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Abstract

The objective of this paper is to develop
an external memory approach to extract
the maximal repeats from whole genome
sequences with the statistics of these re-
peats across classes, where the definition of
a class is determined on what kind of statis-
tics one wants to compute. We proposed
a heuristic method consisted of a bucket-
sort-like approach and the Chinese term ex-
traction approach. The former was used to
sort the suffixes of DNA sequences stored in
files and the later was used to extract max-
imal repeats by scanning the sorted suffixes
while computing the statistics of these re-
peats. The statistics of these repeats across
classes might be useful for sequence classi-
fication and species identification.

Keywords: maximal repeat; external
memory; comparative genomics.

摘要

這篇論文利用外部記憶體的方法, 整個基因

體序列中, 求最大重複在各類別中的統計資

料, 其中類別的定義是根據你所需要的統計

資料而定。 我們所提出的啟發式的方法是由

一種類似水桶式排序法與中文關鍵詞抽取法

所組成。 前者是用來排序儲存在檔案中 DNA
序列的 suffixes, 後者利用逐一掃瞄排序過的

suffixes 的時候, 抽取出最大重複, 並且同時

計算出這些重複的統計資料。 這些跨類別的

最大重複統計資料, 可能對於序列分類與物

種鑑定有幫助。

關鍵詞: 最大重複、 外部記憶體、 比較基因體。

1 Introduction

Nowadays the growth of computation
power might be far beyond the need for
biologists to handle the whole genome se-
quences comparison among organisms si-
multaneously. One of the bottlenecks of
the computation for comparative genomics
is due to the limit of main memory available
in one general computer such that the sizes
of data sets could not exceed the capacity
of main memory of that computer.
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The statistics of repeats across classes
might be useful for inter-genomic compar-
ison [14, 25, 20, 6] because we might have
one species as one class to select the re-
peats with biased frequency distribution for
sequence classification[17], or to mine for
specific patterns to identify some species
for microarray-based detection [2, 7]. How-
ever the size of individual whole genome
sequence might range from several million
base pairs to hundreds billion base pairs.
The internal memory approaches, for ex-
ample, using suffix tree or suffix array[9] are
not applicable to the comparison of whole
genome sequences[3] with a general com-
puter. Therefore, it might take a very long
time to finish the computation when the
amount of memory needed to process se-
quences comparison are over the capacity
of the main memory in that computer[18]
because of the disk I/O problems[24].

The analysis of repeats plays an impor-
tant role for comparative genomics. There
are studies of repeats extraction such as
STRING [19], REPuter [12], MUMmer [5],
FORRepeats [13] and SRF[23]. STRING
is used to find tandem repeats in DNA se-
quences via alignment. FORRepeats is a
heuristic approach using a data structure
called factor oracle to find repeats. Sharma
et al. used Spectral Repeat Finder (SRF),
a discrete Fourier transformation, to iden-
tify repetitive DNA sequences. REPuter
and MUMmer were based on the suffix tree
to detect repeats. However, suffix tree suf-
fered from the large memory consumption
although there were approaches to reduce
the memory consumption for constructing
the suffix tree[1, 11, 16].

Choi and Cho [3] proposed a work-
bench called SequeX, an external mem-
ory approach, which based on Static SB-
tree (SSB-tree) [8] to analysis of common
k-mers for whole genome sequences from

72 microbial genomes. The SequeX sup-
ported queries such as ”Pattern Match-
ing”, k-mer Counting”, and ”Finding k-
Occurring Sequence”. However, it was not
trivial to generate the program of con-
structing the SSB-tree because it needs ef-
ficiently to handle the disk accesses and
to build the blind tree for determining the
next node for searching.

In this study, we used the maximal re-
peat [9] to reduce the redundancy of re-
peats such that do not generate overwhelm-
ing output. A maximal pair [12] in a string
S is a pair of identical substrings α and
β in S such that the character to the im-
mediate left, resp. right, of α is different
from the character to the immediate left,
resp. right, of β. That is, extending α

and β in either direction would destroy the
equality of the two strings. A maximal re-
peat α is a substring of S that occurs in
a maximal pair in S. Given a sequence
”kabcyiazabczabcyrxak”, for example, the
patterns, ”abc” and ”abcy” are maximal
repeats, while ”ab” and ”bc” are not.

