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摘要摘要摘要摘要
     本文討論在外力干擾㆘被動調質阻尼與
主動模糊控制減振的效用。㆒般而言調質阻尼

在線性系統效果很好。在此，我們提出模糊控

制的方法應用於非線性的情況。利用李雅普諾

夫直接法(Lyapunov's direct method)推導㆒穩定
準則以確保非線性系統達到穩定。文㆗提出平

行分散補償(Parallel Distributed Compensation,
PDC)的控制技巧，藉此架構吾㆟將設計㆒模
糊控制器以穩定非線性之非線性調質阻尼結

構。文末，舉㆒例藉由數值模擬證實理論可行。

關鍵字：調質阻尼，T-S模糊模型，模糊控制。

Abstract
This paper investigates the effectiveness of a

passive Tuned Mass Damper (TMD) and active fuzzy
controllers in reducing the structural responses under
the external force. In general, TMD is good for linear
system. We proposed here a fuzzy controller to deal
with the nonlinear system. For the fuzzy controller, a
stability criterion in terms of Lyapunov's direct method
is derived to guarantee the stability of TMD systems.
Based on the decentralized control scheme and this
criterion, a set of model-based fuzzy controllers is then
synthesized via the technique of parallel distributed
compensation (PDC) to stabilize nonlinear TMD
systems. Finally, an example is given to illustrate the
concepts discussed throughout this paper.
Key words:::: TMD, T-S fuzzy models, fuzzy control.

I. Introduction
Traditional structural design depends on

structural strength and capability to dissipate energy
due to dynamic forces such as machine loading, wind
forces and earthquakes. The use of passive tuned mass
dampers (TMDs) as a means to control and reduce the
vibration of dynamic systems was first proposed by
Frahm in 1909 [1]. Since then, much research has been
done to investigate the control effectiveness of passive
TMDs [2-4]. These articles show that the TMDs are
suitable for a linear resonant system and it will be
useful only for the frequency of TMD close to the
primary structure [5]. Nevertheless, for a relatively
small displacement, the restoring force of the spring
can be modeled linearly. Nonlinear stiffness is
considered for a large displacement so that the TMD is
not appropriate [6]. The objective of this paper is to
derive a stability criterion for model-based fuzzy
controller to guarantee the uniformly ultimately
bounded (UUB) stable of nonlinear systems.

In the past few years, fuzzy-rule-based modeling
has become an active research field because of its
unique merits in solving complex nonlinear system
identification and control problems. In attempt to attain
more flexibility and more effective capability of
handling and processing uncertainties in complicated
and ill-defined systems, Zadeh [7] proposed a
linguistic approach as the model of human thinking,
which introduced the fuzziness into systems theory [8].
Unlike traditional modeling, fuzzy rule-based
modeling is essentially a multimodel approach in



                                     

which individual rules are combined to describe the
global behavior of the system [9].

There have been many successful applications in
fuzzy control in recent years. In spite of the success,
there are still many basic issues that remain to be
further addressed. Stability analysis and systematic
design are certainly among the most important issues
for fuzzy control systems. Recently, there have been
significant research efforts on these issues [10-15].
However, as far as we know, the stabilization problem
of nonlinear TMD systems remains unresolved.

Hence, a stability criterion in terms of Lyapunov's
direct method is derived in this study to guarantee the
stability of TMD systems. According to this criterion
and the control scheme, a model-based fuzzy controller
is then synthesized to stabilize the nonlinear TMD
system. Moreover, the system is represented by a
Takagi-Sugeno (T-S) type fuzzy model. In this type of
fuzzy model, each fuzzy implication is expressed by a
linear system model, which allows us to use linear
feedback control as in the case of feedback
stabilization. The control design is carried out based on
the fuzzy model via the parallel distributed
compensation (PDC) scheme. The idea is that a linear
feedback control is designed for each local linear
model. The resulting overall fuzzy controller, which is
nonlinear in general, is a fuzzy blending of each
individual linear controller [10, 13]. In other words, a
stability criterion in terms of Lyapunov's direct method
is derived to guarantee the stability of systems. Based
on this criterion and the control scheme, a model-based
fuzzy controller is to stabilize the nonlinear system.

This paper is organized as follows. First, the T-S
fuzzy model is briefly reviewed and the system
description is presented. Then, a stability criterion is
derived to guarantee the stability of systems. Next, a
TMD is used to reduce the vibration of dynamic linear
system but it fails for the nonlinear system. So, a set of
model-based fuzzy controllers via the technique of
PDC is proposed to stabilize the nonlinear TMD
system. Finally, a numerical example of nonlinear
TMD system with simulations is given to illustrate the
results, and the conclusions are drawn.

