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Abstract 
 

High performance architectures can be 
design for data intensive and latency tolerant 
applications by maximizing the parallelism 
and pipelining at the algorithm. The 
hardware primitives for 3-D rotation for 
high throughput 3-D graphics and animation 
are presented in this paper. The primitives 
are based on the 2-D CORDIC algorithm, in 
contrast to conventional hardware for 
graphic engine. The accelerated architecture 
of the 3-D rotation based on double rotation 
CORDIC algorithm is also presented in this 
paper. The throughput is improved by more 
than 30%, but the additional hardware is 
required by less than 40%. The 3-D central 
perspective method for graphic engine is 
performed by double rotation CORDIC 
processors. The throughput is also improved 
by more than 30%. 
Keywords: 3-D rotation, double rotation 
CORDIC algorithm, graphic engine, 3-D 
perspective method, high-throughput. 
 

1. Introduction 
 

Three dimensional rotation (3-D) is 
utilized in 3-D graphics, animation, and 
virtual reality applications [1] [2]. The 
rotations are applied to large number of 
points, which need quiet time consuming, 
but can be effectively parallel and pipelined. 
Moreover, 3-D computer hardware has been 
receiving great attention recently. The 
conventional hardware for 3-D rotation 
consists mainly of multipliers and 
accumulators.  

The CORDIC algorithm [3] [4] is widely 
recognized as well-suited for hardware 

implementation and is applied to many 
signal processing tasks, such as sine and 
cosine generation, vector rotation, 
coordinate transformation and linear system 
solver. This algorithm is especially suitable 
for implementation of 3-D rotation. The 
CORDIC requires only shifters and adders, 
its realization on reconfigurable hardware 
platforms, especially on FPGA [5]. Thus, the 
3-D rotation algorithm required in 3-D 
graphics can be realized with vector rotation, 
the CORDIC could be mainly used in this 
function block [6]. 

In this paper, the architecture of 3-D 
rotation with CORDIC algorithm is 
proposed, the proposed architecture is very 
suitable for VLSI implementation, and the 
computation complexity is also evaluated. 
The introduction of the new concept, double 
rotation CORDIC algorithm, improves 
throughput in the 3-D rotation, by up to 30% 
without any noticeable error occurrence. The 
view of observer in 2-D display system is 
performed by the 3-D central perspective 
method [7], the architecture of that is 
performed by 2-D CORDIC processors. 

The remainder of the paper is organized 
as follows. Section 2 reviews the 2-D 
CORDIC algorithm; section 3 presents the 
algorithm of CORDIC rotation in 3-D space, 
section 4 presents the double rotation 
CORDIC algorithm, the 3-D rotation with 
double CORDIC rotation algorithm is 
proposed in section 5, the 3-D central 
perspective method performed by CORDIC 
algorithm is proposed in section 6, VLSI 
architectures of 3-D rotation and perspective 
are described in section 7, The impact of 
new algorithms and architectures is 
presented and analyzed in section 8, and 
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finally, the conclusion is given in section 9. 
  

2. The 2-D CORDIC Algorithm 
 

CORDIC (COordinate Rotation DIgital 
Computer) is an algorithm for performing a 
sequence of iteration computations using 
coordinate rotation [3] [4]. This algorithm 
can generate some powerful elementary 
functions realized only by a simple set of 
adders and shifters. The basic CORDIC 
iteration equations are 
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the rotation iσ for rotation mode )0( →nz  
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where the rotation directions are defined to 
}1,1{ +−=iσ . 

 
3. CORDIC Rotation in Three- 

Dimensional Space 
 

A vector R in three dimensional space 
is shown in Fig. 1. It has Cartesian 

coordinates ),,( iii ZYX  and spherical 
coordinates ),,( iiiR φθ . The vector R can be 
rotated to become a new vector S which has 
cartesian coordinates ),,( 111 +++ iii ZYX and 
spherical coordinates 

),,( iiiiiR βφαθ ++ [8]. The relationship 
between the Cartesian coordinates and 
spherical coordinates of R and S are 
derived as follows: 

iiii RX φθ sincos=       (6) 

iiii RY φθ sinsin=        (7) 

iii RZ φcos=         (8) 
)sin()cos(1 iiiiii RX βφαθ ++=+     (9) 

)sin()sin(1 iiiiii RY βφαθ ++=+   (10) 
)cos(1 iiii RZ βφ +=+      (11) 

The eqs. (9), (10) and (11) are expanded, we 
can get 
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where the iU , iV  and iW are defined as 
follows: 
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Similarly, the 1+iU , 1+iV  and 1+iW  are 
derived as follows: 
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According to eqs. (6), (7) and (8) of the 
CORDIC algorithm, the eqs. (12), (13), (14), 
(18), (19) and (20) can be split into a set of 
CORDIC rotations and become as follows: 
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In the two-dimensional CORDIC 
algorithm, we choose i

ii
−−= 2tan 1δα and 

i
ii

−−= 2tan 1ρβ , where iδ and iρ are 
{ }1,1−∈ . 

