PeerSim Cooker : A GUI IDE for PeerSim

Eric Jui-Lin Lu Yau-Tsan Jang Guan-Wei Hwang
Department of Department of Department of
Management Information Management Information Management Information
Systems, Systems, Systems,
National Chung Hsing National Chung Hsing National Chung Hsing
University University University
250, Kuo Kuang Rd., 250, Kuo Kuang Rd., 250, Kuo Kuang Rd.,
Taichung Taichung Taichung
402, Taiwan R.O.C. 402, Taiwan R.O.C. 402, Taiwan R.O.C.

jllu@nchu.edu.tw 09629005@mail.nchu.edu.tw earows @gmail.com

Abstract—Nowadays, P2P technology has join a network, can simulate up to millions of
attracted a great attention in both academia and nodes, and provides many reusable components
industries. In general, simulators are used to (e.g. aNode represents a node andiakable
study the performance of P2P protocols. represents a routing table). Also, PeerSim was
However, it is found that it is very difficult for developed in Java which made it platform
beginners to get acquainted with any simulator. independent. Therefore, many P2P research
To overcome this problem, we developed aprojects [2, 6, 7, 8,,916] employed PeerSim as
GUI-based integrated development environment,their simulation platform. Although PeerSim is
called PeerSim Cooker for PeerSim. PeerSim functional rich, it is still difficult for beginnerto
Cooker also provides a wizard mode that can correctly select and utilize existing components
guide developers to accomplish experiments in ato complete experiments. To reduce steep
step-by-step manner. Additionally, a Unified learning curve, it is believed that a graphicalruse
Message Passing Framework is proposed andinterface (GUI) should be provided by simulators.
embedded in PeerSim Cooker so that the taskdn addition, a wizard mode, that can step-by-step
required for developing experiments can be guide developers to complete experiments, is a
further simplified. big plus for simulators [14, 18, 19]. In this paper

we developed a GUIl-based integrated
Keywords: Peer-to-Peer, Simulator, IDE, development environment (IDE) for PeerSim
PeerSim. which is called PeerSim Cooker. PeerSim Cooker
also supports wizard mode to relieve difficulty in
learning PeerSim.

In PeerSim, two models of simulations are
supported — cycle-based and event-based models
[1]. To design an experiment using PeerSim,
developers have to determine which model is
used. Unfortunately, once a model is selected, the
program codes developed for the model cannot
be reused for the other model. In other words,

1. Introduction

Since the wide spread usage of Napster[12]
and KazAa[5], people started to realize the power
of resource sharing in a Peer-to-Peer (P2P)
manner. As a result, many P2P protocols had
been proposed. In general, to study the

performance of a P2P protocol, a P2P simulatordeveIO : -
. pers have to design one version of codes
such as Narses[13], 3LS[17], NeuroGrid[4], for each model. To reduce the development

P2PSim[15], PeerSim[l], etc. is employed. burden, a Unified Message Passing Framework
Unfortunately, P2P simulators shared common (UMPF) is proposed and embedded in PeerSim
limitations: ~poor scalability, little or N0 c,q1er For simulation programs conforming to

documentation, and steep learning curve. JMPE. the S
X > , they can be run in either cycle-based or
Naichen et al. [10, 11] surveyed various P2P event-based models.

simulators and reported that PeerSim is one of The rest of the paper is organized as follows:

the be_st P2P simulators. For example, I:‘eersimPeerSim is briefly described in Section 2. In
can simulate both structured and unStrUCturedSection 3 UMPE is discussed in details. In

networks, allows nodes to dynamically leave or Section 4, we study the maximum numbers of
This research was partially supported by the Nafion nodes in various simulation environments when