The objective of this work is to ex-
tract the maximal repeats from DNA se-
quences while computing the statistics
across classes with limited memory, e.g. 2
GB main memory, of one general computer
where the definition of a class is deter-
mined on what kind of statistics one wants
to compute in advance. Our approach is
simple and straightforward, and could be
easily scaled to parallel processing. To
extract the maximal repeats and to com-
pute the statistics of those patterns across
classes, we proposed a heuristic method
consisted of a bucket-sort-like approach[4]
and the Chinese term extraction approach
[28]. The former was used to sort the suf-
fixes of DNA sequences and the later was
used to extract maximal repeats while com-
puting the statistics of these repeats across
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classes. To handle such a huge amount
of DNA sequences across classes with lim-
ited memory, first of all, we pre-sort the
suffixes of DNA sequences by partitioning
these suffixes into a given number 4k of
groups (files), where k is the length of the
common prefix of the suffixes in one group.
Then we sorted the suffixes in each group
individually. After sorting all the suffixes in
each group, we used the scanning process
of the Chinese term extraction approach
to extract the candidate maximal repeats
with the right boundary verification. To
have the candidate maximal repeats with
the left boundary verification, we could re-
run the above processes with the suffixes
of reversed DNA sequences. The maximal
repeats are those candidate maximal re-
peats which pass both the right and the left
boundary verification. Note that we could
easily speed up the computation by assign-
ing the jobs of sorting suffixes and extract-
ing candidate maximal repeats to different
processors according to the value k.

We had experimented with six species,
including ”SARS”, ”E.coli”, ”Yeast”,
”P. falciparum”, ”C. elegant” and ”A.
thaliana”. The lengths of these DNA se-
quences ranged from several thousand (bp)
to over 100 million (bp). In practice, we
had the suffixes as the front l, e.g. l = 50,
characters of every suffixes instead of the
whole suffixes; the value of k was deter-
mined manually in this study such that the
sorting of the suffixes in one group could
be done efficiently with limited memory.
That is, the length of maximal repeats ex-
tracted by our approach is between k and l,
where k is the common prefix of suffixes in
one group (file), and l is the length of the
front characters of suffixes used. To eval-
uate the variant values of k and l, we had
experimented with the values of k includ-
ing l, 2, 3 and 4, the value l of l includ-

ing 25, 50, 100, 200, 500 and 1000. Note
that the value 1000 of the length of max-
imal repeats was much longer than that
of patterns extracted by the general slide-
window methods [10] or that for primers
design [22]. To show the scalability of our
approach for parallel computing, further-
more, we also presented the speedup via 8
computers where each contained 512 MB
main memory. The value of speedup we
achieved was 4.94 when k = 4 and l = 50
using the Yeast’s genome.

The remainder of this paper is organized
as follows. Section 2 describes the processes
of maximal repeat extraction. Section 3
gives experimental results. Section 4 gives
conclusions and discussions.

2 Methods

First of all, we give the definition of maxi-
mal repeat as follows [9, 12].

Definition 1 (Maximal Repeat)

Consider a sequence S over the DNA

alphabet. A repeat is a substring in S

which occurs at least twice. Support w

is a repeat of length l in S which occurs

at the starting positions i and j, i.e.

Si . . .i+l−1 = Sj . . .j+l−1. We have w as

a maximal repeat if Si−1 6= Sj−1 and

Si+l 6= Sj+l.

Our approach first used a bucket-sort-
like approach[4] to sort the suffixes lexico-
graphically, and then modified the Chinese
term extraction approach [28] to extract
the candidate maximal repeats while com-
puting the statistics of these repeats across
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classes. Finally, we had the maximal re-
peats as those candidate maximal repeats
which passed both the right and the left
boundary verification. We described the
details in section 2.1, section 2.2 and sec-
tion 2.3, respectively.

2.1 Sorting the Suffixes

Due to the alphabet of DNA sequences is
limited to {A, C, G, T}, we can partition
the suffixes strings into groups (files) ac-
cording to their prefix, and then sort the
strings in one group (file) individually.

