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ABSTRACT

Clustering is an unsupervised procedure to group ob-
jects in accordance with their similarities. For non-
separable clusters, the concept of fuzziness is incorpo-
rated. Among other approaches, the fuzzy c-means al-
gorithm is the most well-known fuzzy clustering method.
In this work, we present a modified form of the fuzzy
c-means based on a new definition of distance measure
which can be considered as an extension of the conven-
tional one. The key advantage of this new fuzzy cluster-
ing schemem is its ability to flexibly control the mem-
bership function curves. Analytical formulae have been
derived for both cluster centers and the fuzzy partition
matrix. Parameter effects related to the membership
function curves have also been analyzed. Examples are
given to demonstrate the clustering results of the newly
presented scheme.

Keywords: clustering, fuzzy clustering, fuzzy c-
means

1. INTRODUCTION

The process of subdividing a data set into distinct sub-
sets with homogeneous elements is called clustering.
For hard clustering, a membership value of zero or one
is assigned to each pattern data. With fuzzy clustering,
each datum belongs to all clusters simultaneously, but
to different degrees. Cluster analysis has been exten-
sively studied in various fields of engineering [1]. A va-
riety of fuzzy clustering methods have been proposed,
including fuzzy c-means [2], possibilistic c-means [3],
noise clustering [4], fuzzy entropy clustering [5], credi-
bilistic fuzzy c-means [6], convex-set-based fuzzy clus-
tering [7], generalized weighted conditional fuzzy clus-
tering [8], etc. This paper focuses on the extension
of the well-known fuzzy c-means algorithm. Specifi-
cally, we propose a new distance measure which adds a
higher-term to the original one. The net effect is that
the membership curves can be controlled by adjusting
two parameters a1 and a2. Thus a more flexible clus-
tering method is obtained. To facilitate the algorithm

development, we have analytically derived the formu-
lae for cluster centers and the fuzzy partition matrix.
Explicit formulae for the membership curves in a 1-
D two-cluster environment have also been derived to
characterize the effects of the a1 and a2 parameters.
Some examples are given to demonstrate the cluster-
ing results of this new scheme.

The rest of this paper is organized as follows. In
Section 2, we give a brief summary of the conven-
tional fuzzy c-means algorithm. Then in Section 3,
we present the new fuzzy clustering method with ad-
justable membership characteristics. The succeeding
section presents analysis of membership functions. Some
examples are given in Section 5. Finally Section 6 con-
cludes this paper.

2. THE FUZZY C-MEANS ALGORITHM

The fuzzy c-means algorithm [2] originated from an
optimization problem

min
UUU ,VVV

J(UUU,VVV )
4
=

c∑

i=1

n∑

k=1

um
ki‖xxxk − vvvi‖2 (1)

subject to
c∑

i=1

uki = 1, ∀k (2)

where UUU is the fuzzy partition matrix, VVV is the collec-
tion of cluster centers, n is the number of data sam-
ples, c is the number of clusters, m is the weighting
exponent, and uki is the membership value of xxxk with
respect to cluster i. Optimality conditions at the sta-
tionary points require that

vvvi =
∑n

k=1 um
kixxxk∑n

k=1 um
ki

, ∀i (3)

uki =




c∑

j=1

( ‖xxxk − vvvi‖2
‖xxxk − vvvj‖2

) 1
m−1



−1

, ∀k, i (4)

An alternating optimization procedure is commonly
ulilized to solve the fuzzy c-means problem. The al-
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ternating procedure consists of two steps: (1) fix clus-
ter centers and find the fuzzy partition matrix, and (2)
fix the fuzzy partition matrix and update cluster cen-
ters. Steps (1) and (2) are alternately executed until
convergence is achieved. Note that the algorithm may
converge to a local minimum or even a saddle point.

