ ~~
15

1
2
3
4
5

8
7
6
5
4

Line0

be sent to the network, the checksum has to be reset to zero and the TTL (time to live)

ought to subtract one, then the checksum must be calculated again and put in the

checksum field. However, if designing this circuit according to the procedure, the

efficiency of packet delivering will be decreased. So we design another equivalent

circuit, its action is described as follows: First, calculate the 1’s complement of the

received checksum, then the sum of the original packet header can be obtained. Next,

consider that if taking 16 bits as a unit to sum up the header, the action that TTL

subtracts one means that the header sum subtracts 256. So after the original sum

subtracts 256, calculate its 1’s complement and the new checksum can be acquired.

 Figure 12 “IP Tx” module

TTL decrease and Checksum Update

The actions of checksum update and TTL decrease complete during the former

described process— packet receiving from IP switch. After packet receiving from IP

switch begins, the third coming data includes checksum and TTL, so at this clock they

must be changed. Why does the data flow in Figure 6.1 replace the normal process

that consists of clearing original checksum, decreasing TTL, and then recalculating

 VC Interface

Mux

1’s complement

1’s complement

-256

FIFO

NIC Interface

Finite State
Machine

16

16

16

16

16

Mux

-1

16

16

16

outportRec

outportSend

VC Interface

Mux

1’s complement

1’s complement

-256-256

FIFO

NIC Interface

Finite State
Machine

16

16

16

16

16

Mux

-1

16

16

16

outportRec

outportSend

checksum? We illustrate the reason with normal and improved processes of a standard

20-byte header in the following example (Note that the header content values are

presented in hexadecimal):

Normal process:

Improved process:

 4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 0 0 0 0
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 0 0 0 0
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3+)

2 0 4 F C 3 9 2 B

0 4 F C 3 9 2 B
0 0 0 0 0 0 0 2+)
0 4 F C 3 9 2 D

3 9 2 D
0 4 F C+)
3 E 2 9

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 C 1 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

3 E 2 9

1’s
complement

C 1 D 6

TTL-1=95, Checksum cleared=0

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 0 0 0 0
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 0 0 0 0
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 0 0 0 0
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3+)

2 0 4 F C 3 9 2 B

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 0 0 0 0
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3+)

2 0 4 F C 3 9 2 B

0 4 F C 3 9 2 B
0 0 0 0 0 0 0 2+)
0 4 F C 3 9 2 D

0 4 F C 3 9 2 B
0 0 0 0 0 0 0 2+)
0 4 F C 3 9 2 D

3 9 2 D
0 4 F C+)
3 E 2 9

3 9 2 D
0 4 F C+)
3 E 2 9

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 C 1 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 C 1 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

3 E 2 9

1’s
complement

C 1 D 6

3 E 2 9

1’s
complement

C 1 D 6

TTL-1=95, Checksum cleared=0

 4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 C 1 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

C 0 D 6

1’s
complement

3 F 2 9

3 F 2 9

-256

3 E 2 9

3 E 2 9
1’s

complement

C 1 D 6

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 C 1 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 C 1 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

C 0 D 6

1’s
complement

3 F 2 9

3 F 2 9

-256

3 E 2 9

3 E 2 9
1’s

complement

C 1 D 6

 4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

Original header received from switch

TTL=96
Checksum=C0D6

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

Original header received from switch

TTL=96
Checksum=C0D6

3.4 Cell Transmitting Process

The fourth module is the “ATM Tx” block in Fig. 3, and it is the simplest module.

Its task just receives cells from the ATM switch and transmits cells to physical layer.

Fig. 13 presents the “ATM Tx” module.

 Figure 13 “ATM Tx” module

4. Interface and Experiment results

This section discusses the interfaces between the four modules and other

components in the system architecture. The IA_trsfm module receives packets

through the NIC interface, and transmits packets or cells through Virtual Component

Interface (VCI) to switches. Note that the VCI is an on-chip bus standard for SOC.

The AI_trsfm module receives cells through UTOPIA interface established by ATM

Forum and transmits cells or packets through VCI to switches. The “IP Tx” and “ATM

Tx” modules receive packets or cells from VCI, and transmit them through NIC and

UTOPIA interface.

