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Abstract 

 Superellipse is a flexible primitive and 
it can represent a large variety of shapes.  
This paper presents a novel superellipse 
segmentation of planar curves based on the 
types of breakpoints.  In the proposed 
method, the breakpoints are divided into 
corners and smooth joints, and the types of 
the segments on both sides of a breakpoint 
are identified.  Using these breakpoint 
types can effectively reduce the 
computational cost, and reserve the 
important features of planar curves.  Tests 
show that the proposed method has a 
number of interesting properties including 
being scale invariant, threshold-free, and 
efficient. 
 
Keywords: superellipse, segmentation, 

breakpoint. 
 

1. Introduction 
 A key problem area in computer vision 
is the extraction of meaningful features from 
images.  Curve segmentation is one of the 
most important jobs since a segmented 
contour can be used to describe an object in 
a meaningful form for higher level image 
processing, such as shape analysis and 
pattern recognition.  The most popular 
approach is based on edge data which is 

better represented in a more manageable 
form.  Many techniques have been 
proposed for this purpose in the past two 
decades.  Polygonal approximation is the 
simplest approach.  The line segments are 
almost extracted from curves based on the 
corner detection [1-3] or dominant point 
detection [4-6].  But polygonal 
approximation is rarely used for further 
shape analysis.  To go from curve 
segmentation to shape analysis, one could 
include higher order primitives such as 
circular arcs [7, 8], conic arcs [9, 10], and 
splines [11, 12] in curve segmentation.   
 Curve segmentation using the conic 
arcs or splines would obtain a flexible 
description, and these primitives are 
important in our daily life and in industry.  
But, a more flexible primitive is always 
sought and studied.  Superellipse provides 
an interesting form for representing a range 
of objects whose shapes may be deformed 
by altering various squareness parameters.  
With the squareness parameter, superellipse 
is able to represent a wide variety of shapes 
such as rounded rectangles, ellipses, 
diamonds, pinched diamonds, etc.  Hence, 
the superellipse is a flexible primitive in 
computer vision, and curve segmentation 
using superellipses is proposed in the last 
decade [13-17]. 
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 Superellipses were first formulated by 
Gardiner [18], and the three dimensional 
version--superquadrics--were popularized in 
computer graphics by Barr [19] and in 
computer vision by Pentland [20].  A 
superellipse centered on the origin with its 
axes aligned with the coordinate system can 
be represented by the following implicit 
equation. 

       1)()( 22 =+ εε byax  (1) 

Its parametric form at angle φ  is given by 
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where a and b are the lengths of the major 
and the minor axes, respectively, and ε  is 
called the squareness.  A superellipse with 
different values of the squareness ε , it can 
represent a wide variety of shapes, as shown 
in Fig. 1, where superellipses are shown 
with  and ba 2= ε  values of 0.1, 0.5, 1.0, 
2.0, 5.0 and 10.0 (from the exterior to the 
interior contours, respectively). 
 Detection of a superellipse involves 
estimating the six associated parameters, 
that is, the center , the lengths of 
the major and the minor axes ( , the 
orientation 

),( 00 yx
),ba

θ  and the squareness ε .  
Traditional approaches are computationally 
expensive for estimating these parameters 
since the cost function is nonlinear and 
nonlinear programming is usually employed.  
For instance, Rosin et al. [13-16] use 
Powell's conjugate direction technique [21] 
to adjust the six associated parameters with 
initial values.  The squareness ε  is set to 
1.0 and the other parameters are selected 
from an approximating ellipse. 

 In the procedure proposed by Rosin et 
al., the six parameters ) , , , , ,( 00 εθ bayx  of 
a superellipse all are repeatedly estimated by 
Powell's conjugate direction technique based 
on edge data or line segments from 
polygonal approximation, hence the 
computational cost is high.  Besides, the 
important feature—corner--is not reserved.  
In this paper, superellipse segmentation 
based on types of breakpoints [7] is 
proposed to effectively reduce the 
computational cost, and reserve the 
important feature (corner) of planar curves.  
The advantages of breakpoint types are that 
it is:  

Threshold-free—No threshold within the 
algorithm,  
Stable—Invariant to transformations of the 
data (rotation, translation, and scale), and 
Extendible—Types of breakpoints can be 
extended to other primitives. 

