
Reduction of Domain Blocks Based on a Clustering Method for Fractal
Compression

†Hsiao-Wen Tin, †Shao-Wei Leu*, ‡Shun-Hsyung Chang
† Dept. of Electrical Engineering, National Taiwan Ocean University, Keelung City,

Taiwan
Email: {D94530006, B0119*}@mail.ntou.edu.tw

‡ Dept. of Microelectronic Engineering, National Kaohsiung Marine University,
Kaohsiung City, Taiwan

Email: shchang@mail.nkmu.edu.tw

Abstract- The process of fractal compression
generates a number of intermediate artifacts
during the encoding phase. These artifacts, known
as range blocks and domain blocks, largely
determine the coding efficiency. The coding
efficiency can be characterized by the processing
time required and the quality of the reconstructed
image. A reduction in the number of domain blocks
is very beneficial to the coding efficiency. The
number of domain blocks is a crucial factor when
reconstructing an image of high quality. However,
deletion of too many domain blocks or simply
some blocks with important characteristics can
have very negative effect on the quality of
reconstructed images. To obtain a good
reconstructed image, it must be ensured that the
deleted domain block do not carry any important
characteristics and should be identified as
insignificant before deletion. We apply the
clustering method here to group related blocks
together to ensure that the deleted blocks are
redundant. That is, the retained blocks are
significantly different to each other. Thus, the
range blocks are compared only to significant
domain blocks and not to redundant ones. The
reduction of the intermediate data greatly benefits
coding efficiency as well. The experimental results
show that the peak signal-to-noise ratio (PSNR) of
the reconstructed image is close to or around
30dB, that is, the quality of the reconstructed
image is visually as good as the original.

Keywords: Clustering method, fractal
compression, domain pool reduction.

1. Introduction
The process of fractal compression has always

been computationally time-consuming as well as

resource-demanding. The encoding process of
fractal compression first compares each range
block with all of the blocks in the domain pool and
then determines the best match. In the worst case,
it requires mn  comparisons of range blocks to
domain blocks, where n and m are the amounts of
range blocks and domain blocks, respectively. The
more pieces the image is divided into, meaning
larger n and m, the better the quality of the
reconstructed image, however, at the expense of
longer processing time for encoding. Therefore, a
more efficient encoding method is highly desirable
in the pursuit of high quality image reconstruction
with limited processing time and resource budgets.
During the encoding phase of fractal compression,
a number of methods to reduce complexity of the
encoding process have been proposed, such as
nearest neighbor search [2]-[4], clustering
methods [5], [6], and domain pool reduction [7].

As we pointed out earlier that, in the encoding
phase, a significant amount of processing time is
devoted to matching the range blocks with the
domain blocks. Therefore, reducing the amount of
domain blocks will no doubt cut the processing
time and resource requirement significantly.
However, if too many domain blocks are deleted,
quality of the reconstructed image will suffer.
Therefore, how to delete as many domain blocks
as possible without hurting the quality of
reconstructed images is a critical issue which
greatly concerns the overall efficiency of fractal
encoding. For example, the original work done by
Jacquin, splitting an image into a shade block and
a non-shade block, yielded only 11% reduction
rate[8], which apparently does not translate into a
significant contribution to the saving of processing
time and resources. To develop a more efficient
and more balanced approach to solving this
problem, we have adopted a clustering method to
group together those related domain blocks and

devised a rule to effectively eliminate a large
amount of unneeded domain blocks. Our approach
can delete up to 97% of domain blocks while
retaining the peak signal-to-noise ratio (PSNR) of
the reconstructed image at more than 30 dB.

The rest of this article is organized as follows.
Sec. 2 briefly reviews the basics of fractal coding
and a partition clustering method; Sec. 3 describes
the proposed method in detail; Sec. 4 presents the
experimental results; Sec. 5 gives the conclusion.

2. Previous Work
2.1. Conventional Fractal Coding Scheme

Fractal compression reconstructs the image
according to its characteristics: self-similarity and
self-affinity [8]-[10]. The major idea is to represent
a compressed image with the transform
parameters.

