A New Method to Construct Decision Trees
from Training Instances

Yih-Jen Horng", Chia-Hoang Lee", and Shyi-Ming Chen™”

*Department of Computer and Information Science, National Chiao Tung

University, Hsinchu, Taiwan, R. O. C.

**Department of Computer Science and Information Engineering, National
Taiwan University of Science and Technology, Taipei, Taiwan, R. O. C.

Abstract

In this paper, we present a new learning
method to construct decision trees from training
instances for handling classification problems.
The decision trees constructed by the proposed
method can be much smaller than the ones
constructed by the ID3 algorithm. The proposed
method is better than the ID3 algorithm when
noise or coincidental regularities exist in the

training instances.

Keywords: 1D3

Problems,

Algorithm, Classification

Decision Trees, Instance-Based

Learning, Overfitting Problems.

1. Introduction

Machine learning is one of the most
important research topics in the field of
Artificial Intelligence. The goal of machine
learning is to build a knowledge base by
observing human behaviors or operation models
with respect to the encountered environments or
objects, where the human behaviors or operation
models are represented in the form of training
examples. Then, the learned knowledge base is

transferred to some corresponding operational

rules that let machines to act like human beings.

Many machine learning algorithms have
been proposed in the past decades, such as the
version space learning methods [17], the
decision tree learning methods [19], [20], the
artificial neural networks [22], the genetic
algorithms [10], ..., etc. Among these machine
learning methods, the decision tree learning
methods provide an easy and efficient way to
derive knowledge from the training data.

In 1986, Quinlan [19] proposed a
decision-tree construction method called the ID3
algorithm. It has been widely used to construct
decision trees. But as stated in [18], when the
noise is contained in the training instances or
when the number of training instances is too
small to produce a representative sample of the
instance space, the decision trees constructed by
the ID3 learning algorithm may “overfit” the
training instances. That is, although the decision
tree constructed by the ID3 algorithm can
correctly classify the training instances, it may
be not an optimal decision tree due to the fact

that there may exist other decision trees which

have a higher classification accuracy rate than

the one constructed by the ID3 algorithm with
respect to the instances distributed in the whole
instance space.

There are two approaches [18] to solve the
“overfitting” problem of the ID3 algorithm. The
first approach adopts the methods of stopping
growing unnecessary branches before the
construction of the decision tree is completed.
The other approach takes a two-stage process by
allowing the decision tree to grow completely at
first, and then a pruning operation is performed
to prune the unnecessary branches. Since it is
difficult to estimate which branches are
unnecessary when the decision trees are growing,
the methods which prune the complete decision
trees are more practical. However, since many
computational efforts are needed to decide
which branches are unnecessary and to prune
these unnecessary branches, the two-stage
process may not be efficient enough in the
applications that need to construct decision trees
quickly.

In fact, one common characteristic of the
methods to solve the “overfitting” problem of
the ID3 algorithm is to construct a decision tree
that doesn’t classify the training instances
perfectly. That is, instances labeled as different
classes can be allowed to affiliate to the same
leaf node. When these imperfect decision trees
are used to classify an unseen instance, the
unseen instance is labeled as the most common
classification of the existing instances affiliating

to the leaf node that corresponds to the attribute

values of the unseen instance. This means that

the classification of an unseen instance is based
on the existing instances from different classes.
If the classification accuracy rate is good
enough, the underlying branches which perfectly
classify the existing instances are not necessary.
The advantage of this approach is some
branches misled by noise or by “coincidental
regularities” may be avoided.

However, the classification strategy adopted
so far is simply voted by the existing instances.
That is, the unseen instance is labeled as the
most common classification of the existing
instances. If we can use a more powerful
classification strategy, then the classification
accuracy rate should be increased. Therefore,
the impact of noisy data and “coincidental
regularities” should be decreased.

In this paper, we propose a new method to
construct decision trees from training instances
which allows instances from more than one
class existing in the same leaf node. Moreover,
we apply the instance-based learning techniques
[18] to deal with the classification of the unseen
instances. The proposed method performs better
than the ID3 algorithm when noise or
coincidental regularities exist in the training data
from the viewpoint of the size and the
classification accuracy rate of the constructed
decision trees.

The rest of this paper is organized as
follows. In Section 2, we briefly review the ID3
algorithm [19] and discuss the “overfitting”
problem. In Section 3, we present a new method

to construct decision trees. In Section 4, we

present a classification method based on the
constructed decision tree. The conclusions are

discussed in Section 5.

