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Abstract

High performance architectures can be
design for data intensive and latency tolerant
applications by maximizing the parallelism
and pipelining at the algorithm. The
hardware primitives for 3-D rotation for
high throughput 3-D graphics and animation
are presented in this paper. The primitives
are based on the 2-D CORDIC algorithm, in
contrast to conventional hardware for
graphic engine. The accelerated architecture
of the 3-D rotation based on double rotation
CORDIC algorithm is also presented in this
paper. The throughput is improved by more
than 30%, but the additional hardware is
required by less than 40%. The 3-D central
perspective method for graphic engine is
performed by double rotation CORDIC
processors. The throughput is also improved
by more than 30%.

Keywords: 3-D rotation, double rotation
CORDIC algorithm, graphic engine, 3-D
perspective method, high-throughput.

1. Introduction

Three dimensional rotation (3-D) is
utilized in 3-D graphics, animation, and
virtual reality applications [1] [2]. The
rotations are applied to large number of
points, which need quiet time consuming,
but can be effectively parallel and pipelined.
Moreover, 3-D computer hardware has been
receiving great attention recently. The
conventional hardware for 3-D rotation
consists mainly of multipliers and
accumulators.

The CORDIC algorithm [3] [4] is widely
recognized as well-suited for hardware

implementation and is applied to many
signal processing tasks, such as sine and
cosine  generation,  vector  rotation,
coordinate transformation and linear system
solver. This algorithm is especially suitable
for implementation of 3-D rotation. The
CORDIC requires only shifters and adders,
its realization on reconfigurable hardware
platforms, especially on FPGA [5]. Thus, the
3-D rotation algorithm required in 3-D
graphics can be realized with vector rotation,
the CORDIC could be mainly used in this
function block [6].

In this paper, the architecture of 3-D
rotation with CORDIC algorithm is
proposed, the proposed architecture is very
suitable for VLSI implementation, and the
computation complexity is also evaluated.
The introduction of the new concept, double
rotation CORDIC algorithm, improves
throughput in the 3-D rotation, by up to 30%
without any noticeable error occurrence. The
view of observer in 2-D display system is
performed by the 3-D central perspective
method [7], the architecture of that is
performed by 2-D CORDIC processors.

The remainder of the paper is organized
as follows. Section 2 reviews the 2-D
CORDIC algorithm; section 3 presents the
algorithm of CORDIC rotation in 3-D space,
section 4 presents the double rotation
CORDIC algorithm, the 3-D rotation with
double CORDIC rotation algorithm is
proposed in section 5, the 3-D central
perspective method performed by CORDIC
algorithm is proposed in section 6, VLSI
architectures of 3-D rotation and perspective
are described in section 7, The impact of
new algorithms and architectures is
presented and analyzed in section 8, and



finally, the conclusion is given in section 9.
2. The 2-D CORDIC Algorithm

CORDIC (COordinate Rotation DIgital
Computer) is an algorithm for performing a
sequence of iteration computations using
coordinate rotation [3] [4]. This algorithm
can generate some powerful elementary
functions realized only by a simple set of
adders and shifters. The basic CORDIC
iteration equations are

X, =X —ma; 27"y, (1)
Yia =Yi +O—'2_S(m’i)xi (2)
Zi+1 = Z O-Iaml (3)

where m identifies circular (m=1), linear
(m=0), and hyperbolic (m=-1) coordinate
systems, i=0, 1,2,....,n-1,

0,1,2,3,4,5,...., m=1
s(m,i)=1,2,3,4,5,6,...., m=0

1,2,3,4,4,5,.. m=-1

2 tan~ J_z s(mb (4)
the rotation o, for rotation mode (z, — 0)
is o, =sign(z,) , while for vectoring

mode (
= —sign(x;) - sign(y;).

Table 1 shows the elementary functions
that can be evaluated by the CORDIC
algorithm. For the i-th iteration, a scale

= J1+mg2272smD

After n iterations, the product of all the scale
factors is

n n -
K = [ Tkms = [ [1+mo?2 2™
i i=0 i=0 (5)
=[] v1+m27mD
i=0

where the rotation directions are defined to
o, ={-1+1}.

y. —0) , it is

factor becomes K, .