Most of the self-similarities in an image are
localized. With fractal compression, the image is
split into domain blocks and range blocks. The
collection of domain blocks is called the domain
pool. Each range block may find its associated
domain block from the domain pool by using the
transform function. Fractal encoding records the
corresponding transform function and the position
of the associated domain block. Fractal decoding
reconstructs the image iteratively with the
corresponding transform function and the position
of the associated domain block.

With fractal encoding, the image is divided into
range blocks R and domain blocks D ,

where DR  . The number of domain blocks is

typically 4 times as many as the number of range
blocks. The size of the domain pool will impact
the matching efficiency of each range block to its
domain block and the quality of the reconstructed

image. Range block
iR matches the associated

domain block
iD within domain pool D . There

exists a corresponding transform function

iT which minimizes)),(('
iii RDTdtr , where dtr is

the metric distortion measure function and '
iD is

the sub-sampling of iD . A common sub-sampling

method is illustrated in formula (1), where '

iD is

the average of four adjacent points. This formula is
sufficient when the domain block is exactly 4
times the size of the range block. In other cases,
the domain block must be scaled with equation (2),

where
DS is the size of the domain block and

RS

is the size of the range block.

     
    41,11,

,1,,
'





yxDyxD

yxDyxDyxD

ii

iii (1)

R

D

S

S
S  (2)

Using an affine transform formula, we can
transform D to a similar range block as shown
in formula (3). This is the basic idea of
self-similarity searching.

})({ˆ ODSIR   (3)

2
,,)ˆ(

1
jiji RR

nm
MSE 


  (4)

As can be seen in formula (3), the domain block
D is scaled by S , contracted by  , and given

a luminance transform O . After the final

isometric process I , the affine range block R̂ is
obtained. Formula (4) is used to calculate the mean

square error (MSE) of R̂ and R to determine
the best matches. A fractal code includes the
transform function coefficient and the description
of the transform of the domain block to the best
matching range block. Fractal decoding

reconstructs the image by transforming
iT and

the position of
iD with an iterated contractive

transformation.

2.2. K-means
K-means is a partition clustering method

proposed by MacQueen [11]. The main idea is to
cluster all the data L into K partitions, where

LK  . Using the Euclidean distance, the
partitioning starts by finding the minimum
summed distances which are from every data point
to the center of that partition. The K-means
formula is shown in formula (5).


 


K

i

L

j
ij XCE

1 1

2|| (5)

where E is the Euclidean distance, k is the
number of partition centers, and L is the number
of data.

The objective of the K-means’ function is to
target the center of the partition. Each iteration
minimizes the total intra-cluster variance or the
squared error function until the best objective
function is obtained. The K-means algorithm is as
follows:
Step 1: Calculate initial partitions and the center of

each partition.
Step 2: Cluster data close to the center as one

partition.
Step 3: Recalculate the center and, if new center is

better, replace the old one.
Step 4: Repeat step 2 and 3 until the partitioning is

stable or does not change.

3. Domain Pool Reduction
3.1. The algorithm

In fractal encoding, the range blocks are
compared to domain blocks in the domain pool for
matching information. A large domain pool means
more processing and longer processing time are
needed. Clustering of domain blocks can help
avoid deletion of domain blocks with important
characteristics, hence ensure good quality of
reconstructed images while keeping the amount of
encoded data at low level.

The clustering method splits data into
reasonable partitions which have the following two
characteristics: (a) the data in the same partition
have significant correlation, and (b) the data in
different partitions have significant differences.
With these characteristics, this paper will apply the
clustering method to partition the domain blocks.
The objective of clustering is to avoid mis-deletion.
Thus, the deletion applies only to similar domain
blocks. At the same time, it eliminates
comparisons of range blocks with duplicate
domain blocks. The number of domain block
partitions would affect the coding efficiency and
the quality of the reconstructed image. The more
partitions there are, the better the image quality.
However, fewer partitions result in faster
encoding.