3. THE NEW FUZZY CLUSTERING
METHOD WITH ADJUSTABLE

MEMBERSHIP CHARACTERISTICS

In convectional fuzzy c-means algorithm, the distance
measure is defined by ‖xxxk − vvvi‖2. We now extend this
definition to include an additional higher-order term,
namely, let us define the new distance measure by

dki
4
= a1‖xxxk − vvvi‖2 + a2‖xxxk − vvvi‖4 (5)

where xxxk is the kth input datum, vvvi is the ith cluster
center, and a1 and a2 are two parameters specified by
the user. With this new definition of distance measure,
the fuzzy clustering problem can be reformulated as a
new optimization problem

min
UUU ,VVV

J(UUU,VVV )
4
=

c∑

i=1

n∑

k=1

um
ki(a1‖xxxk − vvvi‖2

+a2‖xxxk − vvvi‖4) (6)

subject to
c∑

i=1

uki = 1, ∀k (7)

where UUU is the fuzzy partition matrix, VVV is the collec-
tion of cluster centers, n is the number of data sam-
ples, c is the number of clusters, m is the weighting
exponent, and uki is the membership value of xxxk with
respect to cluster i, for k = 1, · · · , n and i = 1, · · · , c.
The necessary conditions for this optimization problem
can be found using the method of Lagrange multipliers.
First we define the corresponding Lagrangian function
as

L 4
=

c∑

i=1

n∑

k=1

um
ki(a1‖xxxk − vvvi‖2 + a2‖xxxk − vvvi‖4)

+
n∑

k=1

αk

(
c∑

i=1

uki − 1

)
(8)

where αk is the corresponding Lagrange multiplier. At
the optimal points of solutions, the partial derivatives
of L with respect to all related variables should be equal
to zero. From ∂L

∂uki
= 0, we obtain

mum−1
ki (a1‖xxxk − vvvi‖2 + a2‖xxxk − vvvi‖4) + αk = 0, ∀k, i

(9)

From ∂L
∂vvvi

= 0, we have

vvvi =
∑n

k=1 um
ki(a1 + 2a2‖xxxk − vvvi‖2)xxxk∑n

k=1 um
ki(a1 + 2a2‖xxxk − vvvi‖2) , ∀i (10)

Substituting Eq. (9) into Eq. (7), one obtains

αk = −
(

c∑

i=1

1

[m(a1‖xxxk − vvvi‖2 + a2‖xxxk − vvvi‖4)]
1

m−1

)−m+1

,∀k

(11)
Eqs. (11) and (9) together yield

uki =




c∑

j=1

(
a1‖xxxk − vvvi‖2 + a2‖xxxk − vvvi‖4
a1‖xxxk − vvvj‖2 + a2‖xxxk − vvvj‖4

) 1
m−1



−1

,∀k, i

(12)
The alternating algorithm of the conventional fuzzy c-
means method can also be applied to the new fuzzy
clustering method with different updating functions for
the cluster centers and fuzzy partition matrix. We sum-
marize the solution algorithm as follows:

1. Initialize cluster centers. Usually this is performed
by random assignment.

2. Update the fuzzy partition matrix using Eq. (12).

3. Update the cluster centers using Eq. (10).

4. Check for convergence. Usually this is done by
checking ‖UUU (k+1) − UUU (k)‖ ≤ ε. If not yet con-
verged, go to Step 2 and proceed.

4. ANALYSIS OF MEMBERSHIP
FUNCTIONS

In accordance with Eq. (12) one can define the mem-
bership function by

fi(xxx) =




c∑

j=1

(
a1‖xxx− vvvi‖2 + a2‖xxx− vvvi‖4
a1‖xxx− vvvj‖2 + a2‖xxx− vvvj‖4

) 1
m−1



−1

,∀i

(13)
where vvvi and vvvj are the centers for cluster i and j re-
spectively. To gain more insight regarding how the pa-
rameters a1 and a2 affect the membership fuctions, let
us focus on a specific situation with only two clusters
where the feature vector possesses a single dimension
and m = 2. Let the cluster centers of these two clusters
be denoted by vvv1 and vvv2 respectively, and let x denote
the Euclidean distance between the input datum and
vvv1. Here we consider two different scenarios: (1) the
input datum is located between vvv1 and vvv2; (2) vvv1 is
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Fig. 1. The membership vs. Euclidean distance curve.
Shown in this figure is the first scenario where the input
datum is located between vvv1 and vvv2.

