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Abstract In the post-genome period, the protein 
domain structures are published rapidly. For 
figuring out the cell function, the mechanism of 
protein-DNA interaction is an important subject in 
resent bioinformatics research and has not been 
comprehensively studied. Several machine 
learning based methods have been attempted to 
solve this issue. Until recently, few studies have 
been successful in translating the tertiary structure 
characteristics of proteins into appropriate 
features for utilizing the learning mechanism to 
predict DNA-binding proteins. In this work, a 
novel machine learning approach based on using 
HMMs (hidden Markov Models) to express the 
characteristics of DNA-binding proteins in the 
both aspects of amino acid sequence and tertiary 
structure are presented. Moreover, several helpful 
features of DNA-binding proteins are also utilized 
in the proposed method, such as residue 
composition, structure pattern composition and 
accessible surface area of residues. 

We develop a SVM (Support Vector Machine) 
based classifier to predict general DNA-binding 
proteins, and obtain the accuracy of 88.45% 
through 5-folds cross-validation. Furthermore, a 
response element specific classifier is constructed 
for predicting response element specific 
DNA-binding proteins, and is obtained the 
precision of 96.57% with recall rate as 88.83% in 
average.  
 
Keywords: Machine learning, Hidden Markov 
Model, DNA-binding proteins, Support vector 
machines.  
 
1. Introduction 

The progress in genome analyses and structure 

genomic projects is solving the structures of 
protein-DNA complexes at an alarming rate. It’s 
crucial to figure out the functions of genes and 
proteins. In molecular biology field, genomic 
processes act through the transcriptional 
regulations, nuclear translocations and binding on 
specific response elements, and then lead to the 
regulation of the expression of target genes. These 
regulation relationships control a lot of major 
cellular processes. As the beginning of genomic 
processes, many proteins which named as 
DNA-binding proteins might bind to specific 
response element sequences which locate among 
the promoter regions of target genes [11]. 
However, the mechanism of protein-DNA binding 
has not been completely understood yet. Several 
works have been published for analyzing the 
protein-DNA recognition mechanism [13] and 
several works have been devoted to predict 
DNA-binding proteins [4, 9].  

In this work, we focus on DNA-binding 
proteins prediction by applying the structural and 
sequence information of proteins. According to 
previous analyses, a lot of DNA-binding proteins 
can be divided into several groups based on the 
sequence similarity, such as 146 protein families 
of Pfam [10] or 54 types of DNA-binding proteins 
based on structure similarity [12]. The 
DNA-binding proteins which belong to the 
identical groups are normally containing 
homologous relationships. For representing the 
homology information of each group of 
DNA-binding proteins, HMMs are the ideal 
probability models to describe the characteristics 
of each group of DNA-binding proteins. Moreover, 
these HMMs are able to predict un-known 
DNA-binding proteins based on the homologous 
relationships between sequences and HMMs. 
However, the DNA-binding proteins predicted are 



certainly limited to constant types which 
homologous to at least one of the existing HMMs. 
An approach which combines HMMs with other 
characteristics for predicting DNA-binding 
proteins is presented in this work. Otherwise, to be 
universally known that the tertiary structures of 
proteins are more conserved than amino acid 
sequences. Consequently, the homologous 
information of protein structures are significantly 
expressed in structure based protein families. 
However, as our knowledge, there exist no HMMs 
which trained by using tertiary structures until 
recently. In this work, we train structure based and 
sequence based HMMs (SQ-HMM and ST-HMM) 
for expressing the characteristics of DNA-binding 
proteins in various aspects.  
 
2. Method  

Initially, the structure data as three dimension 
coordinates format are translated into the form of 
alphabet sequences. Then the features of alphabet 
sequences are gathered in the same way of 
generating the features of residues. The 
characteristics of DNA-binding proteins in the 
aspects of amino acid sequences and tertiary 
structures are expressed by using sequence-based 
and structure-based HMMs respectively. These 
sequence and structure based HMMs are employed 
to distinguish between DNA-binding proteins and 
non-DNA-binding proteins. Furthermore, several 
features of sequence and structure are also taken 
into account for training a SVM based classifier. 
Such as the composition of residues and structure 
alphabets, the accessible surface area (ASAs) 
information of residues in protein structures, the 
composition of structure and sequence patterns, 
and etc.  
 