II. System Description
Consider a nonlinear system N composed of J

subsystems jN , . ,  2, ,1 Jj L=  The jth subsystem

jN  is described as follows:
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where jf  is the nonlinear vector-valued function,

)(tx j  is the state vector, )(tu j  is the input vector,
)(tjφ  denotes the external force and jnb   is the

nonlinear interconnection between the nth and jth
subsystems.
Definition 2.1 [6]: The solution of a dynamic system
are said to be uniformly ultimately bounded (UUB) if

there exist positive constants ς  and κ , and for
every ),0( κδ ∈  there is a positive constant )(δTT = ,
such that

Ttttxtx +≥∀≤⇒< 00   ,)()( ςδ

In a little more than a decade ago, a fuzzy
dynamical model had been developed primarily from
the pioneering work of Takagi and Sugeno [16] to
represent local linear input/output relations of
nonlinear systems. This dynamical model is described
by fuzzy IF-THEN rules and it will be employed here
to handle the control design problem of the nonlinear
interconnected system N. The ith rule of this fuzzy
model for the nonlinear interconnected subsystem jN
is proposed as the following form:
Rule i:  IF jgig jjij Mt xMtx
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the unknown disturbances with a known upper bound

)()( tt jupj φφ ≥ . jri   ,, 2 , 1   L=  and jr  is the number of IF-

THEN rules; jiA , jniA
 

ˆ  and jiB  are constant matrices

with appropriate dimensions; jpiM  ( gp , ,2 ,1 L= ) are
the fuzzy sets, and )(~)(1 txtx jgj  are the premise
variables. The final state of this fuzzy dynamic model is
inferred as follows:
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in which ))(( txM jpjpi  is the grade of membership of
)(tx jp  in jpiM . In this paper, it is assumed that
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    In the next section, the concept of PDC scheme is
utilized to design fuzzy controllers.

III. Parallel Distributed Compensation
According to the decentralized control scheme, a

set of model-based fuzzy controllers is synthesized via
the technique of parallel distributed compensation
(PDC) to stabilize the nonlinear system N. The concept
of PDC scheme is that each control rule is
distributively designed for the corresponding rule of a
T-S fuzzy model. The fuzzy controller shares the same
fuzzy sets with the fuzzy model in the premise parts
[11]. Since each rule of the fuzzy model is described by
a linear state equation, a linear control theory can be
used to design the consequent parts of a fuzzy
controller. The resulting overall fuzzy controller,
nonlinear in general, is achieved by fuzzy blending of
each individual linear controller.

Hence, the jth model-based fuzzy controller can be
described as follows:
Rule i:  IF jgig jjij MtxMtx
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THEN )()( txKtu jjij −= ,              (3.1)

where i =1, 2,…, jr . The final output of this fuzzy
controller is
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Substituting Eq. (3.2) into Eq. (2.1) we have the jth
( Jj  , ,2 ,1 L= ) closed-loop subsystem jF :
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In the following, a stability criterion is proposed

to guarantee the stability of the closed-loop fuzzy
system F  which consists of J closed-loop subsystems
described in Eq. (3.3). Prior to examination of stability
of F , an useful concept is given below.
Lemma 3.1 [17]: For real matrices A and B with
appropriate dimensions, we have
       BBAAABBA TTTT 1 −+≤+ σσ
where σ  is a positive constant.
Theorem 3.1: The closed-loop fuzzy system F  is
stable, if there exist symmetric positive definite
matrices jP  and positive constants  , α γ  and the
feedback gains i jK 's shown in Eq. (3.2) are chosen to
satisfy
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Moreover, )(

 jniM Qλ  and )(
   jnliM Qλ  denote the

maximum eigenvalues of jniQ
 

 and jnliQ
   ,

respectively.
Remark 3.1: In principle, both the condition (I) and
condition (II) can be used to test the stability of the
closed-loop fuzzy system F . It is therefore reasonable
to check the stability with either one of the conditions
and, if it fails, then resort to the other.

IV. Examples
4.1 TMD system: A passive TMD mounted on a shear
structure is modeled as a two-degree-of freedom
structure-TMD system as shown in Fig. 4.1. The
parameters m1, c1 and k1 represent mass, damping and
stiffness in the subsystem 1; m2, c2 and k2 represent
mass, damping and stiffness in the subsystem 2; f and u
present external force and control input. The equation
of motion with no control input can be written as [5]
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                                         (4.1)
where

structureprimary  offrequency  natural is )/( 111 mk=ω ;

TMD offrequency  natural is )/( 222 mk=ω

structureprimary  of ratio damping is )2/( 1111 ωξ mc= ;
TMD of ratio damping is )2/( 2222 ωξ mc=

structureprimary   toTMD of ratio mass denotes )/( 12 mm=µ
 ; ratiofrequency  denotes )/( 1ωωβ =

force external offrequency  denotes  ω



                                       

  Fig. 4.2 shows the effectiveness of a TMD system
in reducing the response due to an external force with

506.2  ,10506.2  ,29.1  ,1 2
3

1211 =×==== − ξωω cm

01.0  ,  t)cos(  ,10 5 ==× − µωf , 1.29 =ω  and initial
conditions 0)0()0()0()0( 2211 ==== ssss && . Fig. 4.3
shows the dynamic magnification factor where
restoring force is a linear function. So, the passive
TMD is appropriate when the frequency of external
excitation is close to the structure. But, the restore
force of spring stiffness is nonlinear in actual systems.
It is no use for the TMD system shown in Figs. 4.4-4.6
with ) 1 ( 01664.0  , ) 1 ( 664.1 2