3. CORDIC Rotation in Three-
Dimensional Space

A vector R in three dimensional space
is shown in Fig. 1. It has Cartesian

coordinates  (X,,Y;,Z;) and

coordinates (R;,6,,4,). The vectorR can be

spherical

rotated to become a new vector S which has
cartesian coordinates (X,,,,Y,,;,Z;,,) and
coordinates
relationship

spherical

(Ri,0 +a;, 4, + ;) [8]. The
between the Cartesian coordinates and
spherical coordinates of R and S are
derived as follows:

X; =R;cosé, sing, (6)

Y, =R;sin g, sin g, (7

Z; =R;cosg, (8)

Xi. = Ricos(8 +a;)sin(4, + 5;) 9)

Yiiu = Risin(6, + ;) sin(g, + ;) (10)

Z;,, =R cos(4 + ) (11)

The egs. (9), (10) and (11) are expanded, we
can get

Xiy1 = Ri(cos @, cosa; —sin b, sin ;)
(sin @, cos f; +cos @, sin f3;)

=R, cos G, sin ¢, cos ; cos f;

+ R, cos 8, cos ¢, cos; sin S,

—R; sing, sing, sing; cos f; — R; sin6, cosd sing; sin f;

= X, cosq; cos f; +U; cos; sin 3,

. o (12)
=Y, sing; cos B, =V, sing; sin f;
Y., =Y, cosa; cos B, +V, cos; sin (13)
+ X; sing; cos f; +U; sing; sin f;
Z,,, =Z,cosf —W,sin f3, (14)

where theU;,V, and W, are defined as
follows:

U, =R, cosb, cosg, (15)
V, =R, sinf,cos ¢, (16)
W, =R;sing, (17)
Similarly, the U,, , V,,, and W,, are

derived as follows:

U,,, =U, cosa; cos f§; — X, cosa; sin S, (18)
=V, sing; cos §; +Y; sing; sin f;

Vi, =V, cosq; cos f; —Y; cos; sin S, (19)
+U; sing; cos f; — X; sing; sin f;

W,,, =W, cos B, +Z; sin f3, (20)

According to egs. (6), (7) and (8) of the
CORDIC algorithm, the egs. (12), (13), (14),
(18), (19) and (20) can be split into a set of
CORDIC rotations and become as follows:



1

Ve :k_Z(U‘ - Xip 2" Vg2 +Y5p 277 (21)
Y :kiz(vi —Yip 2" +U52" = X502 (22)
W :ki(Wi +Zipi27) (23)

X Z%(x‘ +Uipi2_i _Yi5i2_i _Vié}PiZ_Zi) (24)

Yin :kl_z(Yi +Vip 27 + X627 +U;8,0277) (25)

2,y =2~ W,p27) (26)
where
cosa, = —1 27)
N1+277
sing; = L (28)
V14272
c0s ff, = (29)
V1427
sinf =22 (30)
1+27%

k, =v1+27 (31)
In the two-dimensional CORDIC
algorithm, we choose «a, =&, tan™' 2" and

Bi=ptan”' 27" | where 5 and p, are

e {~11}.
The egs. (21) and (22) can be written in the
form of matrix multiplications as follows:

wale VB

v ki | [ 1 =a2t X
o 52" I ¢

Similarly, the eqs. (24) and (25) can be
written in the form of matrix multiplications
as follows:

XL L Lilzi _5‘12%‘}
e

According to eqgs. (32) and (33), we find that
there are four 2-dimensional CORDIC
rotations in the 3-dimensional rotation.
Nevertheless, the scale factor of Z,, and

i+l

(33)

W, i1s different

U.,V.., X  andY,

i+12 Vi+l 2 i+1 i+1°

from that of
we can prescale the

inputs or post scale the outputs by the
constant scale factor K for Z,,,and W

i+l
andK?for U,,.,V,,,X,, andY,,,, where
n-1
K=T]k (34)
i=0
n-1
K?>=]1k’ (35)
4. Double Rotation 2-D CORDIC

Algorithm and Architecture

The basic concept of the accelerated
CORDIC algorithm 1is to reduce the
iterations. The double rotation CORDIC
algorithm 1is developed to reduce the
iterations or computation time [9] [10]. The
double rotation CORDIC iteration equations
should be derived and the computation
complexity should be also evaluated.