2. A Review of the ID3 Algorithm

The decision tree learning method starting
from taking training instances as an input and
ending in constructing a decision tree as the
output is one of the widely used inductive
learning methods. The decision tree learning
methods search the hypothesis space for
hypotheses approximating the target function
consistent with the training instances. In a
decision tree learning method, the resulting
hypotheses are represented in the form of
decision trees. However, unlike other induction
learning methods (e.g., the version space
method [17]), the decision tree learning method
maintains only a single hypothesis for each
training data set instead of all the possible
hypotheses.

Each non-leaf node of the decision tree
represents a selected attribute 4 that is used to
test instances; each edge represents a branch
which take one possible value of attribute A;
each leaf node represents one classification. Fig.
1 shows a decision tree, where A4; is the selected
attribute, Vj; is the branch value of attribute 4;,
and L, is the classification name. The instances
are tested by parts of the non-leaf nodes of the
decision tree, which form a path that directs the
instance from the root node to a leaf node which

provides a classification to the instance.

Fig. 1. A decision tree.

Many decision tree construction methods
have been proposed. In 1986, Quinlan proposed
a decision tree construction method named as
“ID3” algorithm [19], which has been used in
many practical applications since its ease of use.
The ID3 algorithm grows the decision tree from
the root node downward and greedily selects the
best attributes as interior nodes when branches
are needed to perfectly classify the training
instances. The goodness of an attribute A is the
degree that attribute 4 discriminates the training
instances with respect to their classifications.
Let A be an attribute and let S be a collection of
training instances. The information gain Gain(S,
A) of the attribute 4 with respect to the set S of
the training instances can be calculated as

follows [18]:

v

Gain(S, A) = Entropy(S)— Y,

veValues(A) ‘S ‘

Entropy(S,), (1)

where Values(A) denotes a set of all possible
values of the attribute 4, S, is a subset of S in
which the attribute 4 has the value v, |S,| denotes
the number of elements in S,, |S| denotes the
number of elements in S, and Entropy(S) is

defined as follows:

¢

Entropy(S) = z;—p,. log, p,, 2)
where p; is the proportion of S belonging to class
I, and c is the number of classifications of the
training instances.

The ID3 algorithm chooses the most suited
decision tree among all consistent decision trees
based on its inductive bias. That is, the smaller
decision tree is preferred than the larger one, and
the tree selects the attribute which has the
highest information gain as the root node.

Although the ID3 algorithm intends to
construct the best decision tree for classifying
the overall instances distributed in the instance
space, the performance of the constructed
decision trees depends on the training instances
used to construct the decision trees. When there
are other decision trees perform better than the
ones constructed by the ID3 algorithm over the
entire instances distributed in the instance space,
the decision tree “overfit” the training instances
[18].

There are two reasons of the overfitting
problem of the ID3 algorithm which both cause
the ID3 algorithm to generate some unreliable
branches. That is, the constructed tree tends to
be very large. One reason is that the data
contained in the training examples are not
deterministic but uncertain. The uncertain data
come from the noise in the measurements and
represented both in attribute values and in the
classifications of the training instances. When
this happens, the unseen instances that go into

the leaf nodes containing noise may make a

wrong decision. In [14], Minger pointed out that
when noisy and uncertain data is contained in
the training instances, the decision tree
constructed by the ID3 algorithm tends to be
very large and will decrease ten to twenty five
percent of the classification accuracy rate.

The other one is that the number of the
training instances is too small to represent the
whole instances in the instance space. When this
happens, it is quite possible for coincidental
regularities to occur, in which some attribute
happens to partition the examples very well,
despite being unrelated to the actual target
function.

There are two kind of methods proposed to
solve the overfitting problem of the ID3
algorithm [19]. The first one is the approach that
stops growing the tree earlier before it reaches
the point where it perfectly classifies the
training data. The other one is the approach that
allows the tree to overfit the data, and then
post-prune the tree.

Although the first approach might seem
more straightforward, the second approach of
post-pruning overfit trees has been found to be
more successful in practice [18]. This is due to
the difficulty of the first approach to estimate
precisely when to stop growing the tree.

However, these decision tree pruning
methods all need some post processing which
need many computational efforts. Furthermore,
the post pruning approach needs separating the
available examples into two different sets, i.e.,

the training set and the validation set. The

training set is used to induct a decision tree,
while the validation set is used as the evaluation
utility of post-pruning nodes from the tree. A
major drawback of this approach is that when
the number of data is limited, withholding part
of it for the validation set reduces even further
the number of examples available for training.
Thus, it is necessary to develop an effective
and efficient decision tree induction method that
can reduce the impact of the overfitting problem

of the ID3 algorithm.