located between the input datum and vvv2. For the first
scenario, we have

f1(x) =
{

1 + [
a1x

2 + a2x
4

a1(r − x)2 + a2(r − x)4
]

1
m−1

}−1

=
(r − x)2 + a2

a1
(r − x)4

[x2 + (r − x)2] + a2
a1

[x4 + (r − x)4]
(14)

where r is the Euclidean distance between vvv1 and vvv2.
Similarly, for the second scenario we easily obtain

f1(x) =
{

1 + [
a1x

2 + a2x
4

a1(r + x)2 + a2(r + x)4
]

1
m−1

}−1

=
(r + x)2 + a2

a1
(r + x)4

[x2 + (r + x)2] + a2
a1

[x4 + (r + x)4]
(15)

From Eqs. (14) and (15) it is clearly seen that in both
scenarios the memberships are affected by r and the
ratio a2/a1. Figs. 1 and 2 show the membership vs. x
curves. For the first scenario, with an increasing a2/a1

ratio, the clustering gradually changes from soft parti-
tion toward harder partitions, as illustrated by Fig. 1.
For the second scenario, we also observe that with an
increasing a2/a1 ratio, the clustering gradually changes
from soft partition toward harder partitions, which is
illustrated by Fig. 2. However, in the latter scenario,
the changes occur at a slower pace.
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Fig. 2. The membership vs. Euclidean distance curve.
Shown in this figure is the second scenario where vvv1 is
located between the input datum and vvv2.

5. EXAMPLES

In this study we used an artificially synthesized data
set for experimentation. This data set with 2000 data
points comprises three non-overlapped clusters. Since
the clusters are separable, the clustering task can be
easily accomplished. However, with different fuzzy clus-
tering strategies, varying fuzzy partition matrices can
be generated. Figs. 3 through 6 show the experimental
results. Prior to clustering, the data set went through a
linear normalization operation so that each component
of the feature vector is scaled to be in the range [0, 1].
In each figure, the scatter plot of input data are drawn
with cluster centers and iso-membership contours over-
laid. Each figure possesses a different combination of a1

and a2 values. From these figures, it is seen that cluster
centers change slightly with varying combinations of a1

and a2; however, the iso-membership contours exhibit
distinct changes. In principle, the larger the a2/a1 ratio
is, the higher the membership value is observed around
the same neighborhood of a cluster center. Refer to
Figs. 3 through 6 for the detailed contour plots.

6. CONCLUSION

Clustering plays a very important role in almost all
branches of science and engineering. The conventional
k-means and fuzzy c-means algorithms have been most
popular methods for solving separable and non-separable
clustering tasks. Based on a new definition of distance
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measure, we propose a new form of fuzzy clustering
method. The key distinct property of this new fuzzy
clustering scheme is that it is capable of controlling the
membership curve through adjusting the values of a1

and a2. Further research will be necessary in order to
characterize the choice of a1 and a2 values in a practical
setting.
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Fig. 3. An example to demonstrate the fuzzy cluster-
ing result. In this figure, a1 = 1 and a2 = 0, and cluster
centers are shown as small red circles. For each clus-
ter, five iso-membership contours are illustrated, which
correspond to membership values of 0.9, 0.8, 0.7, 0.6 ,
and 0.5.
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Fig. 4. An example to demonstrate the fuzzy cluster-
ing result. In this figure, a1 = 1 and a2 = 1, and cluster
centers are shown as small red circles. For each clus-
ter, five iso-membership contours are illustrated, which
correspond to membership values of 0.9, 0.8, 0.7, 0.6 ,
and 0.5.
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Fig. 5. An example to demonstrate the fuzzy cluster-
ing result. In this figure, a1 = 1 and a2 = 10, and
cluster centers are shown as small red circles. For each
cluster, five iso-membership contours are illustrated,
which correspond to membership values of 0.9, 0.8, 0.7,
0.6 , and 0.5.
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Fig. 6. An example to demonstrate the fuzzy cluster-
ing result. In this figure, a1 = 1 and a2 = 100, and
cluster centers are shown as small red circles. For each
cluster, five iso-membership contours are illustrated,
which correspond to membership values of 0.9, 0.8, 0.7,
0.6 , and 0.5.
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