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ABSTRACT 

A simple automatic path learning method for an 
intelligent autonomous vision-based vehicle system by 
person following and along-path object image matching 
is proposed. The vehicle can follow a person through a 
path in an indoor environment and navigates back to the 
start point by itself by the data learned during the fol-
lowing process. A technique of matching flat-surfaced 
object images using SIFT features is adopted for the 
vehicle to localize itself according to its learned path 
during the navigation process. In addition, a technique 
for dynamically refining the traversed path points which 
are learned during person following is proposed. Finally, 
a technique of odometer calibration, which uses a cali-
bration model to reduce incremental mechanical errors 
the vehicle suffers, is proposed to increase path travers-
ing accuracy. Good experimental results show the feasi-
bility of the proposed techniques. 

1. INTRODUCTION 
In recent years, vision-based robots with ultrasonic 

sensors have played helpful roles in human life. How-
ever, the conventional way of path learning is inconven-
ient because the learning process is mostly manual and 
time-consumptive. It is desired to design an autonomous 
vehicle that can follow a person automatically to eve-
rywhere, and learn the path that we hope it to navigate 
as well as the along-path objects that we want it to 
monitor, just like a mother teaching her child to learn a 
route in daily life. 

When the vehicle is navigating, it may seem not 
smart if it walks totally through the same the trajectory 
as it learned, because this trajectory could be rough and 
curved, and there is no need to step precisely on every 
spot of it. We hope the vehicle could reconstruct the 
trajectory points into a smooth path, but not too smooth 
to miss some important points we want it to patrol. On 
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the other hand, it is inappropriate for the vehicle to 
navigate through a path by using only the learned 
odometer information because incremental mechanical 
errors might result in imprecise odometer data and so 
cause inaccurate path following or even wall collision, 
if the data are followed for later vehicle guidance. 
Hence, odometer calibration must be carried out to 
eliminate the errors. 

To achieve the goal of person following in indoor 
environments, some methods have been proposed. 
Wang and Tsai [1] proposed a method which uses the 
color values of the clothes which a person wears to fol-
low the person. Ku and Tsai [2] proposed a sequential 
pattern recognition method to decide the location of a 
person with respect to a vehicle and to detect a rectan-
gular shape attached on the person’s back to achieve 
smooth person following. A method of following a per-
son who turns fast at a corner in a narrow path was pro-
posed by Chen and Tsai [3]. Kwolek [4] proposed a 
method that localizes a mobile robot by laser readings. 

For object monitoring, the vehicle has to learn the 
features of each concerned object and conduct feature 
matching to determine whether the object is the same as 
the previously learned one. Lowe [5] used a scale-
invariant detector to find the extrema in the difference-
of-Gaussian scale-space. He then created a scale-
invariant feature transform (SIFT) descriptor to match 
key points using a Euclidean distance metric in an effi-
cient best-bin first algorithm which can identify the 
nearest neighbors of points in high dimensional spaces. 
For the topic of robot navigation, Chen and Tsai [6] 
proposed a method with a simplified SIFT for monitor-
ing objects and used the position and feature informa-
tion of objects to localize the vehicle for vehicle guid-
ance. 

The goal of this study is to design an intelligent 
vehicle system with a simple learning scheme for indoor 
environment patrolling by the use of a vehicle equipped 
with a video camera and ultrasonic sensors. It is desired 
to design the system to be capable of performing three 
major tasks, described as follows. 
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(1) The vehicle will follow a person who walks 
through a path, and then navigate by itself back to 
the start point by the data learned during person 
following. 

(2) When the vehicle follows the person, if he/she 
stands in front of a flat-surfaced object (like a pic-
ture on the wall) and faces to it for a while, the ve-
hicle will go to the position where the person 
stands and pan the camera to the same direction as 
the person. 

(3) The vehicle will navigate automatically with path 
correction to monitor the along-path objects 
viewed by the person while going back and during 
future navigation sessions. 
In the following sections, we describe various 

techniques we propose to carry out these tasks. 

2. SYSTEM CONFIGURATION 
In the proposed system, we use Pioneer 3, a vehi-

cle made by ActiveMedia Robotics Technologies Inc., 
as a test bed. A camera is equipped on the vehicle, 
which is AXIS 213 made by the AXIS company. It is 
IP-based with panning, tilting, and zooming (PTZ) ca-
pabilities and has a build-in web server through which 
we can adjust wirelessly some camera parameters with a 
graphical user interface, such as image resolution, im-
age format, and so on. 

  
Figure 1. The vehicle Pioneer3 used in this study. 

 

 
Figure 2. The AXIS 213 PTZ camera equipped on the 

vehicle. 