2.1. SQ-HMM and ST-HMM  

The sequence-based HMMs are obtained from 
DBD [10]. Presently, there are 146 sequence-based 
HMMs existed in DBD. These HMMs are 
obtained via manually inspected all of the families 
from Pfam [3] and selected the models which 
confidently to represent the domains that recognize 
DNA sequences specifically. These 146 models 
are named as SQ-HMM in this paper. 

Otherwise, a novel method is proposed for 
training structure-based HMMs in this study. 
Presently, there are 302 structure-based HMMs 
regarded to stand for the characteristic of 
DNA-binding domains in DBD. Even though that 
these 302 HMMs are constructed based on the 
structure classification information of SCOP [7]. 

Still, these HMMs are curated by applying amino 
acid sequences. For distinguishing the 
inconsistency of information between 
sequence-based and structure-based HMMs, a 
novel methods to construct structure-based HMMs 
is presented in this study. 

In this method, SADB [19] is employed to 
construct HMMs through following principles: (1) 
Selected 302 alphabet sequences from SADB 
which corresponding to the 302 seed domain 
structures of structure-based HMMs built by DBD. 
(2) Divided 302 alphabet sequences into groups for 
which belong to the identical families in SCOP. (3) 
For the alphabet sequences of each group, 
ClustalW1.83 [15] is employed to execute the 
multiple sequence alignments. Due to substitution 
matrixes play a crucial role in affecting the 
performance of sequence alignments. The specific 
structural alphabet substitution matrix (SASM) is 
chosen in this step. (4) Use hmmbuild function of 
HMMER [6] to build HMMs for all of the multiple 
sequence alignment results. Subsequently, 89 
structure-based HMMs named as ST-HMM are 
produced after executing this procedure. 
 
2.2. Feature Selection 

LIBSVM-2.82 [5] is employed to train SVM 
models in the approach of DNA-binding proteins 
prediction. For building an effective SVM 
classifier, it’s crucial to construct a suitable feature 
vector.  There are six types of features (totally 87 
features: 40 for residue composition, 2 for 
hydrophobicity, 7 for alphabet composition, 18 for 
pattern, 8 for HMM, and 12 for HMM groups) 
employed in this study for constructing models to 
distinguish between DNA-binding proteins and 
non-DNA-binding proteins. These six types of 
features can also be allocated into two categories: 

similarity-HMMF  and lStatisticaF . The details of these 

features have been described in following sections. 
All of the features below are analyzed by using 
DBP-set and NDBP-set. DBP-set contains 107 
DNA-binding domains and NDBP-set contains 
248 non-DNA-binding domains. These domains 
are gathered from previous work [9] and filter out 
the domains which not exist in SADB. 

For the features of the similarity-HMMF  type, we 
use HMM and HMM groups to represent the 
characteristics of DNA-binding proteins. In this 
work, SQ-HMM and ST-HMM are employed for 
distinguishing between DNA-binding proteins and 
non-DNA-binding proteins, and the hmmbuild 
function of HMMER is employed for training 
HMMs. Hmmbuild is a function of HMMER 



which can build a HMM by reading a multiple 
sequence alignment file. There are several 
parameters enable user to train proper models 
depend on various purposes. For using HMMs to 
distinguish between DNA-binding proteins and 
non-DNA-binding proteins, two types of HMMs 
are produced by choosing the option “-f” or not. If 
choosing the option “-f”, the HMMs (HMM_ls) 
produced can support that searching for sequences 
by using local alignments algorithm. Through the 
HMM_ls, if a sequence contains a domain which 
matches only a part of the HMM_l, this domain of 
the sequence is able to be detected. Otherwise, 
when not choosing “-f” (HMM_g), the domains 
only can be detected if the domains are able to 
match the whole HMM_gs. The advantageous of 
HMM_l is to detect the domains which contain 
low homologous with HMMs, but in some cases, 
HMM_ls may detect several domains which could 
be noises. In order to discover more DNA-binding 
proteins with high reliability, both types of HMMs 
are taken into account in this step. For applying 
HMMs to distinguish DNA-binding proteins from 
non-DNA-binding proteins, hmmpfam function of 
HMMER is employed to calculate the scores to 
describe the similarity between sequences and 
HMMs. 

