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Abstract-In modern cellular telecommunications
systems, the entire service area of a country is
divided into cells. Cells are normally thought of as
hexagonal grids. One common method used to
place transmitters for cellular telephones is to
place them at the corner points of each hexagonal
grid. Motivated by the placement of transmitters
for cellular telephones, Chang, Kloks, and Lee
introduced the concept of maximum-clique
transversal sets on graphs in 2001. In this paper,
we show that cellular networks modeled by
distance-hereditary graphs are maximum-clique
perfect. The maximum-clique transversal number
and the maximum-clique independence number of
a distance hereditary graph can be computed in
linear time.
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1. Introduction

All graphs in this paper are undirected, finite,
and simple. Let G = (V, E) be a graph with [VI=n
and |El = m. For a graph G, we also use V(G) and
E(G) to denote the vertex set and edge set of G,
respectively. We use G[W] to denote a subgraph
of G induced by a subset W of V. For any vertex

inve V, a clique is a subset of pairwise adjacent
vertices of V. A maximal cligue is a clique that is
not a proper subset of any other clique. A clique
is maximum if there is no clique of G of larger
cardinality. The clique number of G, denoted by
w(G), is the cardinality of a maximum clique of G.
We use Q(G) to denote the collection of all
maximum cliques of G. A maximum-clique
transversal set of a graph G = (V, E) is a subset of
V intersecting all maximum cliques of G. The
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maximum-clique transversal number of G, denoted
by 7,,(G) , is the minimum cardinality of a
maximum-clique transversal set of G. The
maximum-clique transversal set problem is to find
a maximum-clique transversal set of G of
minimum  cardinality. A maximum-clique
independent set of G is a collection of pairwise
disjoint maximum cliques of G. The
maximum-clique independence number of G,
denoted by ¢, (G), is the maximum cardinality of

a maximum-clique independent set of G. The
maximum-clique independent set problem 1is to
find a maximum-clique independent set of G of
maximum cardinality. It is clear that the weak
duality inequality a, (G) <1, (G) holds for any
graph G.

Cligue transversal and clique independent sets
are closely related to maximum-clique transversal
and maximum-clique independent sets. They have
been studied in [3,4,5,6,7]. In this paper, we define
a graph G to be maximum-clique perfect if
7, (H)=a,, (H) for every induced subgraph H of
G.

A graph G = (V,E) is called distance
hereditary if every pair of vertices are equidistant
in every connected induced subgraph containing
them. The following theorem shows that
distance-hereditary graphs can be defined
recursively.

Theorem 1. [2] Distance-hereditary graphs can be

defined recursively as follows:

1. A graph consisting of only one vertex is
distance hereditary, and the twin set is the
vertex itself.

2. If G; and G, are disjoint distance
hereditary graphs with the twin sets 7S(G))
and TS(G,) , respectively, then the graph
G=G, UG, is a distance-hereditary graph
and the twin set of G is TS(G) = TS(G,) U



TS(G,). G is said to be obtained from G; and
G, by a false twin operation.

3. If G; and G, are disjoint distance
hereditary graphs with the twin sets 7S(G,)
and TS(G,) , respectively, then the graph
G obtained by connecting every vertex of
TS(G;) to all vertices of TS(G,) is a
distance hereditary graph, and the twin set of
G is TS(G) = TS(G1) U TS(G,). G is said to
be obtained from G; and G, by a true twin
operation.

4. If G; and G, are disjoint distance
hereditary graphs with the twin sets 7S(G,)
and TS(G,) , respectively, then the graph
G obtained by connecting every vertex of
TS(G;) to all vertices of TS(G,) is a
distance hereditary graph, and the twin set of
G is TS(G) = TS(Gy). G is said to be obtained
from G, and G, by a pendant vertex operation.

Following Theorem 1, a binary ordered
decomposition tree can be obtained in linear time
[1]. In this decomposition tree, each leaf is a single
vertex graph, and each internal node represents
one of the three operations: pendant vertex
operation (labeled by P), true twin operation
(labeled by T), and false twin operation (labeled by
F). This ordered decomposition tree is called a
PTF-tree.

2. Main Result

In this section, we will prove that distance
hereditary graphs are maximum-clique perfect.
Due to space limitations, we have to omit the proof
of each lemma and theorem in this section.

