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Abstract

This paper investigates the effectiveness of a
passive Tuned Mass Damper (TMD) and active fuzzy
controllers in reducing the structural responses under
the external force. In general, TMD is good for linear
system. We proposed here a fuzzy controller to deal
with the nonlinear system. For the fuzzy controller, a
stability criterion in terms of Lyapunov's direct method
is derived to guarantee the stability of TMD systems.
Based on the decentralized control scheme and this
criterion, a set of model-based fuzzy controllersis then
synthesized via the technique of parallel distributed
compensation (PDC) to stabilize nonlinear TMD
systems. Finally, an example is given to illustrate the
concepts discussed throughout this paper.
Key words: TMD, T-Sfuzzy models, fuzzy control.

|. Introduction

Traditional  structural design  depends on
structural strength and capability to dissipate energy
due to dynamic forces such as machine loading, wind
forces and earthquakes. The use of passive tuned mass
dampers (TMDs) as a means to control and reduce the
vibration of dynamic systems was first proposed by
Frahm in 1909 [1]. Since then, much research has been
done to investigate the control effectiveness of passive
TMDs [2-4]. These articles show that the TMDs are
suitable for a linear resonant system and it will be
useful only for the frequency of TMD close to the
primary structure [5]. Nevertheless, for a relatively
small displacement, the restoring force of the spring
can be modeled linearly. Nonlinear stiffness is
considered for alarge displacement so that the TMD is
not appropriate [6]. The objective of this paper is to
derive a dtability criterion for model-based fuzzy
controller to guarantee the uniformly ultimately
bounded (UUB) stable of nonlinear systems.

In the past few years, fuzzy-rule-based modeling
has become an active research field because of its
unique merits in solving complex nonlinear system
identification and control problems. In attempt to attain
more flexibility and more effective capability of
handling and processing uncertainties in complicated
and ill-defined systems, Zadeh [7] proposed a
linguistic approach as the model of human thinking,
which introduced the fuzziness into systems theory [8].
Unlike traditional modeling, fuzzy rule-based
modeling is essentially a multimodel approach in



which individual rules are combined to describe the
global behavior of the system [9].

There have been many successful applications in
fuzzy control in recent years. In spite of the success,
there are still many basic issues that remain to be
further addressed. Stability analysis and systematic
design are certainly among the most important issues
for fuzzy control systems. Recently, there have been
significant research efforts on these issues [10-15].
However, as far as we know, the stabilization problem
of nonlinear TMD systems remains unresolved.

Hence, a stability criterion in terms of Lyapunov's
direct method is derived in this study to guarantee the
stability of TMD systems. According to this criterion
and the control scheme, a model-based fuzzy controller
is then synthesized to stabilize the nonlinear TMD
system. Moreover, the system is represented by a
Takagi-Sugeno (T-S) type fuzzy model. In this type of
fuzzy model, each fuzzy implication is expressed by a
linear system model, which allows us to use linear
feedback control as in the case of feedback
stabilization. The control designis carried out based on
the fuzzy model via the paralel distributed
compensation (PDC) scheme. The idea is that a linear
feedback control is designed for each loca linear
model. The resulting overall fuzzy controller, which is
nonlinear in general, is a fuzzy blending of each
individual linear controller [10, 13]. In other words, a
stability criterion in terms of Lyapunov's direct method
is derived to guarantee the stability of systems. Based
on this criterion and the control scheme, a model-based
fuzzy controller isto stabilize the nonlinear system.

This paper is organized as follows. First, the T-S
fuzzy model is briefly reviewed and the system
description is presented. Then, a stability criterion is
derived to guarantee the stability of systems. Next, a
TMD is used to reduce the vibration of dynamic linear
system but it fails for the nonlinear system. So, a set of
model-based fuzzy controllers via the technique of
PDC is proposed to stabilize the nonlinear TMD
system. Finally, a numerica example of nonlinear
TMD system with simulations is given to illustrate the
results, and the conclusions are drawn.

II. System Description

Consider a nonlinear system N composed of J
subsystems N;, j=12,---,J. The jth subsystem

N. is

J follows:

described as

X () = f;(x;(t),u; () + Z by ; (X, (1) + @, (t) (2.1)

n#j
where f ; is the nonlinear vector-valued function,
X;(t) is the state vector, u;(t) is the input vector,
@;(t) denotes the external force and b,; is the

nonlinear interconnection between the nth and jth
subsystems.