Initially, we align both set (DBP-set and 
NDBP-set) of sequences to 146 models of 
SQ-HMM individually and then select the highest 
score for each sequence (Big_Score). The 
sequences of DBP-set which have Big_Scores 
superior to the lowest Big_Score of whole 
NDBP-set and the sequences of NDBP-set which 
have Big_Scores inferior to the highest Big_Score 
of whole DBP-set are defined belong to the 
“difference region” of DBP-set and NDBP-set. 
The number of sequences in difference region is 
bigger may imply that the quality of this type of 
HMMs are better. In the same way, structure 
alphabet sequences of DBP-set and NDBP-set are 
compared with 89 HMMs of ST-HMM. 

As results, SQ-HMM and ST-HMM indeed 
distinguished between DNA-binding proteins and 
non-DNA-binding proteins in several cases. In the 
cases of low scores, HMM_ls are more sensitive 
than HMM_gs (Table 1). 

 
Table 1. The coverage of the difference region 
for SQ-HMM and ST-HMM. 
Difference  
Region 

SQ-HMM_g SQ-HMM_l ST-HMM_g ST-HMM_l 

DBP-set 15 15 35 35 

NDBP-set 1 5 1 5 

 Since certain DNA-binding domains have no 
significantly obvious similarity with SQ-HMM or 

ST-HMM. These ambiguous protein domains are 
not able to be detected by applying SQ-HMM or 
ST-HMM in the methods mentioned before. We 
assumed that the Big_Scores of several 
DNA-binding domains are not high enough to 
reveal the characteristics in the viewpoint of 
sequences and structures, but these domains may 
indeed similar to specific HMMs than others of 
SQ-HMM and ST-HMM. For detecting these 
ambiguous cases, the Diff_Scores are computed for 
extending the divisions between DNA-binding 
domains and non-DNA-binding domains. 

The way to compute Diff_Scores is using the 
difference values which produced by employing 
the Big_Scores of sequences to subtract the others 
scores which produced by aligning the sequences 
to others HMMs, and then average these difference 
values: 

∑
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where j denoted the sequence number, i 
represented the HMM number, N is the quantity of 
HMM in each HMM-set, 

jScoreBig _  is the 
Big_Score of sequence j, and the 

ijAlign  denoted 
the score produced by aligning the j sequence to i 
HMM. As shown in Table 2, Diff_Scores are 
beneficial to distinguish DBP-set from NDBP-set 
more effective in the viewpoint of amino acid 
sequences.  
Table 2. The coverage of difference region for 
using Diff_Score. 

Difference 
Region 

SQ-HMM_g SQ-HMM_l ST-HMM_g ST-HMM_l

DBP-set 26 15 35 36 
NDBP-set 0 12 0 2 

Due to there are several DNA-binding proteins 
swhich contain weak homology relationships with 
others DNA-binding proteins. The sequences or 
structures of these protein domains are probably 
not conserved sufficiently to express the similarity 
with SQ-HMM and ST-HMM by applying the 
alignment scores. For detecting these remote 
homologous relationships, the concepts of protein 
family grouping have been presented to use a 
group of similar protein families to represent a 
more extensive type of proteins, such as the clans 
of Pfam database [3]. Although that there are a lot 
of families grouped into clans. However, the 
greater part of HMMs in Pfam has never been 
allocated into at least one clan. Hence, a HMMs 
grouping algorithm is addressed in this work to 
allocate the HMMs with high domain similarity 
into a group. The traditional Expectation 
Maximization (EM) cluster algorithm is employed 
here to cluster these HMMs into several groups. 



EM clustering algorithm is executed by computing 
the probabilities of each data (in this article, each 
data means every HMMs contained in SQ- and 
ST-HMM) on diverse probability distributions and 
then return the data with maximize likelihood and 
the corresponding clustered. Due to our demand to 
implement HMMs clustering is to allocate the 
HMMs which have least homologous distances 
between each other into the same groups and not 
need to define the number of groups. The EM 
algorithm is chosen here instead of others 
partitioned or hierarchical cluster algorithms, such 
as k-means, ROCK, and etc.  

