
PeerSim Cooker : A GUI IDE for PeerSim

Eric Jui-Lin Lu
Department of

Management Information
Systems,

National Chung Hsing
University

250, Kuo Kuang Rd.,
Taichung

402, Taiwan R.O.C.
jllu@nchu.edu.tw

Yau-Tsan Jang
Department of

Management Information
Systems,

National Chung Hsing
University

250, Kuo Kuang Rd.,
Taichung

402, Taiwan R.O.C.
g9629005@mail.nchu.edu.tw

Guan-Wei Hwang
Department of

Management Information
Systems,

National Chung Hsing
University

250, Kuo Kuang Rd.,
Taichung

402, Taiwan R.O.C.
earows @gmail.com

Abstract—Nowadays, P2P technology has
attracted a great attention in both academia and
industries. In general, simulators are used to
study the performance of P2P protocols.
However, it is found that it is very difficult for
beginners to get acquainted with any simulator.
To overcome this problem, we developed a
GUI-based integrated development environment,
called PeerSim Cooker for PeerSim. PeerSim
Cooker also provides a wizard mode that can
guide developers to accomplish experiments in a
step-by-step manner. Additionally, a Unified
Message Passing Framework is proposed and
embedded in PeerSim Cooker so that the tasks
required for developing experiments can be
further simplified.

Keywords: Peer-to-Peer, Simulator, IDE,
PeerSim.

1. Introduction

Since the wide spread usage of Napster[12]
and KazAa[5], people started to realize the power
of resource sharing in a Peer-to-Peer (P2P)
manner. As a result, many P2P protocols had
been proposed. In general, to study the
performance of a P2P protocol, a P2P simulator
such as Narses[13], 3LS[17], NeuroGrid[4],
P2PSim[15], PeerSim[1], etc. is employed.
Unfortunately, P2P simulators shared common
limitations: poor scalability, little or no
documentation, and steep learning curve.
Naichen et al. [10, 11] surveyed various P2P
simulators and reported that PeerSim is one of
the best P2P simulators. For example, PeerSim
can simulate both structured and unstructured
networks, allows nodes to dynamically leave or

join a network, can simulate up to millions of
nodes, and provides many reusable components
(e.g. a Node represents a node and a Linkable
represents a routing table). Also, PeerSim was
developed in Java which made it platform
independent. Therefore, many P2P research
projects [2, 6, 7, 8, 9, 16] employed PeerSim as
their simulation platform. Although PeerSim is
functional rich, it is still difficult for beginners to
correctly select and utilize existing components
to complete experiments. To reduce steep
learning curve, it is believed that a graphical user
interface (GUI) should be provided by simulators.
In addition, a wizard mode, that can step-by-step
guide developers to complete experiments, is a
big plus for simulators [14, 18, 19]. In this paper,
we developed a GUI-based integrated
development environment (IDE) for PeerSim
which is called PeerSim Cooker. PeerSim Cooker
also supports wizard mode to relieve difficulty in
learning PeerSim.

In PeerSim, two models of simulations are
supported – cycle-based and event-based models
[1]. To design an experiment using PeerSim,
developers have to determine which model is
used. Unfortunately, once a model is selected, the
program codes developed for the model cannot
be reused for the other model. In other words,
developers have to design one version of codes
for each model. To reduce the development
burden, a Unified Message Passing Framework
(UMPF) is proposed and embedded in PeerSim
Cooker. For simulation programs conforming to
UMPF, they can be run in either cycle-based or
event-based models.

The rest of the paper is organized as follows:
PeerSim is briefly described in Section 2. In
Section 3, UMPF is discussed in details. In
Section 4, we study the maximum numbers of
nodes in various simulation environments when
PeerSim Cooker is used. The experimental
results are also presented. The implementation

This research was partially supported by the National
Science Council, Taiwan, R.O.C., under contract no.: NSC
95-2221-E-005 -050 -MY2.

and screenshots of PeerSim Cooker is illustrated
in Section 5. Finally, the conclusions and
possible future works of PeerSim Cooker are
presented.