First of all, all the suffixes of DNA se-
quences were partitioned into 4k groups
(files) according to the prefix of suffixes,
where k is the length of the common prefix.
Note that the value of k can be determined
manually such that the amount of suffixes
in the largest group could be processed effi-
ciently with limited memory . For example,
as shown in Fig. 1, there are the suffixes
of the sequence ”ACTTTCACTTCCG-
GCAATTAGCCGATTTTC” whose length
is 30. As shown in Fig. 2, the value of k is 1
and the number of groups (files) is 41 = 4.
Secondly, those suffixes in one group could
be sorted individually in lexicographic or-
der by internal-sorting methods[9] or by the
external-sorting methods [3, 26]. The suf-
fixes of DNA sequences and revered DNA
sequences are individually sorted for deter-
mining the right and the left boundaries
of maximal repeats, respectively. Figure 3
shows the sorted suffixes when k = 1. In
this study, for simplicity, we had the front
l characters of suffixes instead of the whole
suffixes such that the length of maximal re-
peats ranged from k to l.

Position Suffix String

1 ACTTTCACTTCCGGCAATTAGCCGATTTTC

2 CTTTCACTTCCGGCAATTAGCCGATTTTC

3 TTTCACTTCCGGCAATTAGCCGATTTTC

4 TTCACTTCCGGCAATTAGCCGATTTTC

5 TCACTTCCGGCAATTAGCCGATTTTC

6 CACTTCCGGCAATTAGCCGATTTTC

7 ACTTCCGGCAATTAGCCGATTTTC

8 CTTCCGGCAATTAGCCGATTTTC

9 TTCCGGCAATTAGCCGATTTTC

10 TCCGGCAATTAGCCGATTTTC

11 CCGGCAATTAGCCGATTTTC

12 CGGCAATTAGCCGATTTTC

13 GGCAATTAGCCGATTTTC

14 GCAATTAGCCGATTTTC

15 CAATTAGCCGATTTTC

16 AATTAGCCGATTTTC

17 ATTAGCCGATTTTC

18 TTAGCCGATTTTC

19 TAGCCGATTTTC

20 AGCCGATTTTC

21 GCCGATTTTC

22 CCGATTTTC

23 CGATTTTC

24 GATTTTC

25 ATTTTC

26 TTTTC

27 TTTC

28 TTC

29 TC

30 C

Figure 1: Suffixes examples

A

C

G

T

Position Suffix String

1 ACTTTCACTTCCGGCAATTAGCCGATTTTC

7 ACTTCCGGCAATTAGCCGATTTTC

16 AATTAGCCGATTTTC

17 ATTAGCCGATTTTC

20 AGCCGATTTTC

25 ATTTTC

2 CTTTCACTTCCGGCAATTAGCCGATTTTC

6 CACTTCCGGCAATTAGCCGATTTTC

8 CTTCCGGCAATTAGCCGATTTTC

11 CCGGCAATTAGCCGATTTTC

12 CGGCAATTAGCCGATTTTC

15 CAATTAGCCGATTTTC

22 CCGATTTTC

23 CGATTTTC

30 C

13 GGCAATTAGCCGATTTTC

14 GCAATTAGCCGATTTTC

21 GCCGATTTTC

24 GATTTTC

3 TTTCACTTCCGGCAATTAGCCGATTTTC

4 TTCACTTCCGGCAATTAGCCGATTTTC

5 TCACTTCCGGCAATTAGCCGATTTTC

9 TTCCGGCAATTAGCCGATTTTC

10 TCCGGCAATTAGCCGATTTTC

18 TTAGCCGATTTTC

19 TAGCCGATTTTC

26 TTTTC

27 TTTC

28 TTC

29 TC

Figure 2: Partitioning suffixes into A, C, G

and T groups (k = 1).
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A

C

G

T

Position Suffix String

16 AATTAGCCGATTTTC

7 ACTTCCGGCAATTAGCCGATTTTC

1 ACTTTCACTTCCGGCAATTAGCCGATTTTC

20 AGCCGATTTTC

17 ATTAGCCGATTTTC

25 ATTTTC

30 C

15 CAATTAGCCGATTTTC

6 CACTTCCGGCAATTAGCCGATTTTC

22 CCGATTTTC

11 CCGGCAATTAGCCGATTTTC

23 CGATTTTC

12 CGGCAATTAGCCGATTTTC

8 CTTCCGGCAATTAGCCGATTTTC

2 CTTTCACTTCCGGCAATTAGCCGATTTTC

24 GATTTTC

14 GCAATTAGCCGATTTTC

21 GCCGATTTTC

13 GGCAATTAGCCGATTTTC

19 TAGCCGATTTTC

29 TC

5 TCACTTCCGGCAATTAGCCGATTTTC

10 TCCGGCAATTAGCCGATTTTC

18 TTAGCCGATTTTC

28 TTC

4 TTCACTTCCGGCAATTAGCCGATTTTC

9 TTCCGGCAATTAGCCGATTTTC

27 TTTC

3 TTTCACTTCCGGCAATTAGCCGATTTTC

26 TTTTC

Figure 3: Suffixes sorted in groups (k = 1)