The CORDIC iteration equations in a
circular coordinate system are also written in
the form of matrix multiplications.

X2i+1 — 1 _Uzi272i |:X2ii| 36
|:y2i+1i| |:0'2122i 1 i| Yai ( )

X2i+2 _ 17 . _O_2i+127(2i+l) X2i+1 (37)
Yais2 Oin 27 1 Yoin

According to eqgs. (6) and (7), we obtain

Xpp =(1=0505,, 24Xy —(0527 +05,27 %)y, (38)

Yaiia =(0 2 +O'zi+12_(2i+l))x2i +(l—0'2i0'2i+12_(4i+]))y2i (39)

Zyiy = L — 0y tan " 27 —ay tan ™ 270 (40)
The additional computation complexity of

parallel processing for eqs. (38) and (39) is

two carry-save additions ((3,2)CSAs) and
one shift for each iteration. In n-bit operand

system, whilei 22—1, egs. (38) and (39)

becomes
Xoip2 = X5y = (0 27+ O-2i+12_(2I+1))y2i (41)
Yaisa = (0 2™ + 054 27(2i+l))xzi + Yy (42)

Thus, the additional computation complexity
of parallel processing is one (3,2)CSA and
one shift for each iteration.

The basic intention to realize the double
rotation CORDIC algorithm is to generate



more o values in each step. Now, the
proposed architecture requires two o values
in each step. The o -value prediction
algorithm is described as below:

0,;is determined by sign of z(2i), and three
equations for determining z(2i+2) are
defined as

2,(2i +2) = 2(2i) — o, (tan ' 27 + tan ' 27"V (43)
2,(2i +2) = 2(2i) — o (tan ' 27 —tan ' 274" (44)
2,(2i +2) = 2(2i)— o, tan ' 27 (45)
The flowchart for the o,;,, -prediction and
Z(2i+2) determination  algorithm s
illustrated in Fig. 2, detailed flowcharts for
specific cases are illustrated in Fig. 3 and 4,
respectively. Now, the o,,,,-prediction and
z(2i+2)
analyzed and developed, this algorithm is
simple and easy to implement on hardware.
Thus, the algorithm is very suited to VLSI
implementation. The determination circuit of
05, and z(2i+2) is shown in Fig. 5. The

determination  algorithm s

series constants of (tan™' 27 +tan "' 27"V
(tan”' 27 —tan~' 27") and

(tan”' 27")are stored in ROM and the size

of ROM is %n words. The accelerated

CORDIC architecture with the rotation
mode in the circular coordinate system is
shown in Fig. 6. In this architecture, the (4,2)
carry-save adder (CSA) and
carry-propagation adder (CPA) consists of
two three-input, and two-output (3,2)
carry-save adders/subtractors and one
carry-look-ahead adder (CLA).

5. Accelerated 3-D Rotation Using the
Double Rotation 2-D CORDIC Algorithm

The basic concept of the accelerated
3-D rotation is to reduce the iterations. The
double rotation CORDIC algorithm [10] is
applied to reduce the iterations or
computation time. The 3-D double rotation
iteration equations are derived and the
computation complexity is also evaluated.

The 3-D rotation equations are also
written in the form of matrix multiplications

as follows:

1 -5,27 {Uﬂ}
|:U2i+1j|_ 1 52i272i 1 V2i

= 46
v k22i —p 270 1 —0, 27 Xa ( )
/72i 52i 2—2i 1 Y2i

2i+1

1 i
Wiy :k_(\NZi + P22 ? Zy) 47)
2i
{ 1 _52i 2_2i :||:X2i :|
. 5,27 1| Yy
|:X2|+1:| :iz 2i 2 . (48)
Yo | Ky o 1 G 272 [U,
p2i 52i 2—2i 1 V2i
1 i
Z — (L5 = py2 ? W) (49)