This paper applies the K-means method to
partition the domain blocks. The cluster
coefficients determine the partitions of domain
blocks by their correlation. The partitions replace
the domain blocks after clustering which decreases
the number of domain blocks. The idea of
clustering is shown in Figure 1. Assume there are
8 domain blocks and 2 range blocks. The domain
blocks are clustered into 3 partitions. The blocks
are then replaced by partitions, that is, the domain
blocks are reduced to 3 blocks. This reduces the
comparison of range blocks with domain blocks
from 2-to-8 to 2-to-3.

The domain blocks are generated sequentially
along with the pixels in the image. The clustering
coefficients are based on the next 2 characteristics:
(a) the distance from each domain block to the first
block, and (b) the gray level. The formula to
calculate the distance is shown in formula (6).

22)()()),(),,((yyxxyxyx ABABBBAAdist 

(6)
where B is the domain block to be processed,

),(yx BB is its location, A is the first domain

block, and),(yx AA is its location.

Improper reduction of domain blocks decreases
the quality of the reconstructed image. Both the
clustering coefficients and deletion guidelines are
very important. The parameters of our algorithm
are described as follows:

 Let },...,{ 21 nddd be the distance set of n

domain blocks, where 1),,(1  iDDdistd ii
.

1d is the distance between the first domain

block to itself and
2d is the distance between

the second domain block to the first one.

 Let  nggg ,..., 21
be the gray level set of

n domain blocks and  255,...,2,1,0ig .
1g

is the gray value of the first block and
2g is

the gray value of the second block.

 Using formula (5), we cluster n domain

blocks into 'D partitions, where

Range blocks Domain blocks

Affine
transform

Figure 1. Reduction of domain blocks

Clustering

Domain pool
reduction

nD1  ' .

 Let 1c and 2c be the centers of two

respective partitions.

 Let },...,{ 21 nhhh be the correlation set

of n domain blocks, where
ih is the

correlation to the coefficients which are
id

and
1g of the

thi domain block.

The algorithm for our reduction is described
below:

Step 1: Let P be the original image, D the
domain block, and R the range block.
We get the sub-sample of the domain block
with formula (1).

Step 2: Cluster the domain blocks into 2 partitions.
Randomly pick 2 domain blocks as the

centers, 1c and 2c .

Step 3: Calculate the distance
id from domain

block
iD to the first domain block

0D

using formula (6), and record the

corresponding gray value ig . Take id

and ig as the clustering coefficients with

formula (5). If  meets the reasonable

requisition, it replaces 1c and 2c and

gives the partition 'D .
Step 4: Domain blocks in the same partition are

treated as one domain block. Replace the

domain block D with the 'D in the
partitions.

Step 5: Process the fractal coding with 'D and R .
After decoding, the algorithm comes out

with the reconstructed image 'P .
Step 6: In the worst coding situation, the

comparison of the range block with

domain blocks will be 'DR , and

DD ' .

Step 7: Evaluate the PSNR of 'P using

),('PPPSNR .

Step 8: Repeat Step 3 to 7 until)'()(DRDR 

and dBPPPSNR 30),('  .

3.2. System Procedures
The system first receives the original image as

an input and with fractal compression, splits the
image into a range block R and a domain block
D . With the clustering coefficients and the
K-means method, the system clusters the domain
blocks 'D into partitions. Blocks in the same

partition are treated as one of the same. Thus, the
system picks one out of the partition to represent
all of the domain blocks and deletes the rest. The
number of domain blocks thus reduces to the
number of partitions. During encoding, the system
compares the range blocks R with the

post-reduction domain blocks 'D . Using formula
(3) and (4), we calculate MSE. If the MSE value is
less than the pre-defined threshold V , the range

block R matches its domain block 'D . Then,
the system records the transform coefficients and
completes the encoding. While decoding at the
receiver end, it reconstructs the image by iterating
through the transform function. The flow chart is
illustrated in Figure 2.

4. Experiments and Results
The sample gray-level medical image 99110

was obtained from the Centers for Disease
Control and Prevention. The original file format
is tiff. We changed it to a 150 x 148-pixel bitmap
file as shown in Figure 3.