2.2 Extracting the Candidate

Maximal Repeats

In this study we modified the scanning pro-
cess of the Chinese term extraction ap-
proach [28] to extract the candidate max-
imal repeats. In brief, we scanned lexico-
graphically the suffixes of DNA sequences,
resp. reversed DNA sequences, and had the
longest common prefix of adjacent strings
as candidate maximal repeats with the
right, resp. the left, boundary verification.
To make the paper more self-contained, we
had an example for the extraction of can-
didate maximal repeats in Appendix A.

2.3 Verifying the Candidate

Maximal Repeats

The maximal repeats are those candidate
maximal repeats which pass both the right
and the left boundary verification. We first

Position Suffix String

16 AATTAGCCGATTTTC

7 ACTTCCGGCAATTAGCCGATTTTC

1 ACTTTCACTTCCGGCAATTAGCCGATTTTC

20 AGCCGATTTTC

17 ATTAGCCGATTTTC

25 ATTTTC

Figure 4: The candidate maximal repeats

with right boundary verification

Position Suffix String

13 TAACGGCCTTCACTTTCA

5 TAGCCGATTAACGGCCTTCACTTTCA

28 TCA

22 TCACTTTCA

12 TTAACGGCCTTCACTTTCA

4 TTAGCCGATTAACGGCCTTCACTTTCA

27 TTCA

21 TTCACTTTCA

3 TTTAGCCGATTAACGGCCTTCACTTTCA

26 TTTCA

2 TTTTAGCCGATTAACGGCCTTCACTTTCA

Figure 5: The candidate maximal repeats

with left boundary verification

stored all the repeats passed the left bound-
ary verification into hash (or database).
Then, we verified each candidate maximal
repeat which passed the right boundary
verification as one maximal repeat if its
reversed string existed in that hash. In
practical, the number of maximal repeats
might rise exponentially with the size of the
genome. therefore, we might have loaded
the partial of the repeats passed the left
boundary verification into hash and check
with the repeats passed the right boundary
verification several times.

For example, there were the partial of
sorted suffixes whose prefix begin with ”A”
as shown in Fig. 4, and the patterns
”ACTT” and ”ATT” were candidate max-
imal repeats with the right boundary ver-
ification. Note that the patterns ”AC”,
”ACT” and ”AT” didn’t pass the right
boundary verification. Because the corre-
sponding reversed patterns, ”TTCA” and
”TTA”, also passed the left boundary ver-
ification as shown in Fig. 5, the pat-
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terns ”ACTT” and ”ATT” were maximal
repeats.

3 Experimental Results

We had experimented with the DNA
sequences of the whole genomes from
six species, including ”SARS”, ”E.coli”,
”Yeast”, ”P. falciparum”, ”C. elegant” and
”A. thaliana”. The experiments were com-
puted using one server with 2*Xeon 2.4
GHz CPU, 2 GB RAM and Red Hat Linux
9.0.

3.1 The Computation Time

with Different Species

As shown in Table 1, the lengths of these
DNA sequences ranged from several thou-
sand (bp) to over 100 million (bp). The
time for computing the statistics of max-
imal repeats of ”A. thaliana”, for exam-
ple, was about 72 hours and 38 minutes
and the number of maximal repeats ex-
tracted was 124, 462, 282. Note that, in
this experiment, we also took the negative
strand into consideration by concatenating
the sequence with its reversed-complement
sequence.