2. PeerSim

PeerSim[1] is a Java-based P2P simulator for
overlay networks. In a PeerSim simulated
network, each node is represented by an object of
type Node. Objects of type Control are used to
control nodes joining and leaving the network.
The behaviors (or protocols) of each node are
implemented by objects of type Protocol.

In general, the tasks of a typical experiment
using PeerSim include the following steps [3]: (1)
determine the number of nodes in a network, (2)
design Protocol objects and initialize them, (3)
design Control objects to control and possibly
monitor the network, and (4) execute the
simulation.

PeerSim supports two models of simulations –
cycle-based and event-based models. In
cycle-based simulations, PeerSim will
sequentially execute all node protocols in one
cycle. Between any two cycles, developers are
allowed to add Control objects. These Control
objects can be used to add or remove nodes, or
monitor the values of specified variables. For
example, as shown in Fig. 1, each node has two
protocols (P1 and P2). In the ith cycle, PeerSim
executes both P1 and P2 of all nodes, and C1 will
be executed before the end of the cycle.

Figure 1. An example cycle-driven simulation

In event-based simulations, events are defined
along a time axis. For each time tick, there may
be zero or more events. For each event, a
protocol is defined. For example, as shown in Fig.
2, there are two events (En and Em) defined in
time i. En defines the execution of P2 in node A,
while Em defines the execution of P1 in node B.

Figure 2. An example event-driven simulation

In PeerSim, developers have to determine
which model of simulations should be used. If
developers chose to experiment using
cycle-driven engine, program codes have to
implement the method nextCycle() as shown in
Fig. 3. On the contrary, if developers chose to
experiment using event-driven engine, program
codes developed earlier cannot be reused. This is
because, as shown in Fig. 3, program codes have
to implement the method processEvent(). To
overcome this problem, a Unified Message
Passing Framework (UMPF) is proposed.

Figure 3. PeerSim calling processes

3. Unified Message Passing
Framework – UMPF

As shown in Fig. 4, UMPF mainly include a
set of
peersimcooker.message.handler.Messag
eHandlers (abbreviated as MessageHandler)
and two classes, Cycle Driven Message
Manager (CDM) and Event Driven

Message Manager (EDM) which are called
by cycle-driven and event-driven simulators
respectively. All messages communicated among
CDM/EDM and MessageHandlers are
objects of subclasses of
peersimcooker.message.Message
(abbreviated as Message). Each Message has
a corresponding MessageHandler.

Figure 4. Unified Message Passing
Framework

For clarity, the example simulation
experiment in [3] is used for explanation. In the
experiment, each node has an integer value which
is randomly generated between 0 and 100. After
randomly selecting a neighbor node from its
routing table, each node will send its local value
to the neighbor node. After receiving a value, one
node will calculate the average of its local value
and the received value; set its local value to the
average; and send the average back to the source
node. As shown in Fig. 5, node A has a local

value 70, and node B has a local value 30. Node
A sends its local value to its neighbor node B.
Once the value is received, node B computes the
average which is 50, sets its local value to 50,
and then sends 50 back to node A.

Figure 5. An example experiment

For all subclasses of Message, developers
have to define all required information and a
method called getMsgType(). getMsgType()
returns a string which is used to select an
appropriate object of type MessageHandler.
For the example experiment, a SendMessage
class, which is a subclass of Message, is
defined. In the SendMessage as shown in Fig.
6, a value is declared to hold the value 70, and a
node is declared to hold the source node which is
node A. MessageHandler, which is a subclass
of Protocol, is a class which contains two
abstract methods – sendMessage() and
receiveMessage() which are needed to be
implemented by developers. The main purposes
of sendMessage() are to create a message and
notify a object to do something. When the
receiveMessage() of a node is invoked, the
node will execute whatever is needed to do when
receiving a message. There is one important
method send() in MessageHandler that
worth to be noted. send() is a general purpose
method, and there is no needs for developers to
write codes for it. By assigning appropriate
arguments, send() will send specified messages
to a specified object.