Definition 2.1 [6]: The solution of a dynamic system
are said to be uniformly ultimately bounded (UUB) if

there exist positive constants ¢ and K , and for
every 00(0,k) thereisapositive constant T =T(J),
such that

[xt)| <o O |xt)|<¢, Ot=t, +T

In a little more than a decade ago, a fuzzy
dynamical model had been developed primarily from
the pioneering work of Takagi and Sugeno [16] to
represent local linear input/output relations of
nonlinear systems. This dynamical model is described
by fuzzy IF-THEN rules and it will be employed here
to handle the control design problem of the nonlinear
interconnected system N. The ith rule of this fuzzy
model for the nonlinear interconnected subsystem N;

is proposed as the following form:
Rulei: IF x;(t) is M;;; and---and X, (t) is My
THEN

O=AX 0+ A O+Bu 0+, 22

n#j

j

where X7 (t) =[x, (t), X, (1), -, X, ()] O R
denotes the state vector,

U (©) =[uy; (1), Uy (©),-+ Uy OTT R
denotes the control input,

@ 0 =1, 1), @, 1), 9, OITR™  denotes
the unknown disturbances with a known upper bound
@p®2]g®)|. =121 and r; isthe number of IF-

]

THEN rules; A;, Anj and B;; are constant matrices
with appropriate dimensions;, M, (p=12,---,9) are
the fuzzy sets, and x;;(t)~xy;(t) are the premise

variables. The final state of this fuzzy dynamic model is
inferred as follows:

ZW” OTAX O+ 3 Aqyx,0+B,U, 0 +9,0]

n#j

X, (t) = r
Zvvij (t)

= Zhij (OA;x; () + Z AyX, )+ Bu; () + ¢, (1) (23)
n#j
with

g _ w;(®)
Wi = |__| M ipj (ij ®), hij (t) = N (24)

W, (1)
inwhich M, (x,; (t)) is the grade of membership of

Xpi (1) in M. In this paper, it is assumed that
w; (t) =0, =12, 15, i=12,---,3 and

Z'w” (>0 for al t Therefore, h,()>0 and
1=1

Zhij(t):lforallt.



In the next section, the concept of PDC scheme is
utilized to design fuzzy controllers.

[11. Parallel Distributed Compensation

According to the decentralized control scheme, a
set of model-based fuzzy controllers is synthesized via
the technique of parallel distributed compensation
(PDC) to stabilize the nonlinear system N. The concept
of PDC scheme is that each control rule is
distributively designed for the corresponding rule of a
T-S fuzzy model. The fuzzy controller shares the same
fuzzy sets with the fuzzy model in the premise parts
[11]. Since each rule of the fuzzy model is described by
a linear state equation, a linear control theory can be
used to design the consequent parts of a fuzzy
controller. The resulting overal fuzzy controller,
nonlinear in general, is achieved by fuzzy blending of
each individual linear controller.

Hence, the jth model-based fuzzy controller can be

described as follows:

Rulei: IF x;(t) is Mj;; and---and X,; (t) is M

THEN u, (t) =-K;;x; (1), 3.1
where i =1, 2,--, r;. The fina output of this fuzzy
controlleris

Zle(t)KlJ J(t) r
uj(t)=- i (OK;x; (). (3.2)

=20
.ZW (t) =

Substituting Eq. (3.2) into Eg. (2.1) we have the jth
(j=12,-,J) closed-loop subsystem F;:

X; (1)

- Z Zh”- (Oh, O, =B, K, )%, 01+ A, 0+,

n#j
(33
In the following, a stablllty criterion is proposed
to guarantee the stability of the closed-loop fuzzy

system F which consists of J closed-loop subsystems
described in Eq. (3.3). Prior to examination of stability

of F ,anuseful concept isgiven below.
Lemma 3.1 [17]: For rea matrices A and B with
appropriate dimensions, we have

A'B+B'A<o ATA+0'B'B
where O isapositive constant.
Theorem 3.1: The closed-loop fuzzy syssem F is
stable, if there exist symmetric positive definite
matrices P, and positive constants a, y and the

feedback gains K, 's shown in Eq. (3.2) are chosen to
satisfy

(1) Ain =AM(Qm,-)< 0
for i=1,2 j=12,01d (3.49)
|InJ A (Ql|n])< O
for |<Isrj, n, j =1,2,00J (3.4b)

or

(i
BAlnj A12nj Alr]nj B
J iy Y
n=lD~- - . .
@hlnj AZr]nj Arlnj E
j=12,00 (35)
where

an :{%[(A] 31 IJ) F>J+PJ(A] 31 IJ)]

ra B A AR +a (D1 E TP} @9
1.7

Qilnj :{3[(Hiljpj +PjHi|j)]

+a™P A, AP +a(JT_1)| +%(V_1Pj2)}: (3.7
(AYJ _Binlj)"'(Au _BIjKij) .

with  H;, =
2
(3.8)
Moreover, Ay (Q,;) and Ay (Q,,;) denote the
maximum eigenvalues of Q. ad Q.

respectively.