3. LEARNING PROCEDURES 
3.1. Learning 2D Objects Automatically 

It is desired to design the vehicle system in such a 
way that when the vehicle follows a person, if he/she 
stands in front of a flat-surfaced object and faces to it 
for a while, the vehicle will go to the position where the 
person stands and pan the camera to the same direction 
as the person. To achieve this goal, at each node in the 
navigation process, an image I is taken from which the 
interesting region formed by a flat surface of a 2D ob-
ject at the node and a horizontal line L parallel to the 
floor are found. Furthermore, the simplified SIFT algo-
rithm proposed in [6] is applied to obtain a feature set of 
the interesting region and a location estimation algo-

rithm also proposed in [6] is performed to find the rela-
tive position and the relative angle of the vehicle with 
respect to the start point of the horizontal line L in the 
3D global coordinate system. Finally, we save the in-
formation into the data of the node. The detail process is 
described in the following algorithm. 

Algorithm 1: Learning of a monitored object at a path 
node automatically. 

Input: Consecutive images taken in navigation. 
Output: Monitored object information data. 
Steps: 
Step 1. Follow the user and take an image of the fron-

tal scene. 
Step 2. Detect the user’s facing direction by the rela-

tive positions of the face-skin and hair colors. 
Step 3. Use the result of the last step to decide if the 

user stops and turns to the lateral side for a 
while; if so, continue; else, go back to Step 1. 

Step 4. Go to the position of the user and pan the cam-
era to the detected user’s facing direction. 

Step 5. Take an image I of the frontal scene which 
presumably includes an object to be monitored. 

Step 6. Find the interesting region of the 2D object and 
a horizontal line L on the object surface, which 
is parallel to the floor in the image I. 

Step 7. Calculate the feature set of the 2D object and 
the posture of the vehicle with respect to the 
horizontal line L (for details, see Section 4), 
and save the computed data. 

3.2. Finding Regions of 2D Objects 
To find the interesting region mentioned previ-

ously, we deal with each taken image by using image 
thresholding and region growing techniques. The details 
are described in the following algorithm. 

Algorithm 2: Finding interesting regions in images. 
Input: An image I with a monitored object, and the gray 

version Ig of I. 
Output: Four corner points PTopLeft(il, jt), PTopRight(ir, jt), 

PBottomLeft(il, jb), and PBottonRight(ir, jb) of an inter-
esting region, and a horizontal line L in I. 

Steps: 
Step 1. Calculate the threshold value Tthreshoding of the 

gray value which can differentiate background 
and foreground of I. 

Step 2. Reset the gray value gpi of every pixel pi in the 
image Ig in the following way: 
If gpi > Tthresholding, set gpi as a foreground point, 
else, a background point. 

Step 3. Conduct region growing from the center of Ig 
and get the top and bottom vertical coordinate 
values GT and GB, as well as the leftmost and 
rightmost horizontal coordinate values GL and 
GR of the resulting region. 

Step 4. Set the coordinate values il, ir, jt and jb for cor-
ner points PTopLeft(il, jt), PTopRight(ir, jt), PBottom-

Left(il, jb), and PBottonRight(ir, jb) of the interesting 
region as  
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l Li G= ; r Ri G= ; t Tj G= ; b Bj G= . 

3.3. Finding the Horizontal Line Automatically 
To find the horizontal line which we use to com-

pute the posture of the vehicle, we have to find the set 
of edge points of all possible lines by edge detection in 
the image first. For this, we use the Sobel operator with 
a threshold value Tsobel. We apply the Sobel operator on 
a pixel pi, and let rpi be the resulting value. If rpi > Tsobel, 
then we mark the pixel pi as an edge point. After check-
ing every pixel pi in the interesting region, we can get a 
set of edge points, EP. 

We then find the desired horizontal line by using 
the Hough transform. It is a method of line detection by 
the use of a voting technique and the relationship be-
tween the parameter space and the normal distance-
normal angle space. We use this method to find the hori-
zontal line which is the longest one in the top quarter of 
the interesting region. At first, we divide the range of 
angles, [0, π], in to n part, Θ0, Θ1, …, Θn, and calculate 
the length rregion of a diagonal of the interesting region. 
We prepare next an accumulation array A, whose size is 
n×rregion, and set the initial value of every cell to zero. 
Also, we substitute a point (x, y) in the edge point set 
EP and Θi into the equation below to get a value r and 
put a vote into the cell (r, Θi): 

cos sini ir x yθ θ= + . 

We repeat this step of voting in the cells for every edge 
point and every Θi. After voting, we find the cell (γ, θ) 
with the maximum number of votes to obtain a line 
which has the intercept γ and the angle θ in the normal 
distance-normal angle space. This line is what we want. 