2
2

2
2
1

2
1 saksak −=−=

and initial conditions =)0(1s =)0(1s&
=)0(2s 0)0(2 =s&  [6, 18]. A method for fuzzy

controller is proposed to guarantee the stability of
nonlinear system in next section.
4.2 PDC fuzzy controllers: The objective of this
section is to synthesize a set of T-S fuzzy controllers
such that the nonlinear interconnected system N
which is composed of two subsystems described in Eq.
(4.1) with nonlinear )(xk  of a = 0.01 can be
stabilized.
Subsystem 1:
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Subsystem 2:
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Where 222212121111   and   10  ,  , 10 sxsxsxsx && ==== .
How do we synthesize three T-S fuzzy controllers to
stabilize the nonlinear interconnected system N ?
Solution: We can solve this problem according to the
following steps.

Step 1: Establish a T-S fuzzy model for each
nonlinear interconnected subsystem. To minimize the
design effort and complexity, we try to use as few rules
as possible. Hence, the subsystems ( 3.42.4 − ) are
approximated with the following fuzzy models:
T-S fuzzy model of subsystem 1:
Rule 1: IF )(11 tx  is 111M
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and the membership functions for Rule 1 and Rule 2 are
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T-S fuzzy model of subsystem 2:
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and membership functions for Rule 1 and Rule 2 are
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    Step 2: In order to stabilize the fuzzy
interconnected system F , two model-based fuzzy
controllers designed via the concept of PDC scheme
are synthesized as follows.
Fuzzy controller of subsystem 1:
Rule 1: IF )(11 tx  is 111M
     THEN )()( 1111 txKtu −=
Rule 2: IF )(11 tx  is 211M



                    

     THEN )()( 1211 txKtu −= .               (4.6)
Fuzzy controller of subsystem 2:
Rule 1: IF )(12 tx  is 112M
      THEN ),()( 2122 txKtu −=                
Rule 2: IF )(12 tx  is 212M
     THEN )()( 2222 txKtu −= .            (4.7)
    Step 3: To meet the stability condition (I) or
condition (II) of Theorem 3.1, the matrices sQ jin '  in
Eq. (3.6) are chosen to be negative definite. Hence,
based on Eqs. (4.4 7.4− ), we can obtain the following
positive definite matrices jP  (j  =1, 2) and jiK 's via
LMI optimization algorithms such that the matrices

sQ jin '  are negative definite with 1.0  =α
and 1.0  =γ :
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 [ ]9.9995    1.9664111 =K ,  [ ]9995.74664.721 =K ,

 [ ]7772.76297.612 =K ,  [ ]5550.52964.322 =K .

                                (4.9)

Substituting Eqs. ( 9.54.5 − ) into Eqs. ( 7.36.3 − )
yields
    sQ jin ' <0   and    sQ ji 'ln <0          (4.10)
and the eigenvalues of them are given below:

   1287.1  ,0036.0)( 1 −=Λλ
0.5285  ,0100.0)( 2 −=Λλ .              (4.11)

Although the matrices jΛ  ( 2 ,1=j ) are not all
negative definite, the inequality (3.4) is satisfied.
Therefore, based on condition (I) of Theorem 3.1, the
T-S fuzzy controllers described in Eqs. (4.6 7.4− ) can
stabilize the fuzzy interconnected system F . To
assess the effectiveness of the T-S fuzzy controllers,
we apply the same T-S fuzzy controllers to the
nonlinear interconnected TMD system N  which
consists of two subsystems described in Eqs.
(4.2 3.4− ). Simulation results of each closed-loop
subsystem jN  ( 2 ,1=j ) are illustrated in Figs.

8.47.4 −  with initial conditions, 1)0(11 =x ,
1)0(21 −=x , 1.0)0(12 =x  and 1.0)0(22 −=x .

  

VI. Conclusions
In order to ensure the stability of interconnected systems,
a stability criterion is derived from Lyapunov's direct
method. According to this criterion and the decentralized
control scheme, a set of model-based fuzzy controllers is
synthesized to stabilize the nonlinear interconnected
TMD system. Hence, the proposed fuzzy control can be
applied to any robust control design of nonlinear

interconnected systems. Finally, a numerical example
with simulations is provided to demonstrate the results.
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Fig. 4.1. Two-DOF structure-TMD system.
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Fig. 4.2. The effectiveness of a TMD system.
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Fig. 4.5. Dynamic magnification factor of a TMD system with nonlinear stiffness k(x).
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Fig. 4.4. Dynamic magnification factor of a TMD system with nonlinear stiffness k(x).

Fig. 4.3. The effectiveness of a TMD system with linear stiffness k(x).
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Fig. 4.7. The state response of subsystem 1.
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Fig. 4.6. Dynamic magnification factor of a TMD system with nonlinear stiffness k(x).
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Fig. 4.8. The state response of subsystem 2.


