
Representing Multiple Mappings between Relational and XML Schemas to
Support Interoperability ∗

Ya-Hui Chang and Chia-Zhen Lee
Department of Computer Science
National Taiwan Ocean University
Email: yahui@mail.ntou.edu.tw

Abstract

Providing interoperability between relational databases
and XML databases has been an important research is-
sue. In this paper, we propose a set of mappings to rep-
resent the correspondence between the relational schema
and the XML schema. Particularly, we consider the case
of multiple mappings between value, collection, and struc-
ture constructs. Based on the mapping information, rela-
tional queries and XML queries could be transformed to
each other and information could be therefore shared. We
have built a prototype and experimental results validate the
proposed approach.

Keywords: schema mapping, query transformation, XML
schema, relational schema

1 Introduction

XML has emerged as the de facto standard for data repre-
sentation and exchange on the World-Wide-Web, while re-
lational databases are widely used in enterprises to support
critical business operations. Providing a convenient way to
access data in the two formats is thus a very important issue.

One of the main approach is to represent XML docu-
ments in relational databases [1, 2, 5], where users pose
XQuery statements against the XML view, and queries are
transformed into SQL which are executed in the underlying
relational databases. On the other hand, native XML data
repositories have received a lot of attention [3, 4], and there
is a need to transform the SQL statements coded in existing
applications into XQuery to get the data represented in the
new format.

In this paper, we propose a general framework, where
SQL and XQuery statements can be easily transformed to
each other. The main challenge to achieve this goal is

∗This work is partially supported by the Republic of China National
Science Council under Contract No. NSC 96-2221-E-019-048-.

to properly represent the mapping between the relational
schema and the XML schema, where representational con-
flicts exist. Take thestructureconstructs as an example. A
relational schema is usually considered asflat, since no ex-
plicit structures exist between relations and the relationship
is constructed by joining attribute values. On the contrary,
the relationship between XML data could be directly rep-
resented through thenestingstructure. The correspondence
between a join and a nesting structure will need to be pre-
sented. Moreover, we consider the possibility of multiple
mappings between the different constructs in two schemas,
which is usually neglected to simplify the transformation
process.

The contributions of this paper could be summarized as
follows:

• Classification of the representational conflicts: We
consider thevalue, collection, andstructureconstructs
represented in the relational and XML schemas, and
discuss the possible sources of representational con-
flicts.

• Specification of the mapping of schemas: We design
a set of mappings to represent the correspondence be-
tween different constructs of the relational schema and
the XML schema. The type of mappings is represented
to help the selection among multiple choices.

• Design of the transformation algorithms: We have
designed a set of algorithms, which utilize the map-
ping information to perform query transformation be-
tween the most common type of SQL and an equiva-
lent XQuery statement. Experimental results show the
feasibility and efficiency of the proposed approach.

The remaining of this paper is organized as follows. In
Section 2, we describe how to represent relational and XML
schemas, and formulate the problem to solve. In Section 3,
we define a set of mappings between different schema con-
structs. Transformation algorithms along with examples are

����

�������

����

����

	
����

	
�����

�����
���

��������

��������

�����
����

�
�����

�������

�
������

�����
��

�������
�
�����

��������

�
������

�
�����

����

�������

	
������

	
����

����

	������

�����

��������

	
�����

���������
�

��������	�

Figure 1. The sample relational schema rdb
����

�������	�

�
��

�
���������	

�����
�	

��	�

�	��	

��
�

��
��
��

���

����

�
�� ������ �	���

��
�

�

�

�

�
�� ������

�
��� ��

���

��������

��������

�

Figure 2. The sample XML schema xdb

presented in Section 4, and experiments are described in
Section 5. Finally, we conclude this paper with a brief sum-
mary in Section 6.

2 Preliminaries

In this section, we show the representations of the rela-
tional schema and the XML schema, and the correspond-
ing queries. We also formalize the problem to solve in this
paper.