The eqs. (21) and (22) can be written in the 
form of matrix multiplications as follows: 
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Similarly, the eqs. (24) and (25) can be 
written in the form of matrix multiplications 
as follows:  
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According to eqs. (32) and (33), we find that 
there are four 2-dimensional CORDIC 
rotations in the 3-dimensional rotation. 
Nevertheless, the scale factor of 1+iZ  and  

1+iW  is different from that of 

1+iU , 1+iV , 1+iX and 1+iY , we can prescale the 
inputs or post scale the outputs by the 
constant scale factor K  for 1+iZ and 1+iW , 
and 2K for 1+iU , 1+iV , 1+iX and 1+iY , where 
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4. Double Rotation 2-D CORDIC 

Algorithm and Architecture 
 

The basic concept of the accelerated 
CORDIC algorithm is to reduce the 
iterations. The double rotation CORDIC 
algorithm is developed to reduce the 
iterations or computation time [9] [10]. The 
double rotation CORDIC iteration equations 
should be derived and the computation 
complexity should be also evaluated. 

The CORDIC iteration equations in a 
circular coordinate system are also written in 
the form of matrix multiplications. 
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According to eqs. (6) and (7), we obtain 
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  The additional computation complexity of 
parallel processing for eqs. (38) and (39) is 
two carry-save additions ((3,2)CSAs) and 
one shift for each iteration. In n-bit operand 
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Thus, the additional computation complexity 
of parallel processing is one (3,2)CSA and 
one shift for each iteration. 
  The basic intention to realize the double 
rotation CORDIC algorithm is to generate 
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more σ  values in each step. Now, the 
proposed architecture requires two σ values 
in each step. The σ -value prediction 
algorithm is described as below: 

i2σ is determined by sign of )2( iz , and three 
equations for determining z(2i+2) are 
defined as 
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The flowchart for the 12 +iσ -prediction and 

)22( +iz determination algorithm is 
illustrated in Fig. 2, detailed flowcharts for 
specific cases are illustrated in Fig. 3 and 4, 
respectively. Now, the 12 +iσ -prediction and 

)22( +iz  determination algorithm is 
analyzed and developed, this algorithm is 
simple and easy to implement on hardware. 
Thus, the algorithm is very suited to VLSI 
implementation. The determination circuit of 

12 +iσ  and z(2i+2) is shown in Fig. 5. The 
series constants of )2tan2(tan )12(121 +−−−− + ii , 

)2tan2(tan )12(121 +−−−− − ii  and 
)2(tan 21 i−− are stored in ROM and the size 

of ROM is n
2
3 words. The accelerated 

CORDIC architecture with the rotation 
mode in the circular coordinate system is 
shown in Fig. 6. In this architecture, the (4,2) 
carry-save adder (CSA) and 
carry-propagation adder (CPA) consists of 
two three-input, and two-output (3,2) 
carry-save adders/subtractors and one 
carry-look-ahead adder (CLA). 
 

5. Accelerated 3-D Rotation Using the 
Double Rotation 2-D CORDIC Algorithm 

 
The basic concept of the accelerated 

3-D rotation is to reduce the iterations. The 
double rotation CORDIC algorithm [10] is 
applied to reduce the iterations or 
computation time. The 3-D double rotation 
iteration equations are derived and the 
computation complexity is also evaluated.  

The 3-D rotation equations are also 
written in the form of matrix multiplications 

as follows: 
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According to eqs. (46), (47), (48) and (49), 
we obtain 
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where eqs. (52) and (53) are iteration 
equations of the 3-D double rotation 
algorithm. 
Thus, the 3-D double rotation equations is 
modified as shown below 
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The additional computation complexity 
of parallel processing for eqs. (54), (55), (56) 
and (57) is three additions, one double 
rotation CORDIC computation and one shit 
for each iteration. In the n-bit operand 

system, when 1
4
−≥

ni , eqs. (54), (55), (56) 

and (57) become 
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Thus, the additional computation complexity 
of parallel processing is two additions, one 
double rotation CORDIC computation and 
one shift for each iteration. The computation 
time of the double rotation CORDIC 
algorithm is also reduced [10]. The 3-D 
rotation with conventional CORDIC 
algorithm versus the 3-D rotation with 
double rotation CORDIC algorithm is 
shown in Fig. 7. 
 