Definition 1. Recall that Q(G) denotes the
collection of all maximum cliques of G. Hence
O(G[TS(G)]) is the collection of all maximum
cliques of GI[TS(G)] . We use OQrs(G) to
denote the collection of all maximum cliques of G
which are maximum cliques of G[7S(G)] and
use Qﬁ (G) to denote the collection of all

maximum cliques of G which are not maximum
cliques of G[TS(G)]. Hence Q(G) =
Ors(G) Vo= (G) - Let Qi G) = QG

U Q(GITS(G))) . Qx(G) denotes the collection of
all maximum cliques of G and all maximum
cliques of G[TS(G)] .

Definition 2. Suppose that a distance hereditary
graph G is obtained from two disjoint distance
hereditary graphs G; and G, by one of the three
operations: pendant vertex operation, true twin

operation, and false twin operation. We use w, w,,
wi, W, , wa, and w, to denote the clique numbers
1 2

of G, G[TS(G)], G, GITSG)], Gy,
and G,[TS(G,)], respectively.

Lemma 1. Suppose that G is a graph obtained
from two disjoint distance hereditary graphs G,

and G, by a false twin operation. Leti € {1,2}.
Then,
O(GITS(G)) if W, > W5
(I)Q(G[TS(G)] _ O(GITS(Gy)D if w, >w,;
O(GITS(G)D) VW O(G,ITS(G,)D
ifw, =w,.
0(@G) if w,>w,;
@ 0G)=10@G,) if w, > w;:
0(G)UO(G,) if w,=w,.
05 (G)) if wy > wy;
3 0,4(6)=105(Gy) it w, > w;:
O (G) VU O (Gy) if wy =w,.
Q%(GQ if w, > w,;
(4)QE(G) =10-(G,) if w, > w;
0-.(G)UO-(G,) if w =w,

0:(G) V2 (Gy)

if w, =w, andw, =w;;

0:(G)VO(G[TS(G )N

(3) if w, =W, and w, <w,_;;
0:(G)=10:(G) V0 (Gy )

if w, >w, andw, =w,;

QG ITS(G)IDV O(Gy,)

ifw, >w, andw, <wy_;

0,(G) ifw, >w, andw, >w, ;

Definition 3. Suppose that G is a graph obtained
from two disjoint distance hereditary graphs G,
and G, by a true twin operation or a pendant vertex
operation. We use Qpp(G) to denote
{q, 94,14, € Q(G|[TS(G))]) and g, € Q(G,[TS(G,)D}.

Lemma 2. Suppose that G is a graph obtained
from two disjoint distance hereditary graph G, and
G, by a true twin operation. Then,

(1) O(GITS(G))) = 012(G).



0, G)if w, W, >max{w,,w,};
0,,(G) U 0 (G)if Wt wW, =W > W,
0,(G)VOL(G)if w, +w, =w, >w;
@) 0,(G)U 0= (G)UQ~(G,)

ifw, +w, =w =w,;

0(G)=40(G)) =0%(G))

if w, +w, <w and w, >w,;
0(G,)=05(G))

if w, +w, <w, and w, >w;;
05(G)wO5(G,)

ifw, +w, <w =w,.

¢ if w, +w, >max{w,w,};
O5(G) it w, +w, =w, >wy;
05(Gy) it w, +w, =w, >w;
©) 05(G) L 0(G,)

ifw, +w, =w, =wy;
0-(G)=10(G)=0-(G))

if w, +w, <w, andw, >w,;
0(G,)=05(Gy)

if w, +w, <w, andw, >w,;
0-(G)U0=(G,)

ifw, +w, <w =w,.

“

055(G) = {Q(G[TS(G)]) if W, T W, 2 max{w, w, };

@, otherwise.

) 9,)= {Q(G) T+, = maxi, v
O(G[TS(G)]) U O(G), otherwise.