3.2 The Computation Time

with Different Values of k

and l

To evaluate the computation time for the
variation of l, first, we fixed the value of k

as 1 and performed an experiment with the
genome sequences of Yeast according to the
different values of l, including 25, 50, 100,

200, 500 and 1000. As shown in Table 2,
the total computation time was about 39
hours and 31 minutes when l = 1000 and
the extraction process took the majority of
computation time; the computation time of
each process increased as long as the value
of l increased. This part of computation
could be further improved by sorting the
suffixes via the indexes of suffixes in the
files instead of sorting the suffixes.

Secondly, as shown in Table 3, we fixed
the value of l as 50 and experimented with
the different values of k, including 1, 2, 3
and 4. The total computation time kept al-
most the same as the value of k increased,
and somewhat was reduced because the
amount of the suffixes in one file decreased
that might speed up the process of sorting
suffixes. The value of k, however, was lim-
ited to under 5 because the default max-
imal number of opening files using Linux
(Red Hat Linux 9.0) was 1024 if we didn’t
re-compiler the kernel. However, this prob-
lem to extend the value of k could be solved
using parallel computing.

3.3 Intra-Chromosomal Com-

parison

To see the frequency distribution of max-
imal repeats across the 16 chromosomes
of yeast, we had each chromosome as one
class. Let class frequency (cf) be the num-
ber of classes that the pattern appears, and
let term frequency (tf) be the number of the
pattern appears, and let the length (len)
be the length of maximal repeat. Figure 6
showed the statistics of class frequency of
maximal repeats with tf ≥ 10 and len ≥
30. Among these maximal patterns, for
example, there were 56 patterns appeared
just in one chromosome and there were 7
patterns appeared in all the 16 chromo-
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Table 1: The statistics of DNA sequences for maximal repeats extraction

Species Length (bp)
TotalTime

(HH:MM:SS)
# of Maximun Repeats

SARS 29,736 0:00:37 32,358

Ecoli 4,639,675 1:51:02 5,021,132

Yeast 12,070,527 11:20:47 12,835,695

P. falciparum 22,820,308 20:16:16 22,821,291

C. elegan 100,096,025 60:01:07 103,730,344

A. thaliana 119,186,497 72:37:48 124,462,282

Table 2: The computation time for the different values of l when k = 1 (Yeast)

Processes 25 50 100 200 500 1000

Partition Suffixes (right boundary) 00:03:58 00:04:28 00:05:22 00:07:50 00:13:57 00:24:30

Partition Suffixes ( left boundary) 00:04:21 00:04:25 00:05:27 00:07:40 00:14:00 00:24:48

Sort Suffixes (right boundary) 00:11:44 00:13:59 00:18:18 00:29:04 01:10:26 02:06:16

Sort Suffixes (left boundary) 00:11:32 00:14:07 00:18:24 00:29:28 01:10:21 02:06:05

Extract Candidate Maximal Repeats (right boundary) 03:44:51 04:07:22 04:44:08 06:00:17 09:34:27 15:37:41

Extract Candidate Maximal Repeats (left boundary) 03:47:19 04:07:39 04:45:48 05:57:23 09:37:52 15:23:43

Verify the Candidate Maximal Repeats 02:04:58 02:07:06 02:09:01 02:15:43 02:34:23 03:27:36

Total 10:08:43 10:59:06 12:26:28 15:27:25 24:35:26 39:30:39

The front l characters of suffixes

Table 3: The computation time for the different values of k when l = 50 (Yeast)

Processes k=1 k=2 k=3 k=4

Partition Suffixes (right boundary) 00:04:28 00:04:37 00:04:32 00:04:39

Partition Suffixes ( left boundary) 00:04:25 00:04:33 00:04:32 00:04:42

Sort Suffixes (right boundary) 00:13:59 00:13:46 00:12:08 00:11:54

Sort Suffixes (left boundary) 00:14:07 00:13:06 00:12:21 00:11:54

Extract Candidate Maximal Repeats (right boundary) 04:07:22 04:03:36 04:05:58 04:06:09

Extract Candidate Maximal Repeats (left boundary) 04:07:39 04:05:55 04:04:13 04:03:06

Verify the Candidate Maximal Repeats 02:07:06 02:07:43 02:07:08 02:06:29

Total 10:59:06 10:53:16 10:50:52 10:48:53

The length k of common prefix
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somes. These observations might be useful
to evaluate the intra-chromosomal compar-
ison.