Initially, due to the number of sequences for 
training each HHM is critically inconsistent. For 
performing fairly HMMs comparisons to compute 
the similarity of each pairs of HMMs belong to 
SQ-HMM and ST-HMM. The hmmemit function 
of HMMER is employed to produce 10 sequences 
for representing each of HMM. After that, the 
similarity of a pair of HMMs are computed by 
summarizing the local alignment scores of each 
sequence pair produced from these two HMMs. 
Through this step, a 146*146 similarity matrix is 
produced corresponding to SQ-HMM and an 
89*89 matrix for ST-HMM. The EM algorithm is 
executed by employing cluster package of WEKA 
[18] and the parameters are set as default. After 
executing EM algorithm, SQ-HMM are divided 
into 8 groups and 5 groups for ST-HMM. In 
SQ-HMM, there are 57 families of HMM covered 
by 15 clans of Pfam. For the clans which have high 
coverage in SQ-HMM, there are 5 of 6 HMMs 
which covered by “p53-like” clan are divided into 
identical group. Otherwise, in the aspect of 
ST-HMM, 5 of 6 HMMs belongs to "Winged 
helix" superfamily of SCOP are divided into 
identical groups. These cluster results are 
employed to detect the remote homology 
relationships through sequence and structure based 
HMMs. We totally use three types of scores of 
HMM groups for distinguishing between 
DNA-binding proteins and non-DNA-binding 
proteins: 
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where N denotes the number of groups, 
nG  is the 

number of HMM in group G, 
iScoreAlign _  is the 

hmmpfam score between each sequence and 
HMM , and GScoreBig _  is the big score of a 
sequence for each HMM groups. 

For the features of the lStatisticaF  type, we 
consider residue and structure composition, pattern 
composition, and hydrophobicity. In the aspect of 
residue composition, previous research [2] has 
specified that the frequencies of several types of 
residues in DNA-binding proteins perform higher 
than non-DNA-binding one (e.g. Arg and Lys), but 
some of other types are lower. However, not all of 
the residues are exposed on the surface of protein 
structures, and the buried residues have low 
divergence between DNA-binding proteins and 
non-DNA-binding proteins. Consequently, residue 
composition of protein surface is probably more 
disposed than overall composition [4].  

20 features (Res_com(1) to Res_com(20)) 
which represent the ratios of each type of amino 
acids for each instance are employed to training 
this classifier: 

201,)(_Re ≤≤= i
N
Ricoms i       (5) 

where N denoted the number of residues in a 
protein domain sequence and iR  represented the 
number of each type of residues contained in a 
protein domain sequence.  

For analyzing whether the composition of 
residues are different in exposed regions, DSSP 
program [8] are employed to calculate an ACC 
value for each residue of protein domains. ACC is 
the number of water molecules in contact with 
each residue. Hence, AD (accessible degree) value 
is produced by dividing each ACC value by the 
overall surface area of each amino acid defined 
previously [14]. After testing various AD 
thresholds, we find the best effect is produced 
when the AD threshold is equal 0.1. This 
phenomenon is owing to that the AD threshold as 
0.1 can filter the buried residues with not to filter 
out residues too much. 20 features represent the 
ratios of each type of amino acids with AD 
value>0.1 are employed to train this classifier, too. 

Otherwise, the structure composition is also 
considered in this work. As defined in 3D-Blast 
[19], all of five-residue long continuous protein 
tertiary structures have been divided into 23 
groups of structure types and each group of 
structures is symbolized by an alphabet. After 
translating the protein tertiary structures into 
alphabet sequence formats, we can use the method 
of calculating residue composition to produce the 
features of protein structure composition. Result 



shows that the difference of composition ratio is 
most significant in alphabet A, B, C, D, E, and F. 
These six kinds of alphabets are also the 
representative alphabet types of helix and strand. 
In structure composition, we only consider these 
six types of structures.  