Science Council, Taiwan, R.O.C., under contract N6C PeerSim Cooker is used. The experimental
95-2221-E-005 -050 -MY2. results are also presentethe implementation

and screenshots of PeerSim Cooker is illustrated In PeerSim, developers have to determine
in Section 5. Finally, the conclusions and which model of simulations should be used. If
possible future works of PeerSim Cooker are developers chose to experiment using

presented. cycle-driven engine, program codes have to
implement the methodextCycle() as shown in
2. PeerSim Fig. 3. On the contrary, if developers chose to

PeerSim[1] is a Java-based P2P simulator foréxperiment using event-driven engine, program
overlay networks. In a PeerSim simulated codes developed earlier cannot be reused. This is
network, each node is represented by an object oPecause, as shown in Fig. 3, program codes have
type Node. Objects of typeControl are used to to implement the methogrocessEvent(). To
control nodes joining and leaving the network. overcome this problem, a Unified Message
The behaviors (or protocols) of each node arePassing Framework (UMPF) is proposed.
Implemented by Ob]eCtS of ty&OTOCOI . o nextCycle(Node node, int protocolID) e

In general, the tasks of a typical experiment | | cyepriven

Simulator

using PeerSim include the following steps [3]: (1) processEvent(Node node, int pid,

. . Event Driven javalang.Object event)
determine the number of nodes in a network, (2)| | "y
designProtocol objects and initialize them, (3) add(long ‘{;l;tf;;‘:‘?:ﬁ?d"j"“"V"“"
designControl objects to control and possibly i Evert
monitor the network, and (4) execute the

simulation. Figure 3. PeerSim calling processes

PeerSim supports two models of simulations —
cycle-based and event-based models. In
cycle-based simulations, PeerSim will 3. Unified Message Passing
sequentially execute all node protocols in one Framework — UMPF
cycle. Between any two cycles, developers are As shown in Fig. 4, UMPF mainly include a
allowed to addConftrol objects. Thes€onfrol set of
objects can be used to add or remove nodes, opeersimcooker.message.handler.Messag
monitor the values of SpeCiﬁed variables. For eHandlers (abbreviated aMesngeHOncﬂer)
example, as shown in Fig. 1, each node has tWoyng two classesCycle Driven Message

protocols (P1 and P2). In th8 eycle, PeerSim Manager (CDM) and Event Driven
executes both P1 and P2 of all nodes, and C1 Wi”lv\essoge Manager (EDM) which are called

be executed before the end of the cycle. by cycle-driven and event-driven simulators
ode! Node2 NodeN . .
fodel : respectively. All messages communicated among

""" “ “ ‘ o CDM/EDM and MessageHandlers are
it - objects of subclasses of
i i+l peersimcooker.message.Message
¢l : Control (abbreviated asessage). EachMessage has

P1, P2 : Protocol

a correspondingiessageHandler.

Node

Figure 1. An example cycle-driven simulation

PeerSim Simulator UMPF User Code

Node localnode)

nextCycle(-+) ||| CycleDriven
Message
Manager

Cycle Driven
Simulator

In event-based simulations, events are defined
along a time axis. For each time tick, there may
be zero or more events. For each event,
protocol is defined. For example, as shown in Fig.
2, there are two events {land E,) defined in
timei. E, defines the execution of P2 in node A, Figure 4. Unified Message Passing
while E, defines the execution of P1 in node B. Framework

8 O 8 ® O 8 For clarity, the example simulation
experiment in [3] is used for explanation. In the
O O O O """""""""""""" @ O O experiment, each node has an integer value which

is randomly generated between 0 and 100. After

receiveMessage(Node localnode, Message msg)

Message
Handlers

processEvent(-) | [EyentDrven localnode)

Mesage
Manager

Event Driven
Simulator

receiveMessage(Node localnode, Message msg)