2.1 Schema Representations

The relational schema is represented as a graph, where each
box corresponds to a relation. The attributes associated with
the relation is represented within the box, with the primary
key on the top. The foreign key is represented as an arrow
pointing to the corresponding primary key. A sample re-
lational schema is illustrated in Figure 1. We can see that
the attributepartkeyof the relationpartsuppis a foreign
key corresponding to the primary keypartkeyof the rela-
tion part. We further classify the relations into two types.
The E-relation refers to a relation which describes the in-
formation of an entity,e.g., supplier, part, andorder. The
R-relationrefers to a relation which describes the relation-
ship among other entities,e.g., partsuppandlineitem.

The XML schema is also represented as a graph, where

elements are represented as square nodes, and the nesting
relationship between elements is represented by the rela-
tionship of parent/child in the graph. The sample XML
schema, which represents similar information as in Fig-
ure 1, is illustrated in Figure 2. We also define several spe-
cial kinds of nodes. First, therepeatable elementrefers to
an internal node which is allowed to have multiple occur-
rences under the same parent element, and is annotated by
the symbol “star”,e.g., order. On the other hand, thedummy
element, e.g., suppliers, is an internal node which is usually
introduced just to group elements that appear beneath it. Fi-
nally, theleaf nodesare associated with values. They might
be elements, which are named asvalue elementsand are
denoted by rounded rectangles, or they might beattributes,
which are represented using dashed lines. We also use dot-
ted lines to connect two leaf nodes which are semantically
equivalent.

To uniformly refer to the construct represented in differ-
ent schemas but with the same functionality, we define the
following terms. Avalue constructis the construct which
directly represents data. It will be theattribute in relational
databases, and thevalue elementor theattribute in XML
databases. Thecollection constructis a construct which
represents a set (multi-set) of data with homogeneous struc-
tures. It will be therelation in the relational databases, or
therepeatable elementin the XML databases. Thestructure
constructis used to connect two collections. In XML, it can
be directly represented by thenesting construct. As seen
in Figure 2, theorder element is directly nested within the
elementpart. In contrast, since a relational database has a
“flat” structure, which has no direct structure construct, the
relationship between relations is built by specifyingjoining
statementsin the query, particularly through primary keys
and foreign keys. This will be explained further in the next
subsection.

2.2 Sample Equivalent Queries

We use the standard SQL and XQuery to explain the syntac-
tic difference of the query languages for different schemas.
Suppose the user intends to identify the type of all parts with
the name “dvd”, and retrieves the name of its suppliers. The
SQL query posed against the relational schema in Figure 1
will be as follows:

SQ1:
SELECT supplier.name, part.type
FROM supplier, part, partsupp
WHERE part.name = “dvd” AND (1)

supplier.suppkey = partsupp.suppkey AND (2)
part.partkey = partsupp.partkey (2)

To briefly explain, the FROM clause is used to enumer-
ate all the relations consulted, and the SELECT clause lists

the attributes for output. The conditional statements listed
in the WHERE clause could be classified into two types: the
one marked with (1) is called theselection statement, which
restricts the values of certain attributes; the one marked with
(2) is called thejoin statement, which constructs the rela-
tionship between two relations. Note that the two join state-
ments construct the relationship between the two relations
supplierandpart.

The XQuery statement which performs the same func-
tion asSQ1does, but is appropriate for the XML schema in
Figure 2, will be as follows:

XQ1:
FOR $t0 in /tpch/suppliers/supplier , $t1 in $t0/part
WHERE $t1/name = “dvd”
RETURN $t0/name, $t1/type

An XQuery statement uses the FOR clause to list a se-
quence of variable bindings. In this query, the variablet0
considers all suppliers, and the variablet1 examines all the
parts supported by a supplier. The WHERE clause is used
to specify the selection condition, and the RETURN clause
specifies what to output. Note that XQuery usespath ex-
pressionssuch as/tpch/suppliers/supplierto navigate the
nesting structure of the XML schema.