3.4 The Statistics of Maximal

Repeats Across Species

It might be interesting for some experts to
discovery the distinctive patterns as the
class markers if some patterns just appear
in one class but do not appear in the other
classes. Let class frequency (cf) be the
number of classes, species in this study,
that the pattern appears, and let term
frequency (tf) be the number of the pattern
appears, and let the length (len) be the
length of maximal repeat. Table 4 showed
the statistics of the maximal repeats across
six species as we had one species as one
class. There were distinctive maximal pat-
terns extracted from the DNA sequences
of these species. For example, the pattern
”TATAAAATTTTTTTTTTATTTTTT-
TATTTTTATTTAAATTTCCATT-
TAAT” with len = 50 and tf = 4 appeared
only in the ”P. falciparum”; the pattern
”TATAAAATTTTTTTTTTTCAAAGTTTC”,
with tf = 2 and cf = 2, appeared both in
the ”C. elegan” and the ”P. falciparum”.
Note that the patterns with tf = cf could
not be detected just from one species
without making the comparison across
species.

4 Conclusions and Dis-

cussions

We developed an external memory ap-
proach to extract maximal repeat from
DNA sequences with the statistics of fre-

quency distribution across classes such that
we could have genomic sequences compar-
ison across species possible in the vector
space model [21]. It is attractive to select
representative repeats (patterns) whose fre-
quency distribution across classes were bi-
ased to present sequences (species) as vec-
tors such that many machine learning al-
gorithms [15] in vector space model could
be applied to those bioinformatics problems
[14], such as sequence classification [17]. In
deed, we had this approach to extract the
representative patterns for virus classifica-
tion [27].

4.1 Time Complexity Analy-

sis

Our approach consisted of three main steps,
partitioning suffixes into groups (files),
sorting suffixes in one group (file), ex-
tracting and verifying the candidate max-
imal repeats. Suppose the total length of
DNA sequences is N . The time complex-
ity of our approach was approximated to
O(4k ∗N + 4k ∗ ( N

4k )log( N
4k )+ |MR|), where

k was the length of the common prefix of
those strings in one group and |MR| was
the number of candidate maximal repeats
extracted. The time complexity of the sort-
ing of suffixes in 4k files was approximated
to O(4k ∗ ( N

4k )log( N
4k )) assuming that the

suffixes were uniformly distributed in each
group using one processor. The partition
of suffixes into 4k groups (files) could be
achieved with time complexity O(4k ∗ N)
by scanning the DNA sequences and out-
putting those suffixes with the same prefix
into one file at a time. This part of com-
putation time could be reduced to O(N)
by opening 4k files concurrently and out-
putting the strings to their corresponding
files. The value of k, however, was limited
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Table 4: The statistics of the partial maximal repeats across six species (k=4,l=50)

Maximal Repeats len tf cf A. thaliana C. elegan E. coli P. falciparum SARS Yeast

TATAAAATTTTTTTTTGG 18 2 2 1 0 0 1 0 0

TATAAAATTTTTTTTTG 17 5 3 1 3 0 1 0 0

TATAAAATTTTTTTTTTAAA 20 2 2 0 1 0 1 0 0

TATAAAATTTTTTTTTTAA 19 3 2 0 1 0 2 0 0

TATAAAATTTTTTTTTTATTTTTTTATTTTTATTTAAATTTCCATTTAAT 50 4 1 0 0 0 4 0 0

TATAAAATTTTTTTTTTA 18 7 2 0 1 0 6 0 0

TATAAAATTTTTTTTTTCTT 20 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTCT 19 3 2 0 1 0 2 0 0

TATAAAATTTTTTTTTTC 18 5 2 0 3 0 2 0 0

TATAAAATTTTTTTTTTTCAAAGTTTC 27 2 2 0 1 0 1 0 0

TATAAAATTTTTTTTTTTC 19 3 2 0 1 0 2 0 0

TATAAAATTTTTTTTTTTTC 20 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTTTTCA 22 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTTTTTATGT 25 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTTTTTTA 23 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTTTTTTC 23 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTTTTTTTTCA 26 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTTTTTTTTC 25 3 1 0 0 0 3 0 0

TATAAAATTTTTTTTTTTTTTTTTTTC 27 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTTTTTTTTTTTC 28 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 42 2 1 0 0 0 2 0 0