 In the proposed scheme, the 
breakpoints are categorized as five types: 
c-ll, c-la, c-aa, s-la, and s-aa by using AKC 
function and PHF [7], where c indicates a 
corner and s is a smooth joint.  These types 
of breakpoints are very useful for 
superellipse segmentation to reduce the 
amount of segments employed in the 
merging iteration of superellipse fitting, that 
is, it can effectively reduce the 
computational cost.  This concept using 
breakpoint-types proposed in this paper is 
not referred in the existent methods for 
superellipse segmentation. 
 In the remainder of this paper, the 
breakpoint classification is presented in 
Section 2.  In Section 3, the superellipse 
segmentation is proposed.  Section 4 
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presents experimental examples and 
evaluations of the results.  Finally, 
conclusion is made in Section 5. 
 

2. Breakpoint classification 
In this section, the associated 

breakpoints are first detected by using the 
methods of dominant point or corner 
detection [1-6], and then the breakpoints are 
categorized as five types: corner-ll, corner-la, 
corner-aa, smooth joint-la or smooth 
joint-aa by using AKC (adaptive k-curvature) 
function and PHF (projective height 
function) [7].  The type ll means that the 
segments on both sides of the breakpoint are 
line segments; la stands for a joint of a line 
segment and an arc; aa represents a joint of 
two arcs; and corner is a discontinuous 
tangent and smooth joint is associated with 
continuous tangent, but discontinuous 
curvature [22]. 

The AKC function is briefly described as 
follows.  Consider three consecutive 
breakpoints ,  and , and two 
consecutive segments  and  starting 
at , joining at  and ending at .  
Let lengths of  and  be  and l , 
respectively, and 
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The AKC function of  is defined as the 

values  

iP
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 And, the PHF is described as follows.  
Let the intervals for evaluating the 
projective heights (PHs) of the segments on 
both sides of the breakpoint  be iP

]2~,2~3[ kPkP ii −−  for the segment , 

and 
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, which insure that the PH evaluation 
does not exceed either  and  or  
and .  Consider a point 
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where  and 

, and the projective 

height of  is 
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The PHF is defined as the projective 

heights  over the interval of )( jPh

]2~,2~3[ kkPi − Pi −  or 

]2~3,2~[ kkPi +

0)( <jPh

Pi +

5.

.  Define a line 

accumulator and an arc accumulator on the 
region of support of PHF and use 0.5 to 
discriminate a line from an arc, since it is the 
maximum possible deviation of the PH of a 
digitized line segment can make.  If 

, then the line accumulator is 

incremented by one; otherwise add one to 
the arc accumulator.  The type of segment 
is determined by comparing the values in the 
two accumulators.  If the value in the line 
accumulator is greater, then the segment is 
identified as a line; otherwise it is an arc. 

The procedure of breakpoint 
classification is described as follows.  The 
breakpoints can be categorized as corners 
and smooth joints by testing a global 
maximum in the AKC function.  Clearly, if 
there is a global maximum at the breakpoint 
in the AKC function, then it is a corner; 
otherwise it is a smooth joint.  And, using 
the PHF scheme, the types of segments on 
both sides of a breakpoint can be efficiently 
detected and a breakpoint can be further 
divided into types ll, la (or al), and aa.  
Combining the results of AKC and PHF 
schemes, the breakpoints are categorized as 
five types: corner-ll (c-ll), corner-la (c-la), 
corner-aa (c-aa), smooth joint-la (s-la) and 

smooth joint-aa (s-aa).  For understanding 
the geometry of corner and smooth joint, the 
breakpoint types can be illustrated clearly 
from Fig. 2.  Fig. 2(a) is c-ll, Fig. 2(b) and 
Fig. 2(c) are c-la, Fig. 2(d)~2(f) are c-aa, 
Fig. 2(g) is s-la, and Fig. 2(h) and 2(i) are 
s-aa breakpoints. 