Similarly, we define some terms which have the com-
mon functionality in different query languages. First,value
literals refer to those statements represented in the SE-
LECT/RETURN clause, such assupplier.name, or the se-
lection statement in the WHERE clause. Thecollection
literals refer to the relations or elements extracted from
the FROM/FOR clause, such as/tpch/suppliers/supplier.
Finally, the structure literal will be thejoin statementin
the WHERE clause, such as“supplier.suppkey = part-
supp.suppkey”, or thenesting statementin the FOR clause,
such as“ $t1 in $t0/part” .

2.3 Problem Definition

In this paper, we intend to translate an input XQuery into
an equivalent SQL query, or vice versa. Traditionally, two
equivalent queries in the same database mean that they can
retrieve the same set of data. This definition does not
apply in our heterogenous environment, since the data in
two databases might not be the same, due to different data
sources, constraints, or formats. Therefore, we define the
equivalency based on the query statements themselves, as
follows:

Definition 2.1 Given the input queryqi and the output
queryqo, qi andqo will be strongly equivalent, denotedqi ≡
qo, if they have the same numbers of value literals, collec-
tion literals, and structure literals, and the corresponding
literals are equivalent.

Definition 2.2 Given the input queryqi and the output
queryqo, qi andqo will be weakly equivalent, denotedqi '
qo, if they have the same number of equivalent value liter-
als, but with different numbers of equivalent collection liter-
als. However, the collections inqo are connected by proper
structure literals.

For the sample queries above, SQ1 is weakly equiva-
lent to XQ1 based on the definition. It is due to multiple
mappings between the two schemas, as will be explained
later. Therefore, we will consider a translated query to be
correct, if it is strongly or weakly equivalent to the input
query. Now the problem to solve in this paper could be for-
mally stated as follows: “Consider two relational or XML
schemas, where there might exist multiple mappings be-
tween the value, collection, or structure constructs. Given
an input query, produce the correct translated query.”

3 Representations of Schema Map-
pings

We discuss how to represent schema mapping between the
relational schema and the XML schema in this section. The
sample schemas described in Section 2 will be used as ex-
amples, and will be calledrdb andxdb, respectively. Also,
when refering to a construct in an XML schema, we will
only specify the element name, instead of the complete path
expression from the root, when there is no confusion.

3.1 Representing Value and Collection Map-
pings

Values between two databases might exist multiple map-
pings, due to redundant representations, or keys which are
represented in two relations to construct joins. We define
the following Value Mapping (VM) to represent the corre-
spondence between values in two schemas:

Definition 3.1 Given a value constructvi from schema1,
VM(vi) will return the set of tuples (vo, type), wherevo

represents the equivalent value construct represented in
schema2, and the value of types could be PK (standing for
primary keys), FK (standing for foreign keys), or ANY.

In the case of multiple mappings, types are used
to define the priority, and PK> FK > ANY, since
primary keys have the important identifying charac-
teristics. For example, when mapping fromxdb to
rdb, VM(supplier@skey) ={(supplier.suppkey, PK), (part-
supp.suppkey, FK), (lineitem.suppkey, FK)}, and we will
use the attribute associated with the relationsupplierin the
translated query.

The mappings between collections are more compli-
cated, and are discussed as follows:

1:n from xml schemas to relational schemasThis refers
to the situation where the value elements or attributes
under a repeatable element are scattered in different
relations. This is usually caused by thenormaliza-
tion process in relational databases. For example, in
Figure 2, we could directly represent that a customer
has many telephone numbers by associating the multi-
valued elementtel with the customerelement. How-
ever, in the relational database which conforms to the
first normal form, this information is split into another
relationcustel.

A special case concerns the R-relation, which consists
of information from several E-relation. In the XML
representation, such relationship could be represented
by the nesting construct. For example, PARTSUPP is a
relationship between the two E-relationspart andsup-
plier. In the sample XML schema, there is no such
explicit element, andpart is represented as a child ele-
ment ofsupplierinstead. Therefore, we will let PART-
SUPP corresponds to the more specific elementpart,
the same as the E-relationpart does.