There is a restriction in our method, that is, the 
heights of monitored objects must be of fixed values 
known in advance. By the method described above, we 
can find the interesting region of a concerned 2D object 
in the image I and an associated horizontal line L, which 
is parallel to the floor plane in the 3D global coordinate 
system in image I. 

4. NAVIGATION BY VEHICLE LOCALIZATION 
USING FLAT-SURFACED OBJECTS 

We use the posture of a flat-surfaced object and an 
associated horizontal line (obtained by Step 7 in Algo-
rithm 1 above) for vehicle localization. For this, we set 
up a coordinate system, called reference coordinate 
system (RCS) on the horizontal line (called calibration 
line henceforth), with one of the two line ends as the 
system’s origin. 

In more details, in a navigation session (including 
going back to the start point in the learning stage), the 
vehicle moves from one node to another according to a 
planned path in the navigation environment. Vehicle 
localization at a node along the navigation path is based 
on the use of a monitored object B located there. It is 
implemented by applying 2D matching of some features 
of two images of B, one taken in the navigation stage, 

denoted as IN, and the other taken in the learning stage, 
denoted as IL. The features come from the SIFT of IN 
and IL, called SIFT features in the sequel, and the 
matching is carried out also by the Hough transform. 
More details are described in the following. 
1. Apply the SIFT to IN to obtain an SIFT feature set 

F2, and take out the corresponding set F1 of IL, 
which was obtained in the learning stage. 

2. Take every pair of similar features, one from F1 and 
the other from F2, to define a group of four parame-
ters of an affine transformation from IL to IN, where 
the feature similarity is computed according to [7]. 

3. Put all found parameter groups into a Hough space 
and detect the peak in the space. 

5. Find out the affine transform T1 corresponding to the 
peak, as the relative transformation from IL to IN. 

6. Use T1 to transform the calibration line L, which 
was detected in IL in the learning stage, into the im-
age space IN, resulting in a new image line in IN, de-
noted as N. 

7. Transform L and N into the RCS unambiguously 
according to an analytic 3D transformation T2 [6] 
from the image space to the RCS to obtain two sets 
S1 and S2 of vehicle poses with respect to the RCS, 
one for the learning stage and the other for the navi-
gation stage, respectively. 

8. Use S1 and S2 to derive the translation Vt and orien-
tation θt of the vehicle’s current location with re-
spect to its location planned in the learning stage. 

9. Use (Vt, θt) to derive a sequence of vehicle com-
mands to guide the vehicle to the correct path a con-
tinue the navigation session. 

5. PATH PLANNING BY MINIMIZING MEAN 
SQUARE ERRORS USING ULTRASONIC 

SIGNALS 
After learning the path by person following, the 

system will refine the collected path data before the 
vehicle navigates back to the start point and starts its 
regular navigation sessions. We call this refinement 
operation path planning in this paper. The path data are 
composed of many path points described by odometer 
data. We want to make the path to be smooth, but do not 
lose the original trend of the path points. This is accom-
plished by choosing from the path points some critical 
ones, and using a line segment to approximate those 
path points between every two critical points. The prob-
lem is how to choose the critical path points, and the 
technique adopted in this study is binary cut by the LSE 
criterion, as described next. 

5.1. Path Planning by LSE Binary Cut 
As a start, the system considers a given set of n 

path points as a smooth line segment and approximates 
the points by a line equation. It then computes the 
square error SE resulting from this line approximation 
of the n points. If the value of SE is larger than a thresh-
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old value Tlse, then the line approximation is considered 
not smooth enough and is cut into two portions at a cer-
tain intermediate point selected according to an LSE 
criterion. This process is repeated until no more 
unsmooth line approximation appears. The detailed 
process for computing the SE value for a set of path 
points is described as an algorithm in the following. 

Algorithm 3: Calculating the SE value. 
Input: m path points. 
Output: The value of the corresponding square error SE. 
Steps: 
Step 1. Use the line fitting technique to find a linear 

equation of a line L with two variables, x and y 
as follows to approximate the input m path 
points: 

: 0L Ax By C+ + = , 

where A, B and C are constants. 
Step 2. Calculate the distance values di from every 

path point Pi(xi, yi) to the line L by 

2 2

i i
i

Ax By C
d

A B

+ +
=

+
. 

Step 3. Calculate the value of the induced square error 
SE of the line L by  

( )2

1

1 m

i
i

SE d
m =

= ∑ . 