R oo T randomly selecting a neighbor node from its
— End Time routing table, each node will send its local value
Start Schedule to the neighbor node. After receiving a value, one
O mvent node will calculate the average of its local value

and the received value; set its local value to the
Figure 2. An example event-driven simulation average; and send the average back to the source
node. As shown in Fig. 5, node A has a local

value 70, and node B has a local value 30. Node(SM,), which contains node A and the value 70,

g sen?hs its Iloca}I value t% its gei%hbor no;:ie Itsh will be created and SMwill be sent to a target
nce the value Is received, node 5 compuies the bject by usingsend(). Because cycle-driven

average which is 50, sets its local value to 50 0
and then sends 50 back to node A. was selected, and because the target object is

loal. valie= 70 node B, SM will be sent to node B. When S
Node A is received, node B calculates the average, resets
its local value to 50, and invokes
Q) SMa.getMsgType() which returns a string
“SendMessage”. Based on the configuration file
reset local _value = 50

local_value = 30

Node B

Reply value = 50 J

average = (value + local_value)

Send value = 70

>
>

&
<

as shown in Fig. 7, node B creates a
SendMessageHandler object (SMHs), and
SMHg.receiveMessage() will be executed. In
the receiveMessage(), a
ResponseMessage object (RMs), which is
have to define all required information and a Similar to SV, will be created, and Riwill be

method calledyetMsgType(). getMsgType() sent back to node A. When RMs received,
returns a string which is used to select annode A resets its local value to 50 and invokes

o

reset local_value = 50

Figure 5. An example experiment

For all subclasses dfiessage, developers

appropriate object of typsiessageHandler.
For the example experiment,SendMessage
class, which is a subclass oflessage, is
defined. In thésendMessage as shown in Fig.

RMg.getMsgType() which returns a string
“ResponseMessage”. Based on the configuration
file as shown in Fig.7, node A executes
receiveMessage() of the

6, a value is declared to hold the value 70, and aResponseMessageHandler object in node
node is declared to hold the source node which isA.

node A.MessageHandler, which is a subclass
of Protocol, is a class which contains two
abstract methods -sendMessage() and

receiveMessage() which are needed to be

implemented by developers. The main purposes

of sendMessage() are to create a message and
notify a object to do something. When the
receiveMessage() of a node is invoked, the

protocol.handlerl SendMseeageHandler
(}';.(;(;‘:S'ell dMessage

.

;)l'otocol.handlerz ResponseMseeageHandler
g;;c".l.’?e.sponse;l[essage

3

node will execute whatever is needed to do when
receiving a message. There is one important _ _
method send() in MessageHandler that If event-based engine is used for the
worth to be notedsend() is a general purpose €xperiment, the simulation procedure is described
method, and there is no needs for developers t?S follows: When it is time for node A to send a

Figure 7. PeerSim Configuration

write codes for it. By assigning appropriate
argumentssend() will send specified messages
to a specified object.

SendMessage : Message

Node node
double value

getMsgType() : String
getSourceNode() : Node

Figure 6. UML Diagram of SendMessage

By using the example, the simulation
procedure is described as follows if cycle-based
engine is used: When it is time for node A to
send a message, cycle-driven simulator execute
nextCycle() of aCDM object in node A. Then,
sendMessage() of node A’s
SendMessageHandler will be executed. In
the sendMessage (), aSendMessage object

message, event-driven simulator will execute
processEvent() of a EDM object in node A.
The EDM object may receive two types of
objects from the simulator. Onefigent objects,
and the other isMessage objects. In the
example experiment, afvent object will first

be received. The EDM will execute
sendMessage() of a
SendMessageHandler object in node A. In
the sendMessage (), aSendMessage object
(SMp), which contains node A and the value 70,
will be created and SMwill be sent to a target
object by usingsend(). Because event-based
model was selected, theend() method will
send SM, as an event to the event-driven
§imu|ator. When it is time SM should be
executed, node B calculates the average, resets its
local value to 50, and invokes
SMa.getMsgType() which returns a string
“SendMessage”. Based on the configuration file
as shown in Fig. 7, node B creates a

SendMessageHandler object (SMH), and Gnutella was also used to study PeerSim
SMHg.receiveMessage () will be executed. In ~ Cooker. All Gnutella simulations were run in
the receiveMessage|) a three different cases. As shown in Fig. 9, in