Remark 3.1: In principle, both the condition (1) and
condition (I1) can be used to test the stability of the
closed-loop fuzzy system F . It istherefore reasonable
to check the stability with either one of the conditions
and, if it fails, then resort to the other.

V. Examples

4.1 TMD system: A passive TMD mounted on a shear
structure is modeled as a two-degree-of freedom
structure-TMD system as shown in Fig. 4.1. The
parameters my, ¢, and k; represent mass, damping and
gtiffness in the subsystem 1; m,, ¢, and k, represent
mass, damping and stiffness in the subsystem 2; f and u
present external force and control input. The equation
of motion with no control input can be written as [5]

%§1+251aJ1S1—2/J§2a)2(S2 —Sl)+afsl—yw22(sz -s)=f
B, +28,w,(5,-§) +wi(s, —5) =0

(4.2
where

w, (= 4/k /m ) isnatural frequency of primary structure ;

w, (= 4/k, /' m, ) isnatural frequency of TMD

&, (=c,/2myw,) isdamping ratio of primary structure ;

é,(=c,/2m,w,) isdamping ratio of TMD

H(=m, /m) denotesmassratioof TMD to primarystructure
; B(= @/ w,) denotes frequency ratio

@ denotes frequency of external force



Fig. 4.2 shows the effectiveness of aTMD system
in reducing the response due to an external force with

m, =1, w, =w, =129, ¢, =2.506%x107°, &, = 2.506

x107°, f =cos(@wt), 4 =0.01, @ =129 and initial
conditions s,(0) =s,(0) =s,(0)=5,(0)=0. Fig. 43
shows the dynamic magnification factor where
restoring force is a linear function. So, the passive
TMD is appropriate when the frequency of external
excitation is close to the structure. But, the restore

force of spring stiffness is nonlinear in actual systems.
It isno use for the TMD system shown in Figs. 4.4-4.6

with  k, =1.664(1-a’s?), k, =0.01664(1-a’s})
and initial conditions 5, (0)=5,(0) =
s,(00=5,(00=0 [6, 18]. A method for fuzzy
controller is proposed to guarantee the stability of
nonlinear system in next section.

4.2 PDC fuzzy controllers: The objective of this
section is to synthesize a set of T-S fuzzy controllers

such that the nonlinear interconnected system N
which is composed of two subsystems described in Eq.

(4.1) with nonlinear K(X) of a = 0.01 can be

stabilized.
Subsystem 1:

%kn (t) =10x,4(t)

(R (t) = —01681 x,,(t) +1.6641x1077 X (t)

0 - 2.531x107° %y, (t) +1.6641x107 x,,(t)

S ~1.6641x107° X, (t) +1.6641x 107 x,, (1) X3 (t)
H +2.506x10°° X,,(t) +CcoS(L.29t) +5 uy(t)

(4.2)
Subsystem 2:
g(lz (t) =10 x5, (1)
Kz (t) = —0.16641 X, (1) +1.6641x107" X7, (t)
- ~2506%107 x,, (t) +0.16641 x,, (t)
. ~1.664%x107 x,, ()3 (t)
H +2.506x107° x,, (t) +4.5u, (t)
(4.3)

Where x, =10s,, X, =§,, X, =10s, and X,, =5, .
How do we synthesize three T-S fuzzy controllers to
stabilize the nonlinear interconnected system N ?
Solution: We can solve this problem according to the
following steps.

Step 1. Establish a T-S fuzzy model for each
nonlinear interconnected subsystem. To minimize the
design effort and complexity, we try to use as few rules
as possible. Hence, the subsystems (4.2-4.3) are
approximated with the following fuzzy models:
T-Sfuzzy model of subsystem 1.

Rulel: IF x,(t) is My,

2

THEN X, (t) = Ayx (t) + A1n1xn (t) + Buuy(t)

n=
n#j

Rule2: IF x,(t) is M,

THEN %, (t) = Ayx, (t) + 2 A2n1xn (t) + By, (t)

n=
n#j

where
o o 10 O
X (1) =[x, () X, ()], AL= :
1 (1) =[x (1) X ()] 11 %0.1681 _0.00255
A-00 0 g, 00 0 O
2" H 01680 -000297 "~ [.0017 0.000037’
A oo 0 O o0 0N
= ! B,. = ! B, =
A=l oo16 00000gd o T BE Ba =L
(4.9
and the membership functions for Rule 1 and Rule 2 are
1
M 141 (%4 (1)) = —D =
d-+‘1_ Xll(t)‘ D
0 2 |0