If the SE value computed by the above algorithm 
for a path segment (may be the entire path) is larger 
than Tlse, then the path segment is considered to be 
unsmooth. The algorithm proposed for cutting an 
unsmooth path segment is as follows. 

Algorithm 4: Cutting an unsmooth path segment. 
Input: a path segment consisting of m points P1, P2, …, 

Pm, which, when approximated by a line segment, 
is unsmooth. 

Output: a path point among the m input points, which 
cuts the path segment into two shorter ones with 
the least square error. 

Steps: 
Step 1. For each path point Pj of the m input ones ex-

cept the first and the last, perform the follow-
ing steps: 
 consider Pj as a cut point, and find two line 

segments L1j and Ljm by line fitting again; 
 apply Algorithm 1 to calculate the values of 

the two square errors SE1j and SEjm respec-
tively for L1j and Ljm; 

 compute the square error SEj of cutting on 
the point Pj as 1j j jmSE SE SE= + . 

Step 2. Find the minimum value SEk from the m − 2 
SEj values computed in the last step, with SEk 
meaning that if we cut the path on point Pk, we 
can get the least square error value. 

The system executes the above process recursively, 
until the original path segment is cut into many shorter 

segments which are all smooth. Finally, we save the 
start point of each of these segments as a node of the 
final path for navigation. 

5.2. Dynamic Path Decomposition 
The threshold value Tlse of the LSE binary cut de-

scribed above is used to tolerate the value of the line 
approximation error. The larger the threshold, the 
cruder the path decomposed. The choice of the thresh-
old should be adapted to the environment of the pa-
trolled path. Moreover, the environment could be dif-
ferent at different parts of a path, and the path segment 
at each different part should be decomposed by a differ-
ent degree of precision. We propose a technique here 
which chooses the threshold value dynamically. 

In more detail, except the coordinates of path 
points, the width at each path point (such as the distance 
between two walls in a corridor) is also part of the in-
formation of path data which are learned in the learning 
process by using the ultrasonic sensors equipped on the 
vehicle. Specifically, in the learning process the system 
learned the left and right distances (dl,i, dr,i) of every 
path point Pi with respect to the obstacle or the wall 
around the point. We simplify such distance data to get 
a single distance value Di of every path point by 

( ), ,min ,i l i r iD d d= . 

Considering the correlation of the environments 
around the connected segments of the path, our system 
calculates the threshold value for one path segment by 
using the distance values of not only the path points in 
this segment but also five points before and five points 
behind this segment. Additionally, the composite square 
error for this segment is taken to be the average of the 
square errors computed in Step 3 of Algorithm 3. And 
the desired threshold value is derived to be as follows 
for a segment with n points: 

1 5
2 2 2

5 1 1

1
(5 10)

n n

i i i
i i i n

Threshold D D D
k n

− +

=− = = +

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟+
⎝ ⎠
∑ ∑ ∑  

where k is a constant. 
We decompose the path dynamically by recalculat-

ing the above threshold value in every cycle of a navi-
gation session. In this way, the vehicle can be made to 
navigate more smoothly and safely with no collision 
with obstacles or walls in the navigation environment. 

6. ODOMETER CALIBRATION 
After planning the path, the last process of the sys-

tem is vehicle patrolling from the end of the path to the 
start position of the path. The vehicle’s moving direc-
tion is an important factor for guiding the vehicle to 
navigate. The direction information is provided by the 
odometer of the vehicle. However, the vehicle cannot 
navigate by using only the odometer information col-
lected in learning because incremental mechanical er-
rors might result in imprecise odometer data. Hence, in 
order to keep the navigation in the path precisely, 
odometer calibration must be carried out to eliminate 
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the errors. In this study, we propose a technique to col-
lect the data of deviations from correct paths, and ana-
lyze the data to build an odometer calibration model. 

6.1. Odometer Calibration Model 
Before building an odometer calibration model, we 

prepare some equipment for our experiment, including a 
sticky tape, a measuring tape, an autonomous land vehi-
cle, and a computer. First, we fix the initial position O 
of the vehicle and mark the position by pasting a sticky 
tape on the ground. Second, we fix the initial direction 
of the vehicle and paste a straight line L along the direc-
tion on the ground by using a sticky tape. Third, we 
send commands to drive the vehicle forward on the 
straight line, and then commands to stop the vehicle. 
Fourth, we mark the terminal position T of the vehicle 
by pasting a piece of sticky tape on the ground. Fifth, 
we find the node P on the straight line L which is the 
vertical projection of the terminal position T. Sixth, we 
measure the distance D1 between O and T which is the 
move distance of the vehicle, and the distance D2 be-
tween T and P which is the deviation produced by me-
chanical errors. Seventh, we compute the angle Θ of the 
inverse sine value of D2/D1 which is the angle of the 
deviation. We repeat the steps at least twenty times and 
let the distance the vehicle moves be different every 
time. An illustration of the experiment is shown in Fig-
ure 3. 