TATAAAATTTTTTTTTTTTTTTTTTTTTTTTTTT 34 3 1 0 0 0 3 0 0

TATAAAATTTTTTTTTTTTTTTTTTTTTTTT 31 4 1 0 0 0 4 0 0

TATAAAATTTTTTTTTTTTTTTTTTTTTTT 30 6 1 0 0 0 6 0 0

TATAAAATTTTTTTTTTTTTTTTTTTTTT 29 8 1 0 0 0 8 0 0

TATAAAATTTTTTTTTTTTTTTTTTTTT 28 9 2 1 0 0 8 0 0

TATAAAATTTTTTTTTTTTTTTTTTTT 27 11 2 1 0 0 10 0 0

TATAAAATTTTTTTTTTTTTTTTTTT 26 14 2 1 0 0 13 0 0

TATAAAATTTTTTTTTTTTTTTTTT 25 17 2 1 0 0 16 0 0

TATAAAATTTTTTTTTTTTTTTTT 24 20 2 1 0 0 19 0 0

TATAAAATTTTTTTTTTTTTTTT 23 23 2 1 0 0 22 0 0

TATAAAATTTTTTTTTTTTTTT 22 27 2 1 0 0 26 0 0

TATAAAATTTTTTTTTTTTTT 21 30 2 1 0 0 29 0 0

TATAAAATTTTTTTTTTTTT 20 33 2 1 0 0 32 0 0

TATAAAATTTTTTTTTTTT 19 36 2 1 0 0 35 0 0

TATAAAATTTTTTTTTTT 18 41 3 1 2 0 38 0 0

TATAAAATTTTTTTTTT 17 54 3 1 6 0 47 0 0

TATAAAATTTTTTTTT 16 79 3 2 13 0 64 0 0

TATAAAATTTTTTTT 15 116 3 8 18 0 90 0 0

TATAAAATTTTTTT 14 174 4 14 47 0 111 0 2

TATAAAATTTTTT 13 318 4 32 118 0 161 0 7

TATAAAATTTTT 12 701 4 93 299 0 294 0 15

TATAAAATTTT 11 1987 5 575 743 2 634 0 33

TATAAAATTT 10 4983 5 1588 1987 5 1319 0 84

TATAAAATT 9 12381 5 4103 4312 32 3716 0 218

TATAAAAT 8 37180 5 12568 10011 83 13735 0 783

TATAAAA 7 114137 6 39226 31168 369 40564 3 2807

Frequency Distribution
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Figure 6: The class frequency of maximal repeats of yeast with tf ≥ 10 and len ≥ 30 (k=3,l=50)

to under 5 in this study because the de-
fault maximal number of opening files us-
ing Linux was 45 = 1024 if we didn’t re-
compiler the kernel.

4.2 The Computation Time

via PC-clusters

The computation time of our approach
could be reduced via parallel computing
with PC-clusters by partitioning the com-
putation into different PCs according to the
prefix of the suffixes of DNA sequences.
As shown in Fig 5 and Fig 6, we experi-
mented with the DNA sequences of Yeast
and used 8 PCs (8*CPU=P4 2.4G, RAM =
8*512MB and Red Hat Linux 9.0) to eval-
uate the speedup of the computation using
parallel computing. The value of speedup
we achieved was 4.94 when k = 4 and

l = 50 using the Yeast’s genome. Note
that the speedup value when k = 1 was
empty because the number of groups (files)
was only 4k = 4. To focus on the approach
of using external memory in this paper, we
did not discuss the details about how to do
parallel processing here. However, we will
discuss that works on another paper in the
future.
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Table 5: The total computation time(in seconds) with different number of PCs(Yeast,l = 50)

1 2 4 8

k=1 41105 20960 13679

k=2 40968 21938 14140 8705

k=3 39740 20552 13504 8577

k=4 41716 22203 14093 8447

The number of PCs

Table 6: The speedup with different number of PCs(Yeast,l = 50)
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k=3 1.00 1.93 2.94 4.63

k=4 1.00 1.88 2.96 4.94
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L. Gonçalves, and P. Marinho. Design

of specie-specific primers for virus di-

agnosis in plants with pcr. In BIBE,

pages 149–158, 2004.