Figure 6. UML Diagram of SendMessage

By using the example, the simulation
procedure is described as follows if cycle-based
engine is used: When it is time for node A to
send a message, cycle-driven simulator executes
nextCycle() of a CDM object in node A. Then,
sendMessage() of node A’s
SendMessageHandler will be executed. In
the sendMessage(), a SendMessage object

(SMA), which contains node A and the value 70,
will be created and SMA will be sent to a target
object by using send(). Because cycle-driven
was selected, and because the target object is
node B, SMA will be sent to node B. When SMA
is received, node B calculates the average, resets
its local value to 50, and invokes
SMA.getMsgType() which returns a string
“SendMessage”. Based on the configuration file
as shown in Fig. 7, node B creates a
SendMessageHandler object (SMHB), and
SMHB.receiveMessage() will be executed. In
the receiveMessage(), a
ResponseMessage object (RMB), which is
similar to SMA, will be created, and RMB will be
sent back to node A. When RMB is received,
node A resets its local value to 50 and invokes
RMB.getMsgType() which returns a string
“ResponseMessage”. Based on the configuration
file as shown in Fig. 7, node A executes
receiveMessage() of the
ResponseMessageHandler object in node
A.

Figure 7. PeerSim Configuration

If event-based engine is used for the
experiment, the simulation procedure is described
as follows: When it is time for node A to send a
message, event-driven simulator will execute
processEvent() of a EDM object in node A.
The EDM object may receive two types of
objects from the simulator. One is Event objects,
and the other is Message objects. In the
example experiment, an Event object will first
be received. The EDM will execute
sendMessage() of a
SendMessageHandler object in node A. In
the sendMessage(), a SendMessage object
(SMA), which contains node A and the value 70,
will be created and SMA will be sent to a target
object by using send(). Because event-based
model was selected, the send() method will
send SMA as an event to the event-driven
simulator. When it is time SMA should be
executed, node B calculates the average, resets its
local value to 50, and invokes
SMA.getMsgType() which returns a string
“SendMessage”. Based on the configuration file
as shown in Fig. 7, node B creates a

SendMessageHandler object (SMHB), and
SMHB.receiveMessage() will be executed. In
the receiveMessage(), a
ResponseMessage object (RMB), which is
similar to SMA, will be created, and RMB will be
sent as an event to the event-driven simulator.
When RMB should be executed, node A resets its
local value to 50 and invokes
RMB.getMsgType() which returns a string
“ResponseMessage”. Based on the configuration
file as shown in Fig. 7, node A creates a
ResponseMessageHandler object (RMHA),
and RMHA.receiveMessage() will be
executed.

From the above discussions, it is clear that the
program codes for sendMessage() and
receiveMessage() are identical no matter
which models of simulation is selected. In other
words, developers only have to write one version
of codes, but can select either model at will.

4. Experiments
It is known that GUI components consume

more system resources and thus lower the
number of nodes that PeerSim could simulate. In
this section, we study the maximum numbers of
nodes in various simulation environments when
PeerSim Cooker is used. The example shown in
Fig. 5 was used for the following experiments.
Both cycle-based and event-based models were
studied. For each model, the example simulation
was run in three different cases. In case 1,
simulations were run in pure PeerSim; in case 2,
simulations were run in PeerSim Cooker which
read the configuration file used in case 1; in case
3, simulations were run in PeerSim Cooker’s
wizard mode. All experiments were executed on
a PC with an Intel Core 2 Duo CPU (1.86GHz),
2GB RAM, and JDK 1.6.0_07. Fig. 8 shows the
experimental results.