6. 3-D Central Perspective Method Using 

CORDIC Algorithm 
 

The 3-D central perspective method is 
shown in Fig. 8 [7]. The graphic is rotated in 
3-D space and mapped onto Y’-Z’ plane 
perspectively. We obtain the coordinate 

),,0( "" zy in Y’-Z’ plane as follows: 
0" =x         (62) 

'
'

" y
xD

Dy ⋅
−

=       (63) 

'
'

" z
xD

Dz ⋅
−

=       (64) 

where 2
0

2
0

2
0 zyxD ++= , ),,( 000 zyx is the 
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coordinate of observer, and ),,( ''' zyx is the 
rotated coordinate. 
 

7. VLSI Architectures for 3-D Rotation 
and Perspective with CORDIC Algorithm  

 
7.1 The Architecture of 3-D Rotation with 
Conventional CORDIC Algorithm 
 

Fig. 9 shows the architecture of the 3-D 
rotation with the rotation mode in a 
CORDIC circular coordinate system. In this 
architecture, the ),( 11 ++ ii VU  and ),( 11 ++ ii YX  
generator each consists of two 2-D CORDIC 
processors, two hardwire shifts and two 
adders/subtrators. The 1+iW  and 1+iZ  
generator each consists of a half of 2-D 
CORDIC Processor.  

 
7.2 The Architecture of 3-D Rotation with 
Double Rotation CORDIC Algorithm 
 
The architecture of the 3-D rotation with 
double rotation CORDIC algorithm is 
shown in Fig. 10. In this architecture, the 

),( 11 ++ ii VU  and ),( 11 ++ ii YX  generator each 
consists of two 2-D CORDIC processors, six 
hardwire shifts and three adders/subtrators. 
The 1+iW  and 1+iZ  generator each consists 
of a half of 2-D double rotation CORDIC 
Processor. The 3-D rotation with double 
rotation CORDIC algorithm can improve the 
latency time by more than thirty percent 
[10]. 
 
7.3 The Architecture of 3-D perspective 
Method with CORDIC Algorithm 
 

The proposed architecture of 3-D 
perspective method consists of five 2-D 
CORDIC processors and one subtractor. 
Two CORDIC processors operate in the 
circular coordinate system for computing 

2
0

2
0

2
0 zyx ++ , and three CORDIC 

processors operate in the linear coordinate 
system for computing "x and "y . The 
architecture of 3-D central perspective 
method is shown in Fig. 11. 

The hardware codes of both that with 
CORDIC algorithm and double rotation 
algorithm are written in Verilog-hardware 
description Language (HDL) [11] running 
on SUN Blade 1000 workstation under 
ModelSim simulation tool [12]. Both of two 
architectures were synthesized by Xilinx 
FPGA express tools [13] and emulated on 
the Xilinx XC2V4000 FPGA platform [14]. 
In the 32-bit accelerated architecture of 3-D 
rotation, compared with the conventional 
CORDIC-based architecture of 3-D rotation, 
the accelerated design improves the latency 
by more than 30%. The timing diagram for 
the conventional CORDIC-based 
architecture and the accelerated architecture 
of 3-D rotation is shown in Fig. 12. It is 
designed to evaluate the hardware and to 
provide an intellectual property (IP) for 3-D 
graphic engine. 
 

8. Impact of New Architectures and 
Algorithms 

 
The Euler angle method consists of 

sequence of three rotations [2] [6], each 
rotates one of three orthogonal axes. This 
method is represented by Euler angles 
correspond to the sequence of rotations 
about the coordinate axes. The 3-D rotation 
method is implemented by cascading two 
2-D CORDIC processors [2] [6]. Lang and 
Antelo proposed a method that replaces two 
2-D CORDIC processors by one 3-D 
CORDIC processor [6]. The sequence of 
rotations consists of one 2-D CORDIC 
rotation and one 3-D CORDIC rotation. 
Both of them require more than two 2-D 
CORDIC computations. According to the 
proposed 3-D rotation algorithm, the 
architecture with conventional CORDIC 
processors requires one 2-D CORDIC 
computation in parallelism to perform 3-D 
rotation, and the architecture with double 
rotation 2-D CORDIC processors requires 
less than one 2-D CORDIC computation in 
parallelism to perform 3-D rotation.  

The 3-D central perspective method 
requires four 2-D CORDIC computations in 
parallelism; this method with CORDIC 
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algorithm saves multipliers and square-root, 
and the implementation of this architecture 
is required by CORDIC processors only. 

 
9. Conclusions 

 
We have presented two 

high-throughput 3-D rotation algorithms and 
architectures both of them are based on 2-D 
CORDIC algorithm and 2-D double rotation 
CORDIC algorithm. It is required one or 
less 2-D CORDIC computation to perform 
3-D rotation; and the central perspective 
method is also performed by 2-D CORDIC 
algorithm, the architecture of the central 
perspective method saves hardware and 
achieves high-performance. 