[23] Deepak Sharma, Biju Issac, G. P. S.

Raghava, and R. Ramaswamy. Spec-

tral Repeat Finder (SRF): identifi-

cation of repetitive sequences using

Fourier transformation. Bioinformat-

ics, 20(9):1405–1412, 2004.

[24] Abraham Silberschatz, Peter Baer

Galvin, and Greg Gagne. Applied Op-

erating System Concepts. John Wiley

& Sons, 1 edition, 2000.

[25] Subbaya Subramanian, Vamsi M.

Madgula, Ranjan George, Rakesh K.

Mishra, Madhusudhan W. Pandit,

Chanderashekar S. Kumar, and Lalji

Singh. Triplet repeats in human

genome:distribution and their associa-

tion with genes and other genomic re-

gions. Bioinformatics, 19(5):549–552,

2003.

[26] Li-Tong Tsay. A study on sorting

string suffixes of large-scaled text col-

lection in external memory. Mas-

ter’s thesis, Department of Computer

Science and Information Engineer-

ing, National Chung Cheng University,

Chiayi, Taiwan 62107, R.O.C., 2001.

[27] Jing-Doo Wang. A case study of

predicting the class of the unknown

viruses of ssRNA positive-strand in

NCBI. In The 21st Workshop on Com-

binatorial Mathematics and Computa-

tional Theory, pages 249–256, 2004.

[28] Jing-Doo Wang and Jyh-Jong Tsay.

Minging periodic events from restor-

pective Chinese news. International

Journal of Computer Processing of

Oriental Languages, A Special Is-

sue on ”Web and WAP Oriental

Languages Multimedia Computing”.,

15(4):361–377, 2002.

Appendix A

Some steps in candidate significant term
extraction are shown below. For example,
as shown in Fig. 7(A), The ”A” whose
length is 1 is a candidate significant term
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and has the value of ”cnt” as ”2” when
scanning to the suffix with the value of po-
sition as 7. When the next suffix, with
the value of position as 1, is scanned, as
shown in Fig. 7(B), the longest common
prefix of two adjacent suffixes is obtained
as ”ACTT”, whose length is 4 and exceeds
the length 1 in the field, ”len”, at the top
record of the stack. Then, the new record
with ”ACTT” is pushed into the stack.
Note that the terms, ”AC” and ”ACT”,
are not pushed according to the definition
of maximal repeat. When the next suf-
fix is scanned, as shown in Fig. 7(C), the
longest common prefix of two adjacent suf-
fixes is shown as, ”A”, whose length is 1
and is shorter than that of 4, at the top
record of the stack. Therefore, the record
with the term, ”ACTT”, is popped and the
statistics, ”cnt=2”, of that term are out-
put. Because the term, ”A”, is a substring
of, ”ACTT”. That is, the statistics con-
cerning ”ACTT” must be included in those
concerning the term, ”A”. Using the sim-
ilar processes as above, we could compute
the other kinds of statistics, e.g. frequency
distribution among classes, if each suffix
tagged with specific label, e.g. class iden-
tity.

Position Suffix String

16 AATTAGCCGATTTTC

7 ACTTCCGGCAATTAGCCGATTTTC

1 ACTTTCACTTCCGGCAATTAGCCGATTTTC

20 AGCCGATTTTC

17 ATTAGCCGATTTTC

25 ATTTTC

len candidate maximal repeat

cnt=00

TopRecord 1 A cnt=2

Position Suffix String

16 AATTAGCCGATTTTC

7 ACTTCCGGCAATTAGCCGATTTTC

1 ACTTTCACTTCCGGCAATTAGCCGATTTTC

20 AGCCGATTTTC

17 ATTAGCCGATTTTC

25 ATTTTC

len candidate maximal repeat

cnt=00

TopRecord

1 A

4

cnt=2

cnt=2ACTT

Position Suffix String

16 AATTAGCCGATTTTC

7 ACTTCCGGCAATTAGCCGATTTTC

1 ACTTTCACTTCCGGCAATTAGCCGATTTTC

20 AGCCGATTTTC

17 ATTAGCCGATTTTC

25 ATTTTC

len candidate maximal repeat

cnt=00

TopRecord 1 A cnt=4

(A)

(B)

(C)

Figure 7: Extract candidate maximal repeats
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