868,000

675,000

866,000

710,000
650,000

527,000

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

Cycle-driven Event-driven

Case 1

Case 2

Case 3

Figure 8. Comparison of the number of nodes in

different simulation environments

As shown in Fig. 8, in cycle-based simulations,
case 1, 2, and 3 can simulate up to 868,000,
866,000, and 710,000 nodes; respectively. In
event-based simulations, case 1, 2 and 3 can
simulate up to 675,000, 650,000 and 527,000;
respectively.

Gnutella was also used to study PeerSim
Cooker. All Gnutella simulations were run in
three different cases. As shown in Fig. 9, in
cycle-based simulations, case 1, 2, and 3 can
simulate up to 472,000, 458,000, and 246,000
nodes; respectively. On the other hand, in
event-based simulations, case 1, 2, and 3 can
simulate up to 280,000, 279,000, and 250,000
nodes; respectively.

472,000

280,000

458,000

279,000
246,000 250,000

0

100,000

200,000

300,000

400,000

500,000

Cycle-event Event-driven

Case 1

Case 2

Case 3

Figure 9. Comparison of the number of nodes

using Gnutella

5. PeerSim Cooker

PeerSim Cooker was developed in Java. Both
expert and wizard modes are supported by
PeerSim Cooker. In the expert mode, developers
can design components at their own will by
clicking on GUI components. In the wizard mode,
developers are guided to complete required
component step by step. In the interest of space,
only wizard mode is described below.

To simulate the example experiment, a
developer can set up basic configurations such as
the number of nodes and the simulation engine
by using the GUI components shown at the left
of Fig. 10. For the example, the number of nodes
was 1,000, cycle-based engine was selected, and
the number of cycles was set to 50. Then, “+”
button was clicked and a wizard window was
shown. After clicking on “Quick start for
Beginner”, one can create required components
guided by the wizard.

Figure 10. Main screen

As shown in Fig. 11, the first step was to build
up a topology for the simulated network. PeerSim
provides several topologies. Thus, a developer
can simply pick one from the drop-down list. If a

required topology does not exist, one can create
one by clicking “Add a Linkable”. In the
example experiment, “Random Connection” was
selected.

Figure 11. Setup Linkables

The second step is to set up resources for
each node. In the example experiment, a variable
called local_value was created. Then, after filling
in the range of local_value and selecting
“Uniform Distribution”, the developer clicked on
the “Setting” button in Fig. 12. This action results
in randomly generated integers between 0 and
100 will be uniformly distributed to all nodes.
Three types of distributions are provided by
PeerSim.

Figure 12. Setup Value Holders

The content of Message is defined in step 3.
As shown in Fig. 13, SendMessage and
ResponseMessage were defined. For each
message class, content such as source node and
value can be added.

Figure 13. Define Message Format

In step 4, MessageHandlers are defined.
For each Message defined in the previous step,
a corresponding MessageHandler has to be
defined. Thus, for the example experiment, the
developer defined two handlers –
SendMessageHandler and
ResponseMessageHandler. For each
MessageHandler, the developer also have to
implement both sendMessage() and
receiveMessage(). The program codes for the
sendMessage() and receiveMessage() of
SendMessageHandler are shown in Fig. 14
and Fig. 15. After finishing these program codes,

the developer can click on in Fig. 10.

Figure 14. SendMessageHandler —
sendMessage

Figure 15. SendMessageHandler —
receiveMessage

Additionally, if the developer wishes to see
graphical experimental results, she can simply

click on and selects to-be-monitored
variables from a drop-down list. For the example
experiment, local_value was selected and the
result was shown in Fig. 16.