2+ =

K,
According to egs. (46), (47), (48) and (49),
we obtain

{Um}_l { I _52”122”}{%1}
V2i+2 I(22i+1 52i+1272i7] 1 V2i+1

. _5. -2i-1 X...
_ZL-,DziJrl 272|71 |: 1 52I+12 :||: 2I+1:| (50)

2i+1 52i+1 272H 1 Y

2i+l

1 oi-
Wai.s :k_(Wzm + i 2 ? 'Z i) (51)
2i+l1

X2i+2 _ 1 . 1 _5zi+1272i7] X2i+1
Y2i+2 I(22i+1 52i+1272i71 1 Y2i+1

1 —2i-1 1 _52' 1272i71 U2i+1
+— Do 2 . . * 52
I(22i+l P |:§2i+1 272'71 1 V2i+l ( )

1 o
Zyii :k_(zzm ~ Pain2 ? 1W2i+1) (53)
2i+1

where eqs. (52) and (53) are iteration
equations of the 3-D double rotation
algorithm.

Thus, the 3-D double rotation equations is
modified as shown below

U 2i+2 | _ 1 1 - 52i+1 27
V2i+2 k22i+1k22i §2i+1 272H 1

1 8,277 Uy
5,277 1 V,,

_ PiPhix 27 { 1 —Oaiy 22“}
I(22i+1k22i §2i+1 272i71 1
{ 1 -5,27 }{Uzi
5,27 1 V,,
_ P 27 { 1 _52i+122ili|
I(22i+1k22i 52i+1 272i71 1

1 —8,27 [ Xy,
5,277 1 Y,



_ Pain 2 . 1 _ _é‘2i+1272i7l
I(22i+1k22i 52i+1272I71

| (54)
1 -9, 278X 2
5,277 1 Y,
1
e KyiKai (55)
Wy = Py 25 27 Wy + 05 27 2+ 2777 Zy)
|:X2i+2:| 1 |: 1 _52i+122i]:|
Y2i+2 k22|+1k2 52i+1272|7l 1
1 —0,2" - X,
5,27 1 Y
_ pzip2i+l '24”71 |: 1 52|+12 . 1:|
I(22i+1k22i é‘2i+1272I71 1
1 —5,277 [ X,
5,27 1 Y,
,02| 272' 1 _é‘2i+1272i7l
k22|+1k22| 52i+1 272i71 1
1 =527 Uy
5,27 1 Vv,
4 Pain 27 . 1 _ _é‘2i+1272i7l
I(22i+1k22i 52i+1272I71 1
(56)
1 - 0,2 U,
5,277 1 vV,
1
Zy = —
"k (57)

(Zi =2 2y = 27 = 277 W)

The additional computation complexity
of parallel processing for eqgs. (54), (55), (56)
and (57) is three additions, one double
rotation CORDIC computation and one shit
for each iteration. In the n-bit operand

system, when i > 2 _1, eqs. (54), (55), (56)
and (57) become

U2i+2 1 1 - §2i+1 Z_Zi_l
V2i+2 k22|+1k2 52i+1 2_2i_1 1
1 -5,27 Uy
5,27 1 Vs
p2| 72' . 1 52|+l 272'
I(22|+1k22| 52i+1 2_2i_1 1

1 =527 Xy
5,27 1 Y

_ Paix 2 . 1 _ _é‘2i+1272i7l
I(22|+1k22| é‘2i+1272I71

_52|2 2i X
é‘ZI - Y2I

—— Wy + 0y 27 Zy +p2i+1272i7122i) (59)

k k2|+1
x2|+2:| |: 1 _52i+12_2i_1:|
Y2I+2 I(22|+1k2 52i+1 Z_Zi_l 1

|
b L]

(58)

W2|+2

y Pt 2™ ) 1 — 8y, 27
k22|+1k2 52i+1 2_2i_1 1
1 =527 Uy
5,27 1 Vv,
102|+l 272i71 |: 1 _§2i+122i1:|
k2+ k2 5 ” 2—2i—1 1
2041720 2i+1 (60)

1 -5,27 Uy
5,27 1 Vv,

1 _2i _0j
Zyi :k—(zzi P2 ? Wi = 05112 ? 1Wzi) (61)
20 20+l

Thus, the additional computation complexity
of parallel processing is two additions, one
double rotation CORDIC computation and
one shift for each iteration. The computation
time of the double rotation CORDIC
algorithm is also reduced [10]. The 3-D
rotation  with  conventional CORDIC
algorithm versus the 3-D rotation with
double rotation CORDIC algorithm is
shown in Fig. 7.