. . . le-based simulations, case 1, 2, and 3 can
ResponseMessage object (RMg), which is cyc ’ .
similar to SV, will be created, and RMwill be sm(]jula.te up to .47’300645200’ arr]wd 2::6’%00.
sent as an event to the event-driven simulator."C¢€S; respectively. n the other hand, in

.._event-based simulations, case 1, 2, and 3 can
When RMs should be executed, node A resets its simulate up to 28000, 279000, and 250,000

local value to 50 and invokes des: el
RMg.getMsgType() which returns a string 1C0ES: respectively.
“ResponseMessage”. Based on the configuration| **®° [22000

file as shown in Fig.7, node A creates a |aoowo|
ResponseMessageHandler object (RMH), 200000 || 260,000278.000
' 246,000 250,000 H Case

and RMHy.receiveMessage() will be mcase
200,000 | ase
executed.

100,000 [——

From the above discussions, it is clear that the
program codes for sendMessage() and
receiveMessage() are identical no matter
which models of simulation is selected. In other Figure 9. Comparison of the number of nodes
words, developers only have to write one version using Gnutella
of codes, but can select either model at will.

0

Cycle-event Event-driven

5. PeerSim Cooker

PeerSim Cooker was developed in Java. Both
expert and wizard modes are supported by
PeerSim Cooker. In the expert mode, developers
can design components at their own will by
clicking on GUI components. In the wizard mode,

PeerSim Cooker is used. The example shown indevelopers are guided to co_mplete required
component step by step. In the interest of space,

Fig. 5 was used for the following experiments. onlv wizard mode is described below
Both cycle-based and event-based models were y : Lo
To simulate the example experiment, a

studied. For each model, the example Sir’nmaﬁondevelo er can set up basic configurations such as
was run in three different cases. In case 1’the nanber of nodeps and the s?mulation engine
simulations were run in pure PeerSim; in case 2, X 9
simulations were run in PeerSim Cooker which by using the GUI components shown at the left
of Fig. 10. For the example, the number of nodes

read the configuration file used in case 1; in case :
3, simulations were run in PeerSim Cooker's was 1000, cycle-based engine was selected, and

wizard mode. All experiments were executed on the number of cycles was set to 50. Then, “+”
a PC with an Intel Core 2 Duo CPU (1.86GHz), button was clicked and a wizard window was

2GB RAM, and JDK 1.6.0_07. Fi@ shows the shown. After clicking on “Quick start for
experimen,tal results e Beginner”, one can create required components

4. Experiments

It is known that GUI components consume
more system resources and thus lower the
number of nodes that PeerSim could simulate. In
this section, we study the maximum numbers of
nodes in various simulation environments when

guided by the wizard.

1,000.000 [recim oo 5 S
900,000 868,000 866.000. De 8 =] |
800,000 - s |

710,000 h P = |
700,000 675,000 650,000 et i
Expe
600,000 527,000 B Case Iru i Bl the Cantet of the Expesiment
500,000 B Case B]
400,000 O Case roais = = = — | Choose a Type of the New Element
Duec e |edman vl
300000 P L P
200,000 ot i
100,000 g O B sy
0 Cpbs %0 1 e
B e b
D Hebonk
Cycle-driven Event-driven DvbagLevel Vo Dubug T o
]

. O Repert

Figure 8. Comparison of the number of nodes in e B e |
different simulation environments e SR e

s = =)

Latoey Fie

As shown in Fig8, in cycle-based simulations,
case 1, 2, and 3 can simulate up to,868,
866000, and 710,000 nodes; respectively. In As shown in Fig. 11, the first step was to build
event-based simulations, case 1, 2 and 3 carup a topology for the simulated network. PeerSim
simulate up to 675,000, 650,000 and 527,000;provides several topologies. Thus, a developer
respectively. can simply pick one from the drop-down list. If a