Lemma 3. Suppose that G is a graph obtained
from two disjoint distance hereditary graph G, and
G, by a true twin operation. Then,

0,(G)if w, +w, >max{w,,w,};
0,(G)VOL(G)if W, W, =W > Wy
le(G) Y Qﬁ (Gz)

ifw, +w, =w, >w;

0,,(G)V O (G)LOL(G,)

ifw, +w, =w, =w,;

0(G))=05(G))

if w, +w, <w and w, >w,;

Q(Gz) = Qﬁ (Gz)

if w, +w, <w,andw, >w;
05(G)U0x(G,)

if W, W, <w =w,.

ey

0(6)=

0,(G)VO(GTS(G)D

if w, +w, >max{w,w,};

0,(G) VO (G)If w, +w, =w, > wy;
Q(GITS(G)DHV 0, (G) L O (G,)
@ if w, W, =w, >w;

0,(G) VO (G)VUOK(Gy)
0:(G)=1if w, +w,_ =w, =w,;

0,(G)

if w, +w, <w andw, >w;
Q(G[TS(G)DHV 25(G,)

if w, +w, <w, andw, >w;
0,(G)V0K(G,)

if w, +w, <w=w,

(3) Q@GITS (G =Q(GTS(G)]) » Q(G)=¢ » and
0..(G)=0(G)-

Lemma 4. Suppose that G is a graph obtained
from two disjoint distance hereditary graphs G,
and G, by a true twin operation or a pendant vertex
operation. Let S be a maximum-clique transversal
set of G . If w, +w, = max{w,w,} then either

SATS(G,) is a maximum-clique transversal set of
G[TS(G))] or g NTS(G,) is a maximum-clique
transversal set of G,[TS(G,)].

Definition 4. A strong  maximum-clique
transversal set of G is a subset of V that intersects
all cliques in Qg(G) . We use SCT(G) to
represent a strong maximum-clique transversal set
of G.

Definition 5. A weak maximum-clique transversal
set of G is a subset of V that intersects all cliques
in 0 (G)- We use WCT(G) to represent a weak

maximum-clique transversal set of G.

Definition 6. An expanded maximum-clique
independent set of G is a collection of pairwise
disjoint cliques in Qg(G). We use ECI(G) to
represent an  expanded maximum-clique
independent set of G .

Definition 7. A  weak  maximum-clique
independent set of G is a collection of pairwise
disjoint cliques in 0 (G)- We use WCI(G) to

represent a weak maximum-clique independent
setof G.

Definition 8. Let CT(G) and CI(G) denote a



maximum-clique  transversal set and a
maximum-clique independent set of G ,
respectively. We say that a distance hereditary
graph G holds the strong duality if there exist a

CT(G), a CIG), a CT(G[TS(G)]) , a
CIGI[TS(G)]) , a WCT(G) , a WCIG) , an
SCT(G) , and an  ECI(G) such that the

following five conditions are satisfied: (1) ICT(G) |
= ICI(G)l, (2) ICT(GITS(G)DI = ICI(G[TS(G)]),
3) WCTG) = IWCIKG)! , @) ISCT(G)l =
I[ECI(G)I , and (5) WCI(G) is a subset of
ECI(G) . Let XI(G) denote ECI(G)-WCI(G)-

Definition 9. Assume that G is a distance

hereditary graph formed from two disjoint distance

hereditary graphs G, and G, by a pendant vertex

operation or by a true twin operation, and both G,

and G, hold the strong duality. Suppose that XI(G)

=(eyonc, ) XIG) =(a,.....d,}» CHGITS(G)))

= {prop, ) and CHGITSGDD = (g....q, ) We
have the following definitions.

(1) Let k& = min{k;, k}. We let XX(G) =
{c,ud,l1<i<k) and let XX'(G) =

if K > k and XX'(G) = ¢
otherwise.

(2) Let r = min{r;, r}. We let TT(G)
{pugli<i<ry and let  TT°(G)
{(Prsenp,} if 1> r and TT(G) = ¢
otherwise.

(3) Let ¢ = min{k,, r,}. We let XT(G)
{cugll<i<sy and et XT'(G)

and XT(G) = ¢

{Cruscy} if kb > /

otherwise.
4) Let s = min{r;, k}. We let TX(G)
{pudll<i<sy and let TX(G)

if 1> s and TX'(G) = ¢

{Poseees Py}
otherwise.

Lemma 5. Assume that G is a graph of single
vertex and v is the vertex of G. There exist the
following sets: (1) CT(G)={v}, (2) CT(GI[TS(G)])=
{v}, (3) SCT(G)={v}, (4) WCT(G)=@, (5) WCI(G)
=@, (6) ECIG) = {v}}, () CIGITS(G))) =
{{v}}, and (8) CI(G) = {{v}} such that G holds
the strong duality.