1:n from relational schemas to xml schemasThis refers
to the situation where the attributes in one relation
are represented under several repeatable elements. It
might be similarly caused by different partitions of an
entity,e.g., using two repeatable elements to represent
normal customers and VIP customers, respectively. It
is also possibly caused by thedummy element. For ex-
ample, since the functionality of the dummy element
suppliersis to group all thesupplier elements, both
suppliersand supplier will map to the same relation
supplierin the sample relational schema.

Therefore, the Collection Mapping (CM) is defined as
follows:

Definition 3.2 Given a collection constructci from
schema1, CM(ci) will return the set of tuples (co, type),
whereco represents the corresponding collection construct
represented in schema2. For an XML schema, the type could
be REP (standing for repeatable elements) or DUM (stand-
ing for dummy elements). For a relational schema, the type
could be E (standing for E-relations) or R (standing for R-
relations).

As to the case of multiple mappings, the priority of REP
will be higher than DUM. However, we letE andR have
the same priority, since which relaiton to output depends
on the required attributes. For example, CM(part) ={(part,
E), (partsupp, R)}, where the two relations have the same
priority.

Table 1. Example of join statements in rdb
R ID Condition1 Condition2
RE1 SUPPLIER.SUPPKEY PARTSUPP.SUPPKEY
RE2 SUPPLIER.SUPPKEY LINEITEM.SUPPKEY
RE3 PART.PARTKEY LINEITEM.PARTKEY
RR1 PARTSUPP.SUPPKEY LINEITEM.SUPPKEY
RR2 PARTSUPP.PARTKEY LINEITEM.PARTKEY
IJ1 PART.PARTKEY PARTSUPP.PARTKEY
IJ2 ORDER.ODERKEY LINEITEM.ORDERKEY
IJ3 CUSTOMER.CUSTKEY CUSTEL.CUSTKEY

Table 2. Example of path statements in xdb
X ID Xpath1 Xpath2
XD1 /tpch/suppliers part
XN1 /tpch/suppliers/supplier part
XN2 /tpch/suppliers/supplier part/order
XN3 /tpch/suppliers/supplier/part order
XF1 customer@ckey order@ckey

3.2 Representing Structure Mapping

We will define the structure mapping in this section. Re-
call that the structure construct might be represented as join
statements or nesting statements. For easy explanation, we
will represent them using tables, and give each construct an
identifier to identify the type of the construct.

When describing the structure constructs in the relational
schema, if the second letter of the identifier is the letterE,
it will represent a join between two E-relations or one E-
relation and one R-relation. If the second letter of the iden-
tifier is the letterR, it will represent a join between two
R-relations. Some join statements for the sample schema
rdb are represented in Table 1.

Similarly, some structure constructs forxdb are repre-
sented in Table 2, and the identifier are used to denote its
type as well. If the second letter is “F”, which stands for
“flat”, the two paths represented by the fieldsXpath1and
Xpath2, will be used to construct a joining expression. If
the second letter is “N”, it will represent twonestedele-
ments. If adummyelement is involved, the second letter
will be “D”.

Table 3 represents some mappings of structure con-
structs. Since there might exist1 : n mapping between col-
lections, there might exist1 : n mapping between structure
constructs as well. If multiple mappings occur in the XML
schema, the priority will be XN> XD, i.e., the construct
without involving dummy elements will have the higher pri-
ority, to be consistent with the priority level in CM. Based

Table 3. Example of structure mapping
R ID X ID
RE1 XD1
RE1 XN1
RE2 XN2
RE3 XN3
RR1 XN2
RR2 XN3

on the same reason, we let RE and RR have the same pri-
ority, since which structure construct to output depends on
the collection being used.