Figure 2. System Procedures

Domain pool
reduction by
K-means

Input image

Partition
image into
domain
blocks

The best matching
domain-range blocks

VMSE 

Partition image
into range blocks

Fractal codes

Image Output

Yes

No

99110.bmp from: CDC / Janice Carr

Figure 3. A medical image sample

With the quadtree method proposed by Fisher
[12], image 99110 splits into non-duplicate range

blocks of size 8 8 . The total number of range

blocks is 18 18 324  . The total number of

duplicable domain blocks of size 16 16 is

135 133 17955  .

Our program is based on the theory described in
Lu [13]. As the domain blocks are non-duplicate,
image 99110 can be split into 5,550 domain
blocks. After our proposed cluster reduction
method, the amount of domain blocks shrinks
down to 128 blocks. The PSNR of the
reconstructed image is 31.2017 dB. The number
of domain blocks is less than that of Lu’s method.
The reduction rate is as high as 97%. A
comparison of the different methods for image
99110 is shown in Table 1.

Table 1. Number of domain blocks compared

Method Fisher Lu Proposed

Method

blocks 17955 5550 128

Our experiment calculates the number of
comparisons between range blocks and domain
blocks with the clustering reduction method. Our
objective is to reduce the coding data. However,
any data reduction would influence the quality of
the reconstructed image. We will use the quality
of the reconstructed image in our evaluation.

Although the reduction in comparisons saves
encoding time, the clustering increases processing
time. Our system counts the actual comparisons
between range blocks and domain blocks. The
count is also one of the valuation objectives.

The quality of reconstructed images may be
evaluated by using either subjective or objective
fidelity criteria. Naturally, the human eyes stand
out as the most convenient tool for evaluation if
subjective fidelity criterion is chosen. Meanwhile,

the PSNR is a good choice for evaluation based
on objective fidelity. A higher PSNR value
means the reconstructed image closely matches
the original one. In general, if the PSNR is more
than 30 dB, the difference between the original
and the reconstructed images is too little to tell by
the human eyes. The PSNR function is derived in
formula (7).














1

0

1

0

2)),(),((
1 N

x

M

y

yxAyxB
MN

MSE

MSE

I
PSNR

2
max

10log10 (7)

where),(yxA is the gray function of the original

image,),(yxB is the function of the reconstructed

image, N and M are the length and the width,

and
maxI is the maximum gray value of the pixel,

preset at 255.
In our experiment, the domain blocks are

clustered into 2, 16, 32, 64 and 128 partitions. As
an example, a classification diagram is shown in
Figure 4. The results are listed in Table 2.

16 partitions partial data

128 partition partial data

Figure 4. Classification diagram

Table 2. Experimental results

No. of partitions/
reconstructed image

No. of
Comparisons

PSNR

2 partitions 16650 25.8856

16 partitions 138737 27.6000

32 partitions 593734 27.9704

64 partitions 1186949 28.0127

128 partitions 2340612 31.2017

More clustered partitions means more domain
blocks and thus more coding data. From the results
in Table 2, the number of domain blocks is the
major factor in influencing the PSNR. When the
number of partitions increases, the number of gray
levels in domain blocks increases. Additionally,
the comparison of range blocks and domain blocks
increases as well. This results in a larger PSNR
after reconstruction. Take image 99110 for
example, the PSNR reaches 31.2017dB while the
number of partitions is 128. The reconstructed
image is visually identical to the original one.

The partitions of domain blocks are a direct
ratio to the comparisons. When the partitions

increase, the number of comparisons goes up and
the processing time takes longer. Figure 5. Number
of partitioned domain blocks vs. number of
comparisons Figure 6 shows the number of
partitioned domain blocks and the PSNR of the
reconstructed image. A direct ratio is observed,
that is, the increase of partitions increases the
PSNR. This means that the more clustered
partitions there are, the better the quality of the
reconstructed image.