Lemma 6. Assume that G is obtained from two
disjoint distance hereditary graphs G, and G, by a
false twin operation , and both G, and G, hold the

strong duality. Let i€ {1,2}. There exist the
following sets such that G holds the strong duality.
CT(G) if w; >wy;
M CT(G)={CT(G,)if w, >w;
CT(G)UCT(G,))if w=w,.
CT(GITS(G))) if w, >w,:
@ CT(G,ITS(G)D) it w, >w,;
CT(GITS(G)]) = P
CT(G[TS(G)D W CT(G,[TS(G,)D)
itw, =w,.
SCT(G,) U SCT(G,)
ifw, =w, andw, =w,;
SCT(G,) UCT(G,_[TS(G,.)])
if w, =w,_andw, >w,_;
SCT(G,) UWCT(G,_,)
ifw, >w,_ andw, =w,;
CT(G,ITS(G,))) UWCT(G,_,)
if w, >w,_ andw, <w,;
SCT(G,)
ifw, >w,_ andw, >w, ;
@) WCT(G)) if w, > w,;
WCT(G) = {WCT(G,)if w, > w;
WCT(G,)) UWCT(G,)if w, = w,.
WCI(G,) if w, > w,;
WCI(G) = {WCI(G,)if w, > w;
WCI(G,) UWCI(G,)if w, = w,.
ECI(G,) UECI(G,)
if w,=w, andw, =w,;
ECI(G,) UCI(G,_[TS(G,)])
if w, =w, and w; >w,_;;
ECI(G,) UWCI(G, ,)
ifw, >w, andw, =w,;
CI(G,ITS(G,)))) UWCI(G,_,)
if w >w,_ andw, <w,;
ECI(G))
ifw, >w,_ andw, >w, ;
CIGTSG))) if w, >w, ;
7 CI(G,ITS(G,)]) if w, >w,;
CI(GITS(G)) = ’ !
CI(G|[TS(G)]) W CI(G,[TS(G,)])

ifw, =w,.

3

SCT(G)=

&)

(6)

ECI(G)=

®)
CI(G)) if w, > wy;

CI(G) =< CI(G,)if w, >w;
CI(G) U CI(G,)if w, =w,.

Lemma 7. Assume that G is obtained from two
disjoint distance hereditary graphs G, and G, by a
pendant vertex operation , and both G, and G, hold
the strong duality.



min{CT(G,[TS(G)]),CT(G,[TS(G,))}
if w, +w, > max{w,,w,};

min{SCT(G,),WCT(G,) U CT(G,[TS(G,)]}
if W, W, =W > Wy
min{SCT(G,),WCT(G,) UCT(G,[TS(G)D}
it w, +w, =w, >w;

min{SCT(G,) UWCT(G,),

1) CT(G)=1WCT(G,) U SCT(G,)}

if w, W, =W =w,;
CT(G,)=WCT(G))

if w, +w, <w and w, >w,;
CT(G,)=WCT(G,)

if w, +w, <w,andw, >w;
WCT (G,) UWCT(G,)

it w, +w, <w, =w,

(2) CT(GITS(G)]) = CT(G,[TS(G))).

(3) WCT(G) = CT(G).

(4)SCT(G) =

SYWCI(G) =

CT(G,[TS(G))])

if w, +w, >max{w,w,};
SCT(G,)

if w, +w, =w >w,;

WCT (G,) W CT (G|[TS(G))])
if w, +w, =w,>w;
SCT(G,) WWCT (G,)

if w, W, =W =Wy
SCT(G,)

if w, +w, <w andw, >w,;
WCT (G,) W CT (G|[TS(G))])
if w, +w, <w,andw, >w;
SCT(G,) WWCT (G,)

if w, +w, <w=w,

TT(G)

if w, +w, >max{w,w,};
WCI(G)) U XT(G)

if w, W, =w > Wy
WCI(G,) UTX (G)

if w, +w, =w,>w;
WCI(G,) UWCI(G,) LU XX (G)
if w, +w, =w =wy;
WCI(G,)

if w, +w, <w andw, >w,;
WCI(G,)

if w, +w, <w,andw, >w;
WCI(G,) UWCI(G,)

if w, +w, <w=w,

TT(G) UTT'(G)

if w, +w, >max{w,w,};
WCI(G,) U XT(G) U XT'(G)
ifw, +w, =w>w,;
WCI(G,) UTX (G) UTX(G)
if w, W, =W, >w;
WCI(G,) uWCI(G,) v

(6) ECI(G) =< XX (G) U XX'(G)

ifw, +w, =w=w,;
ECI(G))

if w, +w, <w andw, >w,;
WCI(G,) v CI(G|[TS(G)])
if w, +w, <w, andw, >w;
ECI(G) WWCI(G,)

if w, W, <w =w,.