M 401 (X33 (1)) =1= M3, (X, (1)) -

T-Sfuzzy model of subsystem 2:
Rulel: IF x,(t) is My,

THEN X, (t) = A, X, (t) + S Az X (£) + By, (1)

n=
n#j

Rule2: IF x,(t) is M,

THEN 5,(t) = Apxy (1) + 3 Ay, (1) + Byl (1)

n=
n#j

where
O o 10 O
X3 (1) =[x, () X, ()], = ,
2 (1) =[x (t) X (V)] Ap %0.1664 —0.00255
a0 0 0 0, 00 00
>~ H 01663 -0.00255" 2~ {1664 000257
. 0o 00 0o o 0o O

A= 1663 00008 22 “HhsH B2 sk
(45)

and membership functions for Rule 1 and Rule 2 are

a\/l 12 (%42 (1)) = 2 X, (1) +1
0 3t

%\A 12 (%2 (1)) = _i X, (1) +1
0 3
(M1, (%3 (1)) =0

when —3—;Tsx12(t)s0

when 0< x,(t) < 3—;

otherwise,

M 215 (%4, (1)) =1=M 3, (X3, (1)) -

Step 20 In order to dtabilize the fuzzy
interconnected system F , two model-based fuzzy
controllers designed via the concept of PDC scheme
are synthesized as follows.

Fuzzy controller of subsystem 1.
Rulel: IF x,(t) is My,

THEN u, (t) = —K; x, (t)
Rule2: IF x,(t) is M,



THEN u, (t) = =K, %, (t) . (4.6)
Fuzzy controller of subsystem 2:
Rule1: IF x,(t) is M,

THEN u,(t) = -K,X,(t),
Rule 2. IF Xx,(t) is M,,
THEN u,(t) = —-K,, %, (t) . 4.7)
Step 3: To meet the stability condition (1) or
condition (11) of Theorem 3.1, the matrices Q,,;'s in

Eqg. (3.6) are chosen to be negative definite. Hence,
based on Egs. (4.4-4.7), we can obtain the following

positive definite matricesP, (j =1, 2) and K;;'s via
LMI optimization algorithms such that the matrices
Qn's ae negative definite  with a=0.1
and y=0.1:

[0.1233 0.04610

[0.1063 0.08140]
P, = ,
.0461 0.0427

P, = ,
>~ 190814 0.1007H
(4.8)

K, =[11.9664 9.9995], K, =[7.4664 7.9905,
K, =[66297 77779, K,,=[3.2964 5.5550].

4.9
Substituting Egs. (5.4-5.9) into Egs. (3.6 -3.7)
yields
Q's<0 and  Q,'s<0 (4.10)
and the eigenval ues of them are given below:
A(A\,) =0.0036, —1.1287
A(A,)=0.0100, —0.5285. (4.11)

Although the matrices A; (j =1,2) are not all
negative definite, the inequality (3.4) is satisfied.
Therefore, based on condition (I) of Theorem 3.1, the
T-S fuzzy controllers described in Egs. (4.6—4.7) can
gtabilize the fuzzy interconnected system F . To
assess the effectiveness of the T-S fuzzy controllers,
we apply the same T-S fuzzy controllers to the
nonlinear interconnected TMD system N which
consists of two subsystems described in Egs.
(4.2-4.3). Simulation results of each closed-loop
subsystem N, (j=12) are illustrated in Figs.
4.7-4.8 with initiad conditions, x,(0) =1,
X, (0) = -1, x,,(0) =0.1 and x,,(0)=-0.1.

V1. Conclusions

In order to ensure the stability of interconnected systems,

a stability criterion is derived from Lyapunov's direct
method. According to this criterion and the decentralized
control scheme, a set of model-based fuzzy controllersis
synthesized to stabilize the nonlinear interconnected
TMD system. Hence, the proposed fuzzy control can be

applied to any robust control design of nonlinear

interconnected systems. Finally, a numerical example
with simulationsis provided to demonstrate the results.
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Fig. 4.1. Two-DOF structure-TMD system.
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Fig. 4.2. The effectiveness of aTMD system.
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Fig. 4.3. The effectiveness of a TMD system with linear stiffness k(x).
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Fig. 4.4. Dynamic magnification factor of a TMD system with nonlinear stiffness k(x).
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Fig. 4.5. Dynamic magnification factor of a TMD system with nonlinear stiffnhess k(x).
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Fig. 4.6. Dynamic magnification factor of a TMD system with nonlinear stiffness k(x).

0.5

T T T T

external force

1 2 3 4 5
Time (sec)

Fig. 4.7. The state response of subsystem 1.
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Fig. 4.8. The state response of subsystem 2.