Practically, however, due to the errors 
in breakpoint-detection, two situations may 
be brought about.  Hence, the breakpoint 
compensation is necessary.  The first case 
is that there is a type c-ll followed by a type 
c-aa (or s-aa) immediately (Fig. 3(a)), and 
there must be a type s-la between these two 
consecutive breakpoints.  To determine the 
location of such a type s-la, form a straight 
line by connecting the type c-ll and c-aa (or 
s-aa).  The point in the original segment 
that is farthest from this connected line 
segment is then considered as such a type 
s-la, following the idea by Duda and Hart 
[23].  The result of the first case is shown 
in Fig. 3(b). 

The second case is that there is a type 
c-la surrounded by two types c-aa (or s-aa) 
immediately (Fig. 4(a)), then there must be a 
type s-la preceding or following the type 
c-la.  The location of such a type s-la can 
be obtained by using the PHF of the type 
c-la.  That is, if there is a line segment on 
the forward side of c-la, then the new s-la 
should be on the forward segment, and vice 
versa.  The exact location of the new s-la is 
also determined at the point where the 
distance from the line connecting the c-la 
and c-aa (or s-aa) is the maximum.  The 
result of the second case is shown in Fig. 
4(b). 
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3. Superellipse segmentation 
From the geometric property (see Fig. 

1), it is obvious that 2=ε  produces a 
diamond; 20 << ε  generates convex 
superellipses (where 1=ε  is an ellipse); 
and 2>ε  results in concave superellipses 
(pinched superellipses).  And, the contours 
are symmetric to the center of the 
superellipse. 

For concave superellipses, corners 
appear in the contours, and they are 
important features in image processing. 
Besides, the major and the minor axes of a 
superellipse become shortened as a result of 
truncation.  This happens in the contour 
tracing to form a closed contour for a 
superellipse detection when there is another 
trace that branches out.  In this case, the 
1-pixel wide branch is considered as noise 
and hence is truncated. 

Hence, the proposed superellipse 
segmentation based on breakpoint types is 
considered to deal with the convex 
superllipses ( 20 << ε ). 

The cost function of superellipse 
segmentation is defined as the Euclidean 

distance  along the line passing through 

the point  and the center of the 

superellipse [14]. 

pd

(x ), pp y

22 )()( epepp yyxxd −+−=  (7) 

For a superellipse centered on the 
origin with axes aligned with the coordinate 
system, superellipse point (  are 
formulated as 
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 Superellipse segmentation based on 
breakpoint types is done as described below.  
The first fitted segment is the first segment 
for the open contour, or the segment 
following corners for the closed contour.  
But, if the segment between consecutive 
corners is line, then line segment is reserved 
and not fitted.  The Powell's conjugate 
direction technique [21] is used to adjust the 
six associated parameters with initial values.  
The squareness ε  is set to 1.0 and the 

 parameters are selected from 
an approximating ellipse [24].  The 
orientation 

) , , ,( 00 bayx

θ  is estimated by finding the 
principal axis of the data, 

0220
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where pqµ  is the (p, q)th central moment 

calculated by 

∑ −−=
i

q
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p
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and ),( yx  is the centroid for the i data 
points. 
 Powell's algorithm performs a gradient 
descent as follows.  (i) Set the parameters 

) , , , , ,( 00 εθ bayx  obtained above as initial 
values.  (ii) Do a gradient descent by 
varying the first parameter.  Once the 
minimum of the cost function has been 
found, repeat for the second parameter and 
so on for all parameters.  (iii) Combine the 
change in the parameters into a vector and 
minimize the cost function by gradient 
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descent along this vector.  (iv) Repeat from 
stage (ii) until the change of parameters is 
sufficiently small. 
 When the superellipse fitting to the first 
segment is finished, the region-of-support 
would be extended by using the merging 
procedure to obtain larger superelliptic arc, 
and avoid redundancy. 
 Two conditions must be obeyed in the 
merging procedure for two consecutive 
segments: (i) If the breakpoint is a corner, 
then these segments can’t be merged.  (ii) 
Two consecutive segments must be convex. 
 If consecutive segments satisfy the 
above two conditions, then the merging 
procedure is performed as follows.  
Calculate the measurement µ  of new 
superelliptic arc for the two consecutive 
segments, and then compare the original 
measurement.  If the former is smaller than 
latter, then the consecutive segments are 
successfully merged to a new superelliptic 
arc.  The next consecutive segment is 
added in merging procedure, and then the 
above process is iterated until the merging 
procedure is failed.  Then, the new segment 
is fitted, and the merging procedure is 
performed again. 