6. 3-D Central Perspective Method Using
CORDIC Algorithm

The 3-D central perspective method is
shown in Fig. 8 [7]. The graphic is rotated in
3-D space and mapped onto Y -Z plane
perspectively. We obtain the coordinate

(0,y",z")in Y -Z plane as follows:

X =0 (62)
, D ,

= —. 63

Y =5« (63)

7' = D . (64)

whereD—w/X +Yo+20, (X,Y,,Z,) is the



coordinate of observer, and (X,y,z)is the
rotated coordinate.

7. VLSI Architectures for 3-D Rotation
and Perspective with CORDIC Algorithm

7.1 The Architecture of 3-D Rotation with
Conventional CORDIC Algorithm

Fig. 9 shows the architecture of the 3-D
rotation with the rotation mode in a
CORDIC circular coordinate system. In this
architecture, the (U,,,,V,,,) and (X,,,,Y:,,)
generator each consists of two 2-D CORDIC
processors, two hardwire shifts and two
adders/subtrators. The W, and Z,

i+1 i+1
generator each consists of a half of 2-D
CORDIC Processor.

7.2 The Architecture of 3-D Rotation with
Double Rotation CORDIC Algorithm

The architecture of the 3-D rotation with
double rotation CORDIC algorithm is
shown in Fig. 10. In this architecture, the
U,,,,V.,,) and (X,,,Y,,) generator each

consists of two 2-D CORDIC processors, six
hardwire shifts and three adders/subtrators.
The W,,, and Z,, generator each consists

of a half of 2-D double rotation CORDIC
Processor. The 3-D rotation with double
rotation CORDIC algorithm can improve the

latency time by more than thirty percent
[10].

i+1° i+19

7.3 The Architecture of 3-D perspective
Method with CORDIC Algorithm

The proposed architecture of 3-D
perspective method consists of five 2-D
CORDIC processors and one subtractor.
Two CORDIC processors operate in the
circular coordinate system for computing

VX +Ye+2z; , and three CORDIC

processors operate in the linear coordinate
system for computing X and Yy . The

architecture of 3-D central perspective
method is shown in Fig. 11.

The hardware codes of both that with
CORDIC algorithm and double rotation
algorithm are written in Verilog-hardware
description Language (HDL) [11] running
on SUN Blade 1000 workstation under
ModelSim simulation tool [12]. Both of two
architectures were synthesized by Xilinx
FPGA express tools [13] and emulated on
the Xilinx XC2V4000 FPGA platform [14].
In the 32-bit accelerated architecture of 3-D
rotation, compared with the conventional
CORDIC-based architecture of 3-D rotation,
the accelerated design improves the latency
by more than 30%. The timing diagram for
the conventional CORDIC-based
architecture and the accelerated architecture
of 3-D rotation is shown in Fig. 12. It is
designed to evaluate the hardware and to
provide an intellectual property (IP) for 3-D
graphic engine.

8. Impact of New Architectures and
Algorithms

The Euler angle method consists of
sequence of three rotations [2] [6], each
rotates one of three orthogonal axes. This
method is represented by Euler angles
correspond to the sequence of rotations
about the coordinate axes. The 3-D rotation
method is implemented by cascading two
2-D CORDIC processors [2] [6]. Lang and
Antelo proposed a method that replaces two
2-D CORDIC processors by one 3-D
CORDIC processor [6]. The sequence of
rotations consists of one 2-D CORDIC
rotation and one 3-D CORDIC rotation.
Both of them require more than two 2-D
CORDIC computations. According to the
proposed 3-D rotation algorithm, the
architecture with conventional CORDIC
processors requires one 2-D CORDIC
computation in parallelism to perform 3-D
rotation, and the architecture with double
rotation 2-D CORDIC processors requires
less than one 2-D CORDIC computation in
parallelism to perform 3-D rotation.