3. A New Method to Construct
Decision Trees from Training

Instances

A new decision tree induction method is
proposed in this section, which intends to
overcome the overfitting problem of the ID3
algorithm. Moreover, in order to enhance the
ability of the proposed method, we apply some
strategies to make the proposed method can
deal with the data whose attribute values are
continuous type, where the ID3 algorithm can’t
handle this situation.

In order to overcome the overfitting
problem, we adopt the approach of stopping
growing the decision tree completely. That is,
instead of perfectly classifying instances
associating with each leaf node, we take a
voting strategy, i.e., when the proportion of
some training instances belonging to a specific
class to all classes exceed a predefined
proportion threshold value ¢, where o € [0, 1],

the nodes stop branching.

However, since there may be more than
one class exists in the leaf node, when a unseen
instance gets into the leaf node, there should
have some methods to decide the class of the
new instance based on the training instances
affiliated with the leaf node. We adopt the
instance-based learning techniques [18] to deal
with the classification. The details of the
classification process are described in the next
section.

Another issue of the ID3 algorithm [19] is
that it can’t deal with continuous-valued
attributes. This drawback can be overcomed by
preprocessing the continuous-valued attributes.
That is, by defining new discrete-valued
attributes and mapping the continuous-valued
attributes into the new discrete-valued attributes.
A common approach to this goal is by setting a
set of “cut points” to each continuous-valued
attributes, i.e., the possible values are broken
into several intervals and the continuous-valued
attributes can then be mapped into distinct
intervals. An alternative way is mapping the
continuous values into some predefined fuzzy
sets [25], and a fuzzy decision tree can be
obtained [4], [6], [11], [12], [23], [24].

In the proposed decision tree learning
method, we employ a strategy that is similar to
the “cut points” approach to handle
continuous-valued attributes, but the number of
cut point is only one. That is, we simply divide
the possible values of the continuous-valued

attribute into two parts. Furthermore, the

continuous-valued attributes are normalized

before using them to induct a decision tree.
Assume that 4 is a continuous-valued attribute
and assume that A(max) denotes the maximum
value of 4, and assume that 4(min) denotes the
minimum value of 4, then a possible value A(x)

of the attribute 4 is normalized as follows:

A(x) — A(min) 3)
A(max) — A(min)’

normalization (x) -

where A,omatization(x) 1 the normalized value of

A(x). The possible values of the
continuous-valued attribute are between zero
and one after the normalization process. The
advantage of the normalization is that only one
common cut point should be set for all
continuous-valued attributes since different
scales of different attributes are unified. In this
paper, we set the cut point to 0.5. The proposed
decision-tree learning algorithm is now
presented as follows:
Step 1: for each continuous-valued attribute C
do
begin
find the maximum value and the
minimum value of attribute C;

normalize the attribute value of
each training instance with
respect to attribute C according

to formula (3);
divide the normalized attribute
values of each training instance
with respect to attribute C into
two parts depending on whether

they are less than the cut point A

or not, where A € [0, 1]

end.

Step 2: Create a root node R.

Step 3: if the proportion of some involved class
L exceeds the proportion threshold
value o, where o € [0, 1], then
return the root node R.

Step 4: if no further attribute can be used to test
instances then return the root node R

else choose an attribute 4 which has the
largest

information gain among

available attributes according to
formula (1) and let 4 be the test
attribute in root node R.
Step 5: for each possible value V; of attribute A4
do
begin
add a new branch below R
corresponding to the test “4 =
Vo,
let Ey; be the subset of the training
instances whose value for
attribute 4 is V;
if E; is empty then below this new
branch add a leaf node
else below this new branch add a
subtree generated by the
proposed decision-tree learning
algorithm but using Ej; as the
training instances and take
attribute 4 away from the
available attributes

end.

Step 6: Return root node R.

It should be noted that the leaf nodes are not
labeled with a classification name. That is, when
this kind of decision tree is used to classify
unseen instances, furthermore classification
process is required. We will introduce a
classification method based on the constructed
decision tree by the proposed learning algorithm

in the next section.