We summarize the discussion above by defining the
Structure Mapping (SM) in the following:

Definition 3.3 Given a structure constructsi from
schema1, SM(si) will return the set of tuples (so, type),
whereso represents the corresponding structure construct
in schema2, and the type could be RE or RR in the relational
schema, or XF, XN, or XD in the XML schema.

Note that in a special case of multiple mappings between
collection constructs, where several equivalent collection
are selected for output at the same time, we will need to con-
nect those collections to identify that they are mapped from
the same source. For example, the two relationsPARTand
PARTSUPboth map to the repeatable elementpart, so we
need to provide aninternal join between the two relations.
Several examples are listed in Table 1, whose identifiers are
started with IJ.

4 The Transformation System

We discuss how to perform query transformation using the
mapping information in this section, and the sample queries
in Section 2 will be used to illustrate the whole translation
process.

4.1 Getting Mapping Information

The transformation system is depicted in Figure 3. The in-
put query, either in SQL or XQuery, will be first parsed into
the internal representation. The value literals, collection lit-
erals, and structure literals are then extracted, and are sent
to the corresponding processor for transformation.

The three processors will be invoked in sequence. First,
Algorithm ColProcessor processes each collection literal,
and gets all the equivalent collection constructs with the
highest priority through CM. If there are several of them,
each of which will be associated with a flag called Used-
Flag, with the initial value FALSE. It will be set TRUE if
the associated collection is used further.

Algorithm ValProcessor then identifies equivalent value
literals through VM. In contrast, only one with the highest
priority will be obtained, since it alone can get the most
relevant information. Note that it will update the UsedFlag
of the corresponding collection.

Finally, Algorithm StrProcessor will examine and iden-
tify all the equivalent structure literals with the highest pri-
ority. However, if several of them exist, we will further
choose the required structure literals based on the collec-
tions being used. To perform this task, we represent all the
relevant information into graphs as defined in the following:

������ �����
�	
��

���� �

����� �����
�	
��

���� �

��������� �����������������

������ !""��

#$���� !""��

%&���� !""��

Figure 3. The transformation system

�� ��

�� ��

��

��

�� ��

�� ��

��

��

�� ��

�� ��

��

��

(a) (b) (c)

Figure 4. Example of 3-join graphs

Definition 4.1 A 2-join graph for two input collectionsc1

and c2 is a bipartite graph, where the nodes of partitioni

represent the output collections corresponding toci. A node
will be marked black if its UsedFlag has the value TRUE.
The edge connecting two nodes represents the structure lit-
eral between the associate output collections, and anno-
tated with the structure identifier.

Definition 4.2 A n-join graph consists of a sequence of n
partitions, and ith and i+1th partitions and the edges be-
tween them form a 2-join graph, where 1≤ i ≤ n-1.

Three 3-join graphs are illustrated in Figure 4(a)-(c), re-
spectively. In each graph, there are three input collections,
and each input collection has two equivalent output collec-
tions. We omit the identifier of the structure construct here.
The idea is to select the structure construct if the associated
collection is marked black. In all cases of this example, the
two structure literals corresponding to edges (a1, b1) and
(b1, c1) will be output. The complete algorithm is omitted
due to space limitation.

4.2 Processing Query Syntax

After processing the individual collection, value, and struc-
ture literals, all the intermediate structures will be processed
by Algorithm Validator. As discussed before, the collec-
tions which are not used will be removed, and some inter-
nal joins might be identified and added for output. Finally,
Algorithm Constructor will insert the proper keywords, and
produce the transformed query statement. Note that when
transforming the structure literals for XQuery, the identi-
fiers will be used to indicate whether a nesting statement in
the FOR clause or a join statement in the WHERE clause
should be produced.