The four modules in section 3 are implemented by using Verilog code. The

simulation results and design summaries for the four modules are listed in Table 1 to

 VC Interface

UTOPIA Interface(Tx)

FIFO

32

32

cellopRec

cellopTx

Finite
State

Machine

VC InterfaceVC Interface

UTOPIA Interface(Tx)

FIFO

32

32

cellopRec

cellopTx

Finite
State

Machine

Table 4.

5. Reference

[1]. Andrew S. Tanenbaum, Computer Networks, Third Edition, Prentice-Hall, 1996.

[2]. http://www.atmforum.com, About ATM Technology, ATM standardization.

[3]. ATM Forum Technical Committee, af-phy-0017.000, “UTOPIA Specification,

Level 1, Version 2.01,” March 21, 1994.

[4]. ATM Forum Technical Committee, af-phy-0039.000, “Utopia Level 2, Version

1.0”, June 1995.

[5]. ATM Forum Technical Committee, “UTOPIA 3 Physical Layer Interface,”

November 1999.

[6]. J. Touch, B. Parham, “Implementing the Internet Checksum in Hardware,” IETF

RFC 1936, April 1996.

[7]. R. Braden, D. Borman, and C. Partridge, “Computing the Internet Checksum,”

IETF RFC 1071, September 1988.

[8]. Gray R. Wright and W. Richard Stevens, TCP/IP Illustrated Volume 2: The

Implementation, Addison-Wesley, 1995.

[9]. Pankaj Gupta, Steven Lin, and Nick McKeown, “Routing Lookups in Hardware

at Memory Access Speeds,” Computer Systems Laboratory, Stanford University

Stanford, CA 94305-9030.

[10]. Andreas Moestedt and Peter Sjödin, “IP Address Lookup in Hardware for

High-Speed Routing,” Swedish Institute of Computer Science, P.O. Box 1263,

SE-164 29 KISTA, Sweden.

[11]. Peter Newman, Greg Minshall, Tom Lyon, and Larry Huston, Ipsilon Networks

Inc, “IP Switching and Gigabit Routers,” IEEE Communications Magazine,

January 1997.

[12]. VSI Alliance, On-Chip Bus Development Working Group, “Virtual Component

Interface Standard Version 2(OCB 2 2.0),” April 2001.

[13]. James Aweya, “IP Router Architectures: An Overview,” Nortel Networks,

Ottawa, Canada, K1Y 4H7.

[14]. O. G. Koufopavlou, A. N. Tantawy, and M. Zitterbart, “Analysis of TCP/IP for

High Performance Parallel Implementations,” IBM Research Division, T. J.

Watson Research Center, P. O. Box 704, Yorktown Heights, NY 10598.

[15]. Nick McKeown, “High Performance Switching and Routing,”

http://www.stanford.edu/~nickm.

Resource No. of used Max Available % used
Number of Slices: 2,026 12,288 16%
Number of Slice Flip Flops: 2,294 24,576 9%
Total Number 4 input LUTs: 3,898 24,576 15%
Number used as LUTs: 3,896
Number used as a route-thru: 2
Number of bonded IOBs: 143 404 35%
Number of Block RAMs: 7 32 21%
Number of GCLKs: 1 4 25%
Number of GCLKIOBs: 1 4 25%
Total equivalent gate count for design: 159,797
Additional JTAG gate count for IOBs: 6,912
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period: 31.551ns (Maximum frequency: 31.695MHz)
Maximum combinational path delay: 35.685ns
Maximum net delay: 21.633ns

Table1 AI_trsfm block
Resource No. of used Max Available % used
Number of Slices: 2,026 12,288 16%
Number of Slice Flip Flops: 2,294 24,576 9%
Total Number 4 input LUTs: 3,898 24,576 15%
Number used as LUTs: 3,896
Number used as a route-thru: 2
Number of bonded IOBs: 143 404 35%
Number of Block RAMs: 7 32 21%
Number of GCLKs: 1 4 25%
Number of GCLKIOBs: 1 4 25%
Total equivalent gate count for design: 159,797
Additional JTAG gate count for IOBs: 6,912
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period: 31.551ns (Maximum frequency: 31.695MHz)
Maximum combinational path delay: 35.685ns
Maximum net delay: 21.633ns