4. A Classification Method Based on

the Constructed Decision Tree

After the decision tree has been
constructed by means of the proposed learning
method, the decision tree can then be used to
classify the unseen instances. By means of the
decision trees constructed by the ID3 algorithm,
the unseen instances are tested by parts of the
non-leaf nodes of the constructed decision tree,
which form a path that directs the instance from
the root node to a leaf node that provide a
classification to the instance. However, if the
classification process based on the decision
trees constructed by the proposed method, the
leaf nodes won’t provide any classification to
the instance. Thus, an additional judgment
mechanism is required to give the classification
to an unseen instance based on its relationship
to the training instances affiliated with the leaf
node that the unseen instance gets into.
However, the additional judgment mechanism
must satisfy the following conditions. Firstly,
the impact of noisy data should be effectively
reduced when noisy data is involved. Secondly,

the estimation of the classification accuracy

rate must based on part of the total training
instances, that is, the estimation must based on
the training instances affiliated with one
particular leaf node of the constructed decision
tree. In this paper, we adopt the instance-based
learning techniques [18] to assign the
classification to a new instance due to the fact
that the instance-based learning techniques are
robust to noisy training data and can estimate
the target function locally and differently for
each new instance to be classified.

Instance-based learning techniques such as
the “nearest neighbor” and the “locally
weighted regression” assumed instances can be
represented as points in a Euclidean space.
Unlike other learning methods, the
instance-based learning techniques simply store
the training instances. When a new instance is
encountered, a set of similar related instances is
retrieved to estimate the classification of the
new instance. Thus, the instance-based learning
methods are also referred to as “lazy” learning
methods [18] because they delay processing
until a new instance to be classified.

The instance-based learning method could
overcome the impact of isolated noisy training
examples. For example, Fig. 2 presents a
two-dimensional instance space made by the
training instances affiliated with a leaf node,
where “+” stands for a positive example,
“-“ stands for a negative example, and X is the
unseen instance to be classified. Assume that

the only negative example is a noise, which is

supposed to be labeled as positive. If we use the

distance-weighted nearest neighbor algorithm
[18] that takes all these four instances into
account to estimate the classification of X, then
X is classified as “positive” if it is positioned in
the left side of the curve, whereas classified as

“negative” if it is on the right side of the curve.

|

< e

Fig. 2. A set of positive and negative training
examples along with an unseen instance

X to be classified.

We adopt an approach that is similar to the
distance-weighted nearest neighbor algorithm
[18] except that the number of nearest
neighbors to take into account is not given in
advance. In stead, we take all of the training
instances in a specific leaf node as the basis to
predict the classification of the new instance.

However, since the set of attributes of the
instance consist of discrete-valued attributes
and continuous-valued attributes, a strategy is
required to calculate the distance between
discrete-valued attributes and
continuous-valued attributes, respectively, and
then merge these distances. The distance

calculation method between two instances that

we use in this paper is presented as follows:

Distance Calculation Algorithm:

Input: Two instances /; and [j;

Output: Distance between /; and [j;

Variable: d_distance, ¢_distance;

/* d_distance denotes the summation
of the differences between the
values of the instances /; and /; of
all discrete-valued attributes;
c_distance denotes the summation
of the differences between the
values of the instances /; and I; of
all continuous-valued attributes */

Step 1: for every attribute 4 contained in the

instances,
if attribute 4 is a continuous-valued
attribute then go to Step 2
else go to Step 3.

Step 2: normalize the values of attribute A in
instances /; and [, according to
formula (3), respectively;

calculate the difference of these two

normalized values and add it to
c_distance;

go to Step 4.

Step 3: if the value of attribute 4 in instances /;
and J; is different from the value of
attribute 4 in instances /; and /; then
add one to d_distance.

Step 4: Return the summation of ¢_distance and

d_distance.

After the distance between the training
instance and the new instance has been

calculated, the weight w(/) of the training

instances to predict the classification can then be

obtained according to the following formula:

W(l) = L 2O)
2n
where D(I) denotes the distance between the
training instance / and the new instance.

The weights of all training instances are
then summarized to get the classification weight
of each classification. The classification with the
chosen as the

highest weight is then

classification result of the unseen instance.

5. Conclusions

In this paper, we have presented a new
method for quickly constructing decision trees
from training instances. By allowing impure
classifications of the instances associating to the
same leaf node, the proposed learning method
could generate a much smaller decision tree than
the one constructed by the ID3 algorithm. The
proposed method is better than the ID3
coincidental

algorithm when noise or

regularities exist in the training instances.

References

[1] L. Breiman, J. H. Friedman, J. A. Olshen,
and C. J. Stone, Classification and

Regression Trees. CA: Wadsworth
International, 1984.