Figure 10. Main screen

required topology does not exist, one can create In step 4,MessageHandlers are defined.
one by clicking “Add a Linkable”. In the For eachMessage defined in the previous step,
example experiment, “Random Connection” was 3 correspondingiessageHandler has to be

selected. defined. Thus, for the example experiment, the
developer defined two handlers —
[—— SendMessageHandler and
‘ A (D ResponseMessageHandler. For each

Initil Topology | Random Conneotions =

MessageHandler, the developer also have to
implement both sendMessage() and
receiveMessage(). The program codes for the
sendMessage() and receiveMessage() of
SendMessageHandler are shown in Fig. 14

Degree: [T tians

[Regular Rooted Tree

{Ring Lattice

[Bozahasi-Albert Model

[SceleFreeDh

[Star

[Smell-World Model of Wattesnd Strogae
R OT r

¢ & andFig. 15. After finishinhese program codes,
the developer can click o>l in Fig. 10.

Build the Content of the Experiment

&)

Steps

Figure 11. Setup Linkables

sendMessage Algorithm:
Cade

| Jirandomly select a neighhor from routing table
Random r= new Random(};
mtrandom index=rnextintitable.dograe()-1);
Node reighbor = table.getNeighbor
[random_index);

Setup Linkables
2. fetwp Valoe Holiers

3. Detine Messags Format|
4. Setwp MessageHandler

Node Contents:

locel_mode
table
local_valne

The second step is to set up resources for
each node. In the example experiment, a variable
calledlocal_valuewas created. Then, after filling
in the range oflocal value and selecting

“Uniform Distribution”, the developer clicked on
the “Setting” button in Fig. 12. This action result
in randomly generated integers between 0 and

[Crs¥aie | ferpate SendViessage and sand to neighhor
Mesmges:
. SendMessage msg = new SendMlessage();
ResponseMesssae | oo source node = local_node;

msgvalue = local value;

| send(neighbor , msg);

[Send Fonetion | [Tmpors | |

100 will be uniformly distributed to all nodes.
Three types of distributions are provided by

Hebp |

PeerSim.
Build the Content of the Experiment X
Steps .
| s | memr | Figure 14. SendMessageHandler —
ezt S i sendMessage
Aaxx value
"‘]i";::’mﬂ P ey — E\

Steps receiveMessage Algorithm:

. Setup Linkables Code:
. Setup Value Holders
Define Message Format
Setup MessageHandler

Node Contents:

Iocal_node
ftable
loral_valus
souree_node
value

local_value = (value +
local_value)/ 2;

e

ResponseMessage msg = new
ResponseMessage();
msg.source_node = source_node;
msg.value = local_value;

Previous

Hext

send(source_node , msg);

Figure 12. Setup Value Holders

The content of Message is defined in step 3.
As shown in Fig. 13,SendMessage and
ResponseMessage were defined. For each
message class, content such as source node and
value can be added.

[Send Function | [Tmpors | [

Hep |

Figure 15. SendMessageHandler —

T — & receiveMessage
Steps
I Ll e et Additionally, if the developer wishes to see
D T graphical experimental results, she can simply
ame. Type Add
R T TmE T click on and selects to-be-monitored
variables from a drop-down list. For the example
experiment, local_value was selected and the
et - — ()] ___ result was shown in Fig. 16.
1 SendMesmge
:RetpnnsaMemge 1

Figure 13. Define Message Format

5 Chart Report
Setting

L [B]X]

Statistics Data

local_value
o
=

20 25 =0

Time

-m local_value_std

a0 35 40 a5

6.