We use the two sample queries in Section 2 to illustrate
the whole process of translation. If the input query is SQ1,
the two repeatable elementssupplierandpart will be first

identified, and their UsedFlags will be further set TRUE by
Algorithm ValProcessor. The first join statement, which is
RE1, will map to XN1, based on Tables 1-3. XN1 will be
selected since both the associated collections are marked
black. Therefore, a nested path betweensupplierandpart
will be output, as seen in XQ1. Note that the second join
statement is an internal join and have no corresponding out-
put. In the reverse direction, the two repeatable elements
will identify three relations,supplier, part, andpartsupp,
where only the first two relations are marked by Algorithm
ValProcessor. The nested path in the FOR clause will then
identify the join statementpart.partkey = partsupp.partkey.
Note that here Algorithm StrProcessor will mark the rela-
tion partsupp. Finally, Algorithm Validator identifies that
relationspart andpartsuppare both introduced by the el-
ementpart, and the internal joinsupplier.suppkey = part-
supp.suppkeywill be appended for output, as seen in SQ1.

5 Experiments

In this section, we evaluate the correctness and the effi-
ciency of the proposed system. All experiments are per-
formed on a P4-2.4GHz machine, with 512 MB of RAM.

5.1 Correctness

We have applied the two sample schemas described in Sec-
tion 2 to randomly generate 472 SQL queries and 445
XQuery. Among them, 207 SQL and 139 XQuery state-
ments produce strongly equivalent output queries, and oth-
ers produce weakly equivalent output queries. The latters
are mainly caused by multiple mappings between the con-
structs, such as: (1) collections are 1:n, and the required
values are scattered under different output collections (2)
collections are n:1, and the required values are represented
within the same output collection.

Since all the translated queries are either strongly or
weakly equivalent to the input queries, we can conclude that
our system could produce correct translated queries.

5.2 Efficiency

We design several experiments to examine the efficiency of
our system, when there exists multiple mappings between
the input and output schemas. The schemas used for the
first experiment are shown in Figure 5(a)-(c). In the rela-
tional schema, the attributes BE1-BE4 are all represented
within the relation B, but they are scattered under different
repeatable elements in the XML schema. The difference
between the two XML schemas, is that the repeatable ele-
ments in (b) are in a flat structure, but in a nested structure in
(c). We perform four SQL query statements, with increas-
ing BE attributes. Note that the structure literal will increase

�

����

���

�

����

����

���

���

���

���

(a)RDB

����

����

��

���

�

	���

	� �

���� 	���

	

	�

�

���� 	���

	� �

���� 	���

	� �

����

	�� 	��

	��

(b) XML-flat

����

��

���

�

����

��

���

�

����

��

���

�

����

��

���

�

����

�	

��	

�

���

(c) XML-nested

��

��

��

��

��

��

��

� � � �

��
�
	

��
�

����� �� ������ ���������

����

�����

(d) Execution time

Figure 5. Analysis of Efficiency

along. The transformation time is shown in Figure 5(d). We
can see that the number of output structure literals has lin-
ear effects on the transformation time, which is acceptable.
Also note that the effect of XML schema is quite minor.

Since we can observe the similar results for other exper-
iments, they are omitted here due to space limitation.

6 Conclusions

In this paper, we discuss how to represent the schema
mapping between relational databases and XML databases,
and the case of multiple mappings is particularly consid-
ered. A prototype utilizing these mappings is implemented,
which could translate the core expressions between SQL
and XQuery. Experimental results have shown that our sys-
tem could perform transformation correctly and efficiently.

References

[1] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From xml
schema to relations: A cost-based approach to xml storage.
In Proceeding of the 18th ICDE, 2002.

[2] D. Florescu and D. Kossmann. Storing and querying xml
data using an rdbms.IEEE Data Engineering Bulletin, 22(3),
1999.

[3] H. Jagadish et al. Timber: A native xml database.The VLDB
journal, 11(4), 2002.

[4] J. Naughton et al. The niagara internet query system.IEEE
Data Engineering Bulletin, 24(2), 2001.

[5] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered xml
using a relational database systems. InProceeding of the ACM
SIGMOD conference, 2002.