Figure 16. Experiment Result

6. Conclusion

In this paper, we developed a GUI integrated
development environment, called PeerSim
Cooker, for PeerSim. By using PeerSim Cooker,
developers can easily create required components
to complete simulated experiments. PeerSim
Cooker also provides a function that generates
graphical experiment results. The wizard mode
supported in PeerSim Cooker can reduce the
learning curve of PeerSim. Furthermore, by
utilizing UMPF, there is no need to design codes
for each model of simulations. Currently,
PeerSim Cooker is available for download at
http://xml.nchu.edu.tw. In the future, we wish to
provide a user-friendly editor for PeerSim
Cooker and to develop a general model to adapt
the changes of the underlying PeerSim. Also, we
wish to further enhance UMPF so that less
memory is required.

References
[1] M. Jelasity, A. Montresor and G. P. Jesi,

“PeerSim P2P Simulator,” [Online]
Available: http://peersim.sourceforge.net/.

[2] M. Jelasity, A. Montresor and O. Babaoglu,
“Gossip-based aggregation in large dynamic
networks,” ACM Transactions on Computer
Systems, vol. 23, no. 3, pp. 219–252,
August 2005.

[3] G. P. Jesi, “PeerSim HOWTO: Build a new
protocol for the PeerSim 1.0 simulator,”
December 2005. [Online] Available:
http://peersim.sourceforge.net/tutorial2/tutor
ial2.html.

[4] S. Joseph, “NeuroGrid: Semantically
Routing Queries in Peer-to-Peer Networks,”
Lecture Notes in Computer Science, vol.
2376, pp. 202 - 214, 2002.

[5] “KazAa” [Online] Available:
http://www.kazaa.com/us/index.htm.

[6] E. Lu, Y. Huang, and S. Lu, “ML-Chord: A
Multi-Layered P2P Resource Sharing
Model”, to appear in the Journal of Network

and Computer Applications.
[7] A. Marcozzi and D. Hales, “Emergent

Social Rationality in a Peer-to-Peer
System,” Technical Report
UBLCS-2006-23, University of Bologna,
Department of Computer Science, October
2006.

[8] A. Montresor, “A Robust Protocol for
Building Superpeer Overlay Topologies,”
Proceedings of the Fourth International
Conference on Peer-to-Peer Computing, pp.
202 – 209, August 2004.

[9] A. Montresor, M. Jelasity, O. Babaoglu,
“Chord on Demand,” Fifth IEEE
International Conference on Peer-to-Peer
Computing, pp. 87- 94, August 2005.

[10] S. Naicken, A. Basu, B. Livingston and S.
Rodhetbhai, “A Survey of Peer-to-Peer
Network Simulators,” Proceedings of the
Seventh Annual Postgraduate Symposium,
June 2006.

[11] S. Naicken, B. Livingston, A. Basu, S.
Rodhetbhai, I. Wakeman and D. Chalmers,
“The State of Peer to Peer Simulators and
Simulations,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 2,
2007.

[12] “Napster” [Online] Available:
http://free.napster.com/.

[13] “Narses” [Online] Available:
http://arxiv.org/abs/cs/0211024.

[14] T. J. Overbye, P. W. Sauer, C. M. Marzinzik
and G. Gross, “A user-friendly simulation
program for teaching power
systemoperations,” IEEE Transactions on
Power Systems, vol. 10, no. 4, November
1995.

[15] “P2PSim” [Online] Available:
http://pdos.csail.mit.edu/p2psim/.

[16] G. Rossi, S. Arteconi and D. Hales,
“Evolving Networks for Social Optima in
the "Weakest Link Game",” Technical
Report UBLCS-2006-21, University of
Bologna, Department of Computer Science,
July 2006.

[17] N. S. Ting and R. Deters, “3LS - A
Peer-to-Peer Network Simulator,”
Proceedings of the Third International
Conference on Peer-to-Peer Computing,
pp.212–213, 2003.

[18] S. Wei, “A Discussion on User- Friendliness
and Application Design,” Computer
Applications and Software, no.9, 2002.

[19] J. Wu, S. T. Chanson and Q. Gao, “Formal
Methods for Protocol Engineering and
Distributed Systems,” Proceedings of
International Federation for Information
Processing, October 1999.