lengthsegment 
deviation maximum

=µ  (11) 

Using the measurement µ , the lower 
the measurement is, the more significant the 
superelliptic arc is.  That is, the longer the 
superelliptic arc is, the greater the deviation 
that will be tolerated.  Thus, the same 
shape of curve at different scales will have 
the same significance. 
 

4. Experimental results 
 Two experiments have been done to 
demonstrate the performance of the 
proposed superellipse segmentation.  The 
original data is shown in Fig. 5(a).  Fig. 5(b) 
is the result of superellipse fitting, and the 
superellipse segmentation is indicated in Fig. 
5(c).  In Fig. 5(c), the corners (indicated as 
circles) and line segments are reserved.  If 
using Rosin’s method, the corners and line 
segments are fitted as 2=ε  superellipses 
(diamonds).  In the proposed method, 
corners are reversed to obtain the important 
features in image processing, and line 
segments are not further treated to 
effectively reduce the computational cost in 
the iteration of superellipse fitting.  Hence, 
the proposed superellipse segmentation 
based on breakpoint types is more efficient 
than Rosin’s method. 
 Fig. 6(a) is the overlapping curves, and 
the result of superellipse fitting is shown in 
Fig. 6(b).  Sueprellipse segmentation is 
indicated as Fig. 6(c).  For the overlapping 
curves, the triple joint type is used in the 
superellipse segmentation.  The triple joint 
is defined as the joint between the 
overlapping objects.  In superellipse fitting, 
the property of the triple joint is like as the 
corner, and the associated segments of the 
triple joint are not employed in the merging 
procedure. 
 

5. Conclusion 
 The superellipse segmentation based on 
breakpoint types is proposed successfully.  
In the result of superellipse segmentation, 
superelliptic arcs, line segments, and corners 
are obtained to describe planar curves more 
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meaningfully.  In the proposed method, the 
breakpoints are categorized as five types: 
c-ll, c-la, c-aa, s-la, and s-aa by using AKC 
function and PHF, where c indicates corner 
and s is smooth joint. 
 Using the breakpoint types, the 
segments employed in merging iteration of 
superellipse fitting can be effectively 
reduced, that is, the computational cost can 
be effectively reduced. 
 In the proposed superellipse 
segmentation, since no threshold is required, 
the result is not influenced by the selection 
of thresholds.  That is, the performance of 
the proposed scheme is threshold-free.  
Further, using the significance measurement 
µ  (the ratio of the maximum deviation 
divided by the segment length) can obtain 
the performance that the same shape of 
curve at different scales will have the same 
significance.  Besides, the concept using 
breakpoint-types proposed in this paper is 
not referred in the existent methods for 
superellipse segmentation, and the 
performance is better than Rosin’s method 
[13-16]. 
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Fig. 1. Superellipses with different squareness. 

    
(a)     (b)     (c)  

       
(d)     (e)     (f) 

       

(g)     (h)     (i) 
Fig. 2. Breakpoint types of corners and smooth joints. 

 

    
 (a)        (b) 

Fig. 3. Recovery of type s-la joints. 
 

 
       (a)      (b) 

Fig. 4. Recovery of type s-la joints. 
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(a)     (b)     (c) 
Fig. 5. Superellipse segmentation of curves. 

 
 

       
(a)     (b)     (c) 

Fig. 6. Superellipse segmentation of overlapping curves. 
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