In several protein-DNA binding sites, the 
binding activity of a residue might be affected by 
adjacent residues [2]. The unity of the 
neighborhood of each type of residues is probably 
significant. In order to utilize the actually exists 
phenomenon to distinguish between DNA-binding 
proteins and non-DNA-binding proteins. Each two 
adjacent residues or alphabets are defined as a 
pattern, and each pattern is composed by a central 
residue 

iC  (or alphabet) and an adjacent residue 

iA  (or alphabet). Base on this definition, there are 
400 kinds of residue patterns (20 types of central 
residues multiplied by 20 types of adjacent 
residues), and 529 kinds of patterns for alphabets 
(23 types of central residues multiplied by 23 types 
of adjacent alphabets). The Pattern_com(i) is 
calculated by using the appearance frequency of a 
residue type 

iC  to divide the frequency of 
iP : 

)529(4001,)(_Pattern ≤≤= i
C
P

icom
i

i   (6) 

  The types of Pattern_com(i) with the difference 
ratios larger than 7% between DBP and NDBP-set 
are chosen for being employed as features for 
training SVM models. Through these criteria, 10 
residue patterns and 8 alphabet patterns are picked. 

For using the characteristics of hydrophobicity, 
previous study has observed that the 
hydrophobicity of several residues are critical for 
DNA binding intensity [16]. By applying the 
properties of hydrophobicity, amino acids are 
classified into three groups: Arg, Lys, Glu, Asp, 
Gln, and Asn are allocated to polar; Gly, Ala, Ser, 
Thr, Pro, His, and Tyr are neutral; and Cys, Val, 
Leu, Ile, Met, Phe, and Trp are hydrophobic. The 
distribution of these three types of residues is 
advantageous in separating the DNA-binding 
proteins from non-DNA-binding proteins [20]. 
Due to the composition of hydrophobic type 
residues is highly less and not significantly 
difference between DNA-binding proteins and 
non-DNA-binding proteins. In this type of features, 
only the compositions of polar and neutral are 
taken into account. 
 
3. Experiments  

The effect of each type of feature is tested by 
applying DBP-set and NDBP-set for training SVM 

models (totally 355 instances) and verified through 
5-folds cross validation. Six types of DNA 
sequence specific DNA-binding proteins 
(SPDBP-set) are employed for verifying the 
performance of response element specific 
DNA-binding proteins prediction. These 
DNA-binding proteins are gathered by submitting 
the DNA sequences of antioxidant response 
element (ARE), glucocorticoid response element 
(GRE), cAMP-responsive element (CRE), p53 
responsive element (p53RE), peroxisome 
proliferator response element (PPRE), and 
estrogen response element (ERE) to search 
TRANSFAC [17] by Patch function [1]. 

For predicting general DNA-binding proteins, 
the classifier trained in this work can achieve the 
sensitivity of 74.78% and the specificity of 91.13%. 
In overall accuracy, we reach to 88.45% which is 
better than the 86.62% of PSSM when using the 
same training and testing data. Moreover, Figure 1 
shows that the performance of SVM models is 
most effective while combining HMM based 
features with amino acid and structure alphabet 
based features.  

 
Figure 1. The ROC curves of the classifiers. 
 
Table 3. The performances of predicting the 
response element specific DNA-binding 
proteins. 
 ARE CRE GRE P53RE RpRE ERE 

Presicion 100 100 100 88.9 90.5 100 

Recall 92.3 85.7 80 80 95 100 

F-Measure 96 92.3 88.9 84.2 92.7 100 

 
4. Conclusion and Future Work  

In this work, a high precision DNA-binding 
proteins classifier is constructed for predicting 
general DNA-binding proteins by using features of 

similarity-HMMF  and lStatisticaF . Through integrating 
the sequence and structure information of proteins, 
several DNA-binding proteins less conserved in 
structure or sequence are also identified by our 
proposed classifier. The classifiers for specific 



DNA-binding proteins is able to obtain the high 
precision and recall rates. These classifiers trained 
from specific DNA-binding proteins can help 
biology researchers to figure out un-known 
biology processes. 

After predicting un-known DNA-binding 
proteins, the SQ-HMM and ST-HMM are able to 
analyze the sites of residues which could bind to 
DNA directly. Moreover, the response element 
specific classifiers could be trained by using the 
verified response element specific DNA-binding 
proteins to predict un-known DNA-binding 
proteins for each response element from the 
databases (e.g. TRANSFAC) automatically. 
Furthermore, a DNA-binding proteins prediction 
database could be constructed based on integrating 
existing databases with our response element 
specific classifiers. 
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