 
Figure 3. An illustration of the experiment. 

Algorithm 5: Building an odometer calibration model. 
Input: None. 
Output: An odometer calibration model. 
Steps: 
Step 1. Fix the initial position O and initial direction 

line L of the vehicle. 
Step 2. Send commands to let the vehicle move for-

ward and then stop. 
Step 3. Mark the terminal position T of the vehicle. 
Step 4. Find the vertical projection node P of the ter-

minal position T of the vehicle on the straight 
line L. 

Step 5. Measure the distance D1 between O and T and 
the distance D2 between T and P. 

Step 6. Compute the angle Θ of inverse sine value of 
D2/D1. 

Step 7. Repeat Step 1 to Step 6 at least twenty times 
and let the distance the vehicle moves every 
time be different. 

After measuring the values of the angles of devia-
tions, we found out that the distribution of data has a 

trend which may be roughly described as a curve of the 
second order with respect to the vehicle move distance 
value. Therefore, we use an LSE fitting method to fit 
the data with a curve described as follows: 

2( ) 0.00000476 0.00592048 4.16437951f x x x= × + + . (6.1)

An illustration of the curve is shown in Figure 4. 

 
Figure 4. The results of line fitting of the angles of 

deviations. 

6.2. Navigation by Odometer Calibration 
We guide the vehicle most of the time while navi-

gation by the command: “move to front.” But the vehi-
cle we use for experiments always has a leftward devia-
tion while moving forward. To deal with this problem, 
we use the odometer calibration model to balance the 
deviation. First, we have to know the distance D we 
want the vehicle to move forward. Second, we substi-
tute the value D into Eq. (6.1) to get the angle of devia-
tion Θ. That means if we command the vehicle to move 
to D centimeters ahead of the original position, then the 
vehicle should be instructed to deviate rightward for the 
angle of Θ. Therefore, we issue a command of right turn 
of angle Θ before commanding the vehicle to move 
forward. In this way, we can balance the deviation and 
so the mechanical error. 

7. EXPERIMENTAL RESULTS 
We show some experimental results of the pro-

posed vehicle system with human following and patrol-
ling capabilities. At first, the vehicle starts the person 
following mode to follow a person. If the person turns 
to the right or left for a while, the vehicle will go to the 
position where the person stands and turn to the same 
direction to see and “remember” the view seen by the 
person. Then, the system will analyze the image of the 
view and find the interesting region and the horizontal 
line of the 2D object, as shown in Figure 5 and Figure 6. 

A record map of a navigation session is shown in 
Figure 7. After path planning, the vehicle will go back 
to the start point in the learning process and monitor the 
learned objects on the way, as shown in Figure 8. 

8. CONCLUSIONS 
An autonomous vehicle system with person fol-

lowing and object patrolling capabilities with a simple 
path learning scheme has been proposed. When the ve-
hicle follows a person, it will remember the traversed 
path and the environment of the path. When the person 
stands in front of a 2D object and faces to it for a while, 
the vehicle will go to the position where the person 
stands and learn the information of the object automati-



 6

cally. Therefore, we can teach the vehicle to follow a 
path and monitor along-path objects easily, and there is 
no need to key in instructions into the system as done 
conventionally. We have also proposed a technique of 
path planning to refine the traversed path points into 
smooth path segments. In addition, a method of building 
an odometer calibration model has also been proposed, 
by which incremental mechanical errors suffered by the 
vehicle while patrolling can be reduced. Good experi-
mental results indicate the feasibility of the proposed 
techniques. Future researches may be directed to con-
ducting human following by different features, such as 
texture and shape; detecting the heights of monitored 
objects by using two pictures captured at different posi-
tions; supplying the position of the vehicle by using a 
top-view omni-directional camera, etc. 
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 (a) (b) 

Figure 5. An experimental result of the learning 
mode. (a) Input image. (b) Position of vehi-
cle. 

 

 

 

(a) (b) (c) 
Figure 6. An example result of learning a 2D object. 

(a) Input image. (b) Region of 2D object. (c) 
Horizontal line of 2D object. 

 
Figure 7. An experimental result of navigation with 

blue lines showing path planning result, and 
red points showing real patrolling path. 
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(a) (b) (c) 
Figure 8. Experimental result of object monitoring 

and navigation path correction. (a) Numbers 
of monitored objects. (b) The vehicle moni-
tors the objects. (c) The matching result and 
the horizontal line used for path correction. 