The 3-D central perspective method
requires four 2-D CORDIC computations in
parallelism; this method with CORDIC



algorithm saves multipliers and square-root,
and the implementation of this architecture
is required by CORDIC processors only.

9. Conclusions

We have presented two
high-throughput 3-D rotation algorithms and
architectures both of them are based on 2-D
CORDIC algorithm and 2-D double rotation
CORDIC algorithm. It is required one or
less 2-D CORDIC computation to perform
3-D rotation; and the central perspective
method is also performed by 2-D CORDIC
algorithm, the architecture of the central
perspective method saves hardware and
achieves high-performance.

The proposed architectures are
implemented by 2-D CORDIC processors;
the architectures are simple and regular, and
suitable for VLSI implementation. The
graphic engine should be improved by the
proposed algorithms and architectures.
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Table 1 Functions of CORDIC arithmetic

Coordinate Rotation Mode Vectoring Mode
System z(n) >0 y(n) —>0
Linear x(n) = x(0) x(n) = x(0)
m=0 Y(m) = y(0) + X(0) - 2(0) sy = 2430
x(0)
Circular | y(n) = (x(0)cos 2(0)~ y(0)sin 2(0)) | X(m) =—(x(0)* + y(0)*)
m=1 K, K,
1 . 4,Y(00)
y(n) = —(y(0) cos z(0) + X(0) sin z(0)) 2(n) = 2(0) — tan " (22)
K, x(0)
Hyperbolic | ym) = (x(0)cosh 2(0) + y(0)sinh 2(0)) | x(n) = ——(x(0)2 — y(0)?)
m=-1 K K,
y(n) = L(y(O) cosh z(0) + x(0)sinh z(0)) z(n)=2z(0)+ tanh ™! (w)
K. x(0)

é;

V'
y

For(i=0;i£%—l;i++)

Fig.1. A vector R in three dimensional space

v

Evaluate
0, = sign(z(2i)) ==1

A 4

| Yes |<—| Rranching

A

| Flowchart in Fig. 2 |

| Flowchart in Fio 3 |

\ 4

A

y

»
»

Fig. 2. Flowchart for the o,;,, -prediction and z(2i+2) determination

algorithm. Detailed flowcharts for specific cases when sign(z(2i))
evaluation returns +1 , -1, and when the algorithm is in a branching are

8




v

0, = sign(z(2i)) = +1

v

| Perform in parallel |

o T~
if (sign(z, (2i + 2) ="+") A (SigN(Z, (20 +2) ="+") if (sign(z,(2i +2) ="—") A (Sign(z, (2i + 2) ="-")
then oy;,; = +1,2(2i+2) = z,(2i + 2) then oy, =-1,2(2i +2) = 2,(2i +2)
A 4

if (sign(z, (2i +2) ="—") A (SigN(z, (2i +2) ="+") A (Sign(z;(2i +2) ="-")
then oy;,, =-1,2(2i +2) = 2,(2i +2)

if (sign(z, (2i +2) ="—") A (sign(z,(2i +2) ="+") A (Sign(z,(2i +2) ="+")
then o, =+1,2(2i+2) = 7,(2i +2)

\ 4 A 4 v

v

Fig. 3. Flowchart for i-iteration for the case when o,; = sign(z(2i)) evaluation returns +1

v

| oy = sign(2(2i)) = -1 |

v

| Perform in parallel |

P A
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pZ Oz

Oz Xoi
O Y l ‘ l l

o Hardwire shift 24" Hardwire shift 2 Hardwire shift 2"
21
Y
Counter-% > 42)CSA  (3,2)CSA
CLA
Vaiz
(a) (3,2)CSA/(4,2)CSA
| (32)CSA |

| cLa

(b) vector [Xai+2 Y2i+2] generator

Fig. 6. The accelerated CORDIC architecture with the rotation mode in the circular
coordinate system.

Fig. 7 3-D rotation with conventional CORDIC algorithm versus 3-D rotation with double

rotation CORDIC algorithm (R, =1,¢, :%, By :%,90 :%,% :%)
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Fig. 12. The timing diagram for the conventional CORDIC-based architecture and the
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