0

500000

1000000

1500000

2000000

2500000

0 20 40 60 80 100 120 140

Group #

C
o
m
p
ar
e
#

Figure 5. Number of partitioned domain blocks
vs. number of comparisons

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

Group #

P
S
N
R

Figure 6. Number of partitioned domain blocks
vs. PSNR

5. Conclusion
Although the reduction of domain blocks may

decrease the data processing time during coding,
mis-deletion may result in a loss of quality in the
reconstructed image. To avoid mis-deleting
domain blocks, we applied the clustering method
to delete duplicate or similar domain blocks. After
deletion, the remaining blocks are significantly
different to each other. This also reduces the
comparison of range blocks and domain blocks
during encoding.

While encoding, we assume that there are n

range blocks, and m domain blocks. In the worst

case scenario, the number of comparisons between
range blocks and domain blocks are mn . This

paper improves the processing of this coding data.
It clusters the domain blocks into j partitions,

where mj  . The domain blocks are then

reduced down from m to j . This time, in the worst

case scenario, the number of comparisons is jn ,

that is, a saving of  jmn  comparisons.

The clustering method partitions a great amount
of data according to existing correlations. Data in
the same partition may be treated identically.
Representing data by partitioning simplifies the
complexity of the original data. We applied the
K-means method to cluster domain blocks, delete
blocks and simplify the domain pool. The distance
and gray level are our coefficients. The end result
is very acceptable. In the future, we may apply
other clustering methods, change the coefficients,
or even apply the weighted clustering method to
achieve the reduction of domain blocks to achieve
a high quality reconstructed image.

References
[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data

Clustering,” ACM Computing Surveys, vol. 33, no. 3,
pp. 264-323, 1999.

[2] D. Saupe, “Accelerating fractal image compression
by multi-dimensional nearest neighbor search,” in
Proc. IEEE Data Compression Conference (DCC
95), pp. 222-231, 1999.

[3] D. Saupe, “Fractal image compression via nearest
neighbour search,” in Proc. NATO ASI Conf. on
Fractal Image Encoding and Analysis, July 1995.

[4] C. A. Lang and A. K. Singh, “Accelerating
high-dimensional nearest neighbor queries,” in Proc.
IEEE International Conference on Scientific and
Statistical Database Management（SSDBM'02), pp.

109-118, July 2002.
[5] R. Hamzaoui, “Codebook clustering by self-

organizing maps for fractal image compression,” in
Proc. NATO ASI Conf. on Fractal Image Encoding
and Analysis, July 1995.

[6] R. Hamzaoui and D. Saupe, “Combining fractal
image compression and vector quantization,” IEEE
Trans. Image Processing, vol. 9, pp. 197-208, 2000.

[7] D. Saupe, “Lena domain pools for fractal image
compression,” in Proc. SPIE Electronic Imaging
and Still Image Compression II, vol. 2669, 1996.

[8] A. E. Jacquin, Image coding based on a fractal
theory of iterated contractive Markov operators,
Part II : Construction of fractal codes for digital
images, Technical Report Math. 91389-17, Georgia
Institute of Technology, 1989.

[9] A. E. Jacquin, “Image coding based on a fractal
theory of iterated contractive image
transformations,” IEEE Trans. Image Processing,
vol. 1, pp. 18-30, 1992.

[10] M. F. Barnsley, “Fractal Image Compression,”
Notices of the AMS, vol. 43, pp. 657-662, 1996.

[11] J. B. MacQueen, “Some methods for classification
and analysis of multivariate observations,” in Proc.
Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, pp. 281-297, 1967.

[12] Yuval Fisher, Fractal image compression: theory

and application. Springer-Verlag, New York, 1994
[13] Ning Lu, Fractal Image. Academic Press, San

Diego, 1997

http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/83.128028&rfr_id=mags/cg/1996/04/g4025.xml
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/83.128028&rfr_id=mags/cg/1996/04/g4025.xml
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/83.128028&rfr_id=mags/cg/1996/04/g4025.xml
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/83.128028&rfr_id=mags/cg/1996/04/g4025.xml