Figure 16. Experiment Result

Conclusion

environment, called PeerSim

(7]

(9]

In this paper, we developed a GUI integrated [10]
development
Cooker, for PeerSim. By using PeerSim Cooker,

developers can easily create required components

to complete simulated experiments. PeerSim
Cooker also provides a function that generates
graphical experiment results. The wizard mode

(11]

supported in PeerSim Cooker can reduce the
learning curve of PeerSim. Furthermore, by

utilizing UMPF, there is no need to design codes

for

each model of simulations. Currently,

PeerSim Cooker is available for download at [12]
http://xml.nchu.edu.twin the future, we wish to

provide a user-friendly editor for
Cookerand to develop a general model to adapt
the changes of the underlying PeerSim. Also, we

PeerSim

wish to further enhance UMPF so that less
memory is required.

References

(1]

(2]

(3]

(4]

(5]

(6]

M. Jelasity, A. Montresor and G. P. Jesi,
“PeerSim P2P Simulator,” [Online]
Available: http://peersim.sourceforge.net/

M. Jelasity, A. Montresor and O. Babaoglu,
“Gossip-based aggregation in large dynamic
networks,” ACM Transactions on Computer
Systems, vol. 23, no. 3, pp. 219-252,
August 2005.

G. P. Jesi, “PeerSim HOWTO: Build a new
protocol for the PeerSim 1.0 simulator,”
December 2005. [Online] Available:
http://peersim.sourceforge.net/tutorial2/tutor
ial2.html.

S. Joseph, “NeuroGrid: Semantically
Routing Queries in Peer-to-Peer Networks,”
Lecture Notes in Computer Science, vol.
2376, pp. 202 - 214, 2002

“KazAa” [Online] Available:
http://www.kazaa.com/us/index.htm.

E. Lu, Y. Huang, and S. Lu, “ML-Chord: A
Multi-Layered P2P Resource Sharing
Model”, to appear in the Journal of Network

(23]

(14]

(18]

(16]

(17]

(18]

(29]

and Computer Applications.

A. Marcozzi and D. Hales, “Emergent
Social Rationality in a Peer-to-Peer
System,” Technical Report

UBLCS-2006-23, University of Bologna,
Department of Computer Science, October
2006.

A. Montresor, “A Robust Protocol for
Building Superpeer Overlay Topologies,”
Proceedings of the Fourth International
Conference on Peer-to-Peer Computing, pp.
202 — 209, August 2004.

A. Montresor, M. Jelasity, O. Babaoglu,
“Chord on Demand,” Fifth IEEE
International Conference on Peer-to-Peer
Computing, pp. 87- 94, August 2005.

S. Naicken, A. Basu, B. Livingston and S.
Rodhetbhai, “A Survey of Peer-to-Peer
Network Simulators,” Proceedings of the
Seventh Annual Postgraduate Symposium,
June 2006.

S. Naicken, B. Livingston, A. Basu, S.
Rodhetbhai, I. Wakeman and D. Chalmers,
“The State of Peer to Peer Simulators and
Simulations,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 2,
2007.

“Napster” [Online] Available:
http://free.napster.com/.
“Narses” [Online] Available:

http://arxiv.org/abs/cs/0211024.

T. J. Overbye, P. W. Sauer, C. M. Marzinzik
and G. Gross, “A user-friendly simulation
program for teaching power
systemoperations,” IEEE Transactions on
Power Systems, vol. 10, no. 4, November
1995.

“P2PSim” [Online] Available:
http://pdos.csail.mit.edu/p2psim/.

G. Rossi, S. Arteconi and D. Hales,
“Evolving Networks for Social Optima in
the "Weakest Link Game",” Technical
Report UBLCS-2006-21, University of
Bologna, Department of Computer Science,
July 2006.

N. S. Ting and R. Deters, “3LS - A
Peer-to-Peer Network Simulator,”
Proceedings of the Third International
Conference on Peer-to-Peer Computing,
pp.212-213, 2003.

S. Wei, “A Discussion on User- Friendliness
and Application Design,” Computer
Applications and Software, no.9, 2002.

J. Wu, S. T. Chanson and Q. Gao, “Formal
Methods for Protocol Engineering and
Distributed Systems,” Proceedings of
International Federation for Information
Processing, October 1999.