[2] D. W. Aha, UCI Machine Learning Group,
http://www.ics.uci.edu/~mlearn/
MLRepository.html.

[3] C. Apté and S. Weiss, “Data mining with

decision trees and decision rules,” Future
Generation Computer Systems, vol. 13, no.
2-3, pp- 197-210, 1997.

[4] R. L. P. Chang and T. Pavlidis, “Fuzzy
decision tree algorithm,” IEEE
Transactions on Systems, Man, and
Cybernetics, vol. 7, no. 1, pp. 28-35, 1977.

[5] CJ. Chen and Q. Y. Shi, “Shape features
for cancer cell recognition,” in

Proceedings of the 5th International

Conference on Pattern Recognition,
Miami Beach, Florida, U. S. A., pp.
579-581, 1980.

[6] K. J. Cios and L. M. Sztandera,
“Continuous ID3 algorithm with fuzzy
entropy measures,” in Proceedings of the
First IEEE International Conference on
Fuzzy Systems, San Diego, U. S. A., pp.
469-476, 1992.

[71 G. Cornell and T. Strain, Delphi Nuts &
Bolts for Experienced Programmers. CA:
McGraw-Hill, 1995.

[8] G. R. Dattatreya and V. S. Sarma,
“Decision tree

design for pattern

recognition including feature
measurement cost,” in Proceedings of the
Sth International Conference on Pattern
Recognition, Miami Beach, Florida, U. S.
A., pp. 1212-1214, 1980.

[9] M. Dong and R. Kothari, “Look-ahead
based fuzzy decision tree induction,”
IEEFE Transactions on Fuzzy Systems, vol.
9, no. 3, pp. 461-468, 2001.

[10] D. Goldberg,

Genetic Algorithms in

[12]

[14]

[16]

Search, Optimization, and Machine
Learning. MA: Addison-Wesley, 1989.

C. Z. Janikow, “Exemplar learning in
fuzzy decision trees,” in Proceedings of
the 5th IEEE International Conference on
Fuzzy Systems, New Orleans, U. S. A., pp.
1500-1505, 1996.

C. Z. Janikow, “Fuzzy decision trees:
Issues and methods,” IEEE Transactions
on Systems, Man, and Cybernetics — Part
B: Cybernetics, vol. 28, no. 1, pp. 1-14,
1998.

Y. K. Lin and K. S. Fu, “Automatic
classification of cervical cells using a
binary tree classifier,” in Proceedings of
the 5th International Conference on
Pattern Recognition, Miami Beach,
Florida, U. S. A., pp. 570-574, 1980.
J. Mingers, “Expert systems — rule
induction with statistical data,” Journal of
the Operational Research Society, vol. 38,
no. 1, pp. 39-47, 1987.

J. Mingers, “Rule induction with statistical
data — a comparison with multiple
regression,” Journal of the Operational
Research Society, vol. 38, no. 4, pp.
347-352, 1987.

J. Mingers, “An empirical comparison of
pruning methods for decision tree

induction,” Machine Learning, vol. 4, no.

2, pp. 319-342, 1989.

[17]

[20]

(23]

[24]

[25]

T. M. Mitchell, “Version spaces: a
candidate elimination approach to rule
learning,” in Proceedings of the Fifth
Joint

International Conference on

Artificial Intelligence, Cambridge,
Massachusetts, U. S. A., pp. 305-310,
1977.

T. M. Mitchell, Machine Learning.
Singapore: McGraw-Hill, 1997.

J. R. Quinlan, “Induction of decision

trees,” Machine Learning, vol. 1, no. 1, pp.

81-106, 1986.
J. R. Quinlan, “Simplifying decision
trees,” International Journal of

Man-Machine Studies, vol. 27, no. 3,
pp.221-234, 1987.

J. R. Quinlan, C4.5: Programs for
Machine Learning. CA: Morgan
Kaufmann Publishers, 1992.

E. Rich and K. Knight, Artificial
Intelligence. Singapore: McGraw-Hill,
1991.

L. X. Wang and J. M. Mendel,
“Generating fuzzy rules by learning from
examples,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 22, no. 6, pp.
1414-1427, 1992.

Y. Yuan and M. J. Shaw, “Induction of
fuzzy decision trees,” Fuzzy Sets and
Systems, vol. 69, no. 2, pp. 125-139, 1995.
L. A. Zadeh, “Fuzzy sets,” Information

and Control, vol. 8, pp. 338-353, 1965.