Table1 AI_trsfm block

Table2 IA_trsfm block
Resource No. of used Max Available % used
Number of Slices: 1,035 12,288 8%
Number of Slice Flip Flops: 447 24,576 1%
Total Number 4 input LUTs: 1,938 24,576 7%
Number used as LUTs: 1933
Number used as a route-thru: 5
Number of bonded IOBs: 192 404 47%
Number of Block RAMs: 7 32 21%
Number of GCLKs: 1 4 25%
Number of GCLKIOBs: 1 4 25%
Total equivalent gate count for design: 131146
Additional JTAG gate count for IOBs: 9264
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period: 74.114ns (Maximum frequency: 13.493MHz)
Maximum net delay: 16.392ns

Table2 IA_trsfm block
Resource No. of used Max Available % used
Number of Slices: 1,035 12,288 8%
Number of Slice Flip Flops: 447 24,576 1%
Total Number 4 input LUTs: 1,938 24,576 7%
Number used as LUTs: 1933
Number used as a route-thru: 5
Number of bonded IOBs: 192 404 47%
Number of Block RAMs: 7 32 21%
Number of GCLKs: 1 4 25%
Number of GCLKIOBs: 1 4 25%
Total equivalent gate count for design: 131146
Additional JTAG gate count for IOBs: 9264
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period: 74.114ns (Maximum frequency: 13.493MHz)
Maximum net delay: 16.392ns

Resource No. of used Max Available % used
Number of Slices: 1776 12,288 14%
Number of Slice Flip Flops: 2157 24,576 8%
Total Number 4 input LUTs: 3533 24,576 14%
Number used as LUTs: 3532
Number used as a route-thru: 1
Number of bonded IOBs: 70 404 17%
Number of GCLKs: 1 4 25%
Number of GCLKIOBs: 1 4 25%
Total equivalent gate count for design: 41280
Additional JTAG gate count for IOBs: 3408

device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period: 33.537ns (Maximum frequency: 29.818MHz)
Maximum combinational path delay: 44.517ns
Maximum net delay: 31.049ns

Table3 IP Tx block
Resource No. of used Max Available % used
Number of Slices: 1776 12,288 14%
Number of Slice Flip Flops: 2157 24,576 8%
Total Number 4 input LUTs: 3533 24,576 14%
Number used as LUTs: 3532
Number used as a route-thru: 1
Number of bonded IOBs: 70 404 17%
Number of GCLKs: 1 4 25%
Number of GCLKIOBs: 1 4 25%
Total equivalent gate count for design: 41280
Additional JTAG gate count for IOBs: 3408

device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period: 33.537ns (Maximum frequency: 29.818MHz)
Maximum combinational path delay: 44.517ns
Maximum net delay: 31.049ns

Table3 IP Tx block

Resource No. of used Max Available % used
Number of Slices: 2355 12,288 9%
Number of Slice Flip Flops: 2078 24,576 8%
Total Number 4 input LUTs: 4703 24,576 19%
Number of bonded IOBs: 71 404 17%
Number of GCLKs: 1 4 25%
Number of GCLKIOBs: 1 4 25%
Total equivalent gate count for design: 44842
Additional JTAG gate count for IOBs: 3456
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period: 21.564ns (Maximum frequency: 46.374MHz)
Maximum combinational path delay: 46.579ns
Maximum net delay: 19.611ns

Table4 ATM Tx block
Resource No. of used Max Available % used
Number of Slices: 2355 12,288 9%
Number of Slice Flip Flops: 2078 24,576 8%
Total Number 4 input LUTs: 4703 24,576 19%
Number of bonded IOBs: 71 404 17%
Number of GCLKs: 1 4 25%
Number of GCLKIOBs: 1 4 25%
Total equivalent gate count for design: 44842
Additional JTAG gate count for IOBs: 3456
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period: 21.564ns (Maximum frequency: 46.374MHz)
Maximum combinational path delay: 46.579ns
Maximum net delay: 19.611ns

Table4 ATM Tx block