The proposed architectures are 
implemented by 2-D CORDIC processors; 
the architectures are simple and regular, and 
suitable for VLSI implementation. The 
graphic engine should be improved by the 
proposed algorithms and architectures. 
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Fig. 2. Flowchart for the 12 +iσ -prediction and )22( +iz  determination 
algorithm. Detailed flowcharts for specific cases when sign(z(2i)) 
evaluation returns +1 , -1, and when the algorithm is in a branching are 

Table 1 Functions of CORDIC arithmetic 
 

Coordinate 
System 

Rotation Mode 
0)( →nz  

Vectoring Mode 
0)( →ny  

Linear 
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)0()( xnx =  
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Fig.1. A vector R in three dimensional space
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Branching No

Flowchart in Fig. 3
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Flowchart in Fig. 2
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;0 ) 



 9

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

1))2((2 +=== izsigniσ

Perform in parallel

if )"")22((()"")22((( 21 +=+∧+=+ izsignizsign
then )22()22(,1 112 +=++=+ iziziσ  

if )"")22((()"")22((()"")22((( 321 −=+∧+=+∧−=+ izsignizsignizsign  
then )22()22(,1 212 +=+−=+ iziziσ  
if )"")22((()"")22((()"")22((( 321 +=+∧+=+∧−=+ izsignizsignizsign  

then )22()22(,1 112 +=++=+ iziziσ

if )"")22((()"")22((( 21 −=+∧−=+ izsignizsign  
then )22()22(,1 212 +=+−=+ iziziσ  

Fig. 3. Flowchart for i-iteration for the case when ))2((2 izsigni =σ evaluation returns +1 

1))2((2 −=== izsigniσ

Perform in parallel 

if )"")22((()"")22((()"")22((( 321 +=+∧−=+∧+=+ izsignizsignizsign

then )22()22(,1 212 +=++=+ iziziσ  

if )"")22((()"")22((()"")22((( 321 −=+∧−=+∧+=+ izsignizsignizsign  
then )22()22(,1 112 +=+−=+ iziziσ  

if )"")22((()"")22((( 21 +=+∧+=+ izsignizsign
then )22()22(,1 212 +=++=+ iziziσ

if )"")22((()"")22((( 21 −=+∧−=+ izsignizsign  
then )22()22(,1 112 +=+−=+ iziziσ  

Fig. 4. Flowchart for i-iteration for the case when ))2((2 izsigni =σ evaluation returns -1

σ2i+1 

z(2i+2) 

Sign(z2(2i+2)) 

 

2：1 Multiplexer 

z1(2i+2) z2(2i+2) 

Sign(z1(2i+2)) 

(a) Determination circuit of )22( +iz

z(2i+2)

Sign(z1(2i+2))

Sign(z2(2i+2))
σ2i

z (2i)

Δ1(2i) z1(2i+2)

z2(2i+2)
Determination 

Circuit  

(2:1 Multiplexer) 
σ2i

z (2i)

Δ2(2i)

±

±

z (2i)

Δ3(2i)

±

σ2i+1

(b) 122 , +ii σσ and )22( +iz  generator

Fig. 5. The determination circuit of i2σ , 12 +iσ and )22( +iz  
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y2i 

Hardwire shift 2-2i Hardwire shift 2-(2i+1) 
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Counter-
4
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(3,2)CSA 

(3,2)CSA 

X0X1X2X3 

(b) vector [x2i+2 y2i+2] generator

Fig. 6. The accelerated CORDIC architecture with the rotation mode in the circular 
coordinate system. 

Fig. 7 3-D rotation with conventional CORDIC algorithm versus 3-D rotation with double 
rotation CORDIC algorithm (

3
,

2
,

4
,

3
,1 00000

πφπθπβπα =====R ) 
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Fig. 8. The 3-D central perspective method
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Fig. 9. The architecture of the 3-D Rotation with 2-D CORDIC algorithm 
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Fig. 10. The architecture of the 3-D Rotation with Double Rotation CORDIC 
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2-D CORDIC 

(Vectoring Mode, Circular Coordinate) 

2-D CORDIC 

(Vectoring Mode, Circular Coordinate) 

0x 0y  0

0  0z  

D 

SUB 

2-D CORDIC 

(Vectoring Mode, Linear Coordinate) 

D 'x  

'xD −
0 

'xD
D
−

 

2-D CORDIC 

(Rotation Mode, Linear Coordinate) 

0 'xD
D
−

 'y  

''y  

2-D CORDIC 

(Rotation Mode, Linear Coordinate) 

0 'xD
D
−

 'z  

''z

Fig. 11. The architecture of 3-D central perspective method 

Fig. 12. The timing diagram for the conventional CORDIC-based architecture and the 
accelerated architecture of 3-D rotation (CORDIC_01: Conventional CORDIC, 
CORDIC 02: Double rotation CORDIC)