(7) CI(GITS(G)]) = CI(G|[TS(G)]).
(8) CI(G) = WCI(G).

Lemma 8. Assume that G is obtained from two
disjoint distance hereditary graphs G, and G, by a
true twin operation , and both G; and G, hold the
strong duality.

min{CT (G,[TS(G)]),CT (G,[TS(G,)])}
if w, +w, >max{w,w,};
min{SCT (G,),WCT (G,) v
CT(G,[TS(G,)D}

ifw, +w, =w >wy;
min{SCT (G,),WCT (G,) v
CT(G[TS(G)D)

ifw, +w, =w,>w;

(1) CT(G) =ymin{SCT(G,) UWCT (G,),
WCT (G,) U SCT(G,)}

ifw, +w, =w =wy;
CT(G,))=WCT(G,)

if w, +w, <w, andw, >w,;
CT(G,)=WCT(G,)

if w, +w, <w,andw, >w;
WCT (G)) WWCT (G,)

if w, W, <w =w,.

(2) CT(GITS(G)]) = min{CT (G,[TS(G))D),
CT(G,ITS(G))D.



BYWCT(G) =

4) SCT(G)=

BS)YWCI(G) =

9

if w, +w, >max{w,w,};

WCT (G))

ifw, +w, =w >wy;

WCT (G,)

ifw, +w, =w,>w;

WCT (G,) VWCT (G,)

if w, W, =w =Wy
WCT(G,)

it w, +w, <w andw, >w,;
WCT (G,)

if w, +w, <w,andw, >w;
WCT (G,) WWCT (G,)

if w, +w, <w=w,

min{CT (G,[TS(G))), CT(G,[TS(G,)D}

if w, +w, >max{w,w,};
min{SCT(G,),WCT (G,) v
CT(G,[TS(G)D}

ifw, +w, =w >wy;
min{SCT(G,),WCT (G,) v
CT(GTS(GDD}

ifw, +w, =w,>w;
min{SCT(G,) UWCT (G,),
WCT (G,) U SCT(G,)}

ifw, +w, =w =w,;
min{SCT(G)),WCT (G,) u
CT(G,[TS(G,)D}

if w, +w, <w andw, >w,;
min{SCT(G,),WCT (G,) v
CT(G[TS(G)D}

if w, +w, <w,andw, >w;
min{SCT(G,) UWCT (G,),
WCT (G,) U SCT(G,)}

if w, W, <w =w,.

9

if w, +w, >max{w,w,};
WCI(G))

if w, +w, =w >wy;
WCI(G,)

if w, +w, =w,>w;
WCI(G)) WWCI(G,)

if W, W, =W =Wy
WCI(G))

if w, +w, <w andw, >w,;
WCI(G,)

if w, +w, <w,andw, >w;
WCI(G)) WWCI(G,)

ifw, +w, <w=w,

(6) ECI(G) =

TT(G)

if w, +w, >max{w,w,};
WCI(G) v XT(G)

if w, +w, =w >wy;
WCI(G,) VTX(G)

ifw, +w, =w,>w;

WCI(G,)) WWCI(G,) U XX(G)
ifw, +w, =w =w,;

WCI(G)) U XT(G)

if w, +w, <w andw, >w,;
WCI(G,) VTX(G)

if w, +w, <w,andw, >w;
WCI(G,)) WWCI(G,)u XX (G)

ifw, +w, <w =w,

(7) CI(G[TS(G)]) = TT(G).

®) cr(6)= {ECI(G) if w, +w, > max{w, w};

WCI(G), otherwise.

Theorem 2. Distance hereditary graphs are
maximum-clique perfect.

Theorem 3. For any distance hereditary graph G,

Ty

(G)and &, (G) can be computed in linear

time.
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