
Network Security Management with SecurityPolicies

Abstract

A key issue in network security management is how
to define a formal security policy. A good policy
specification should be easy to get right and rela-
tively stable, even in a dynamically changing net-
work. Much work has been done in automating
network security management. But the policy lan-
guages used are usually operational and do not ex-
plicitly express the underlying security goal.

We propose an approach where policy is defined
as statements of desired security properties, whose
compliance can be checked automatically by ana-
lyzing the configuration of the network. We use
a simple policy model, the data access-control list
(DACL) to demonstrate this idea. We present a frame-
work and corresponding algorithms for checking that
low-level configurations altogether uphold the high-
level DACL policy, taking into consideration poten-
tial software vulnerabilities.

1 Introduction

The rapid growth in the size and complexity of orga-
nizational networks will soon make the current way
of manual management infeasible. Recent years
have seen many tools developed to automate this
process [3, 6, 12]. There are also tools that scan
networks and discover possible attack scenarios in-
volving complex combination of multiple vulnera-
bilities [1, 10]. However, what lacks is a formal
specification of security management goals in terms
of a high-level security policy, whose compliance
can be automatically verified.

We envision a world in which an administrator
would manage his network as follows.

1. Define a high-level security policy as rules
like “only allow project managers to access
project plans”.

2. Use tools such as HP OpenView1 and Nes-
sus2 to collect various kinds of network con-
figuration information. In our example, this
may include which file server the project plan
is stored on, what version of file sharing ser-
vice is running on the server, and so on.

3. Use a tool (such as the one described in this
paper) to check that low-level configurations
collectively uphold the high-level policy.

In this paper, we describe our architecture for a
tool that can check that a high level security policy
is collectively guaranteed by the various elements
of the network.

1. We formally specify a high-level policy lan-
guage for confidentiality and integrity.

2. We show how to formally describe the con-
figurations of various network elements.

3. We design an algorithm that takes as input a
high level policy and configuration descrip-
tions, and checks that the configurations con-
form to the policy. In case the tool detects a
policy violation it outputs a trace of actions
leading to it.

1http://www.openview.hp.com/
2http://www.nessus.org/
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1.1 High-level security policy

Most existing tools for automatic network manage-
ment adopt a policy-based approach. System ad-
ministrators decide upon a global policy specifying
how the network should be configured. The tools
can verify that a given policy is correctly imple-
mented by low-level mechanisms. In some cases,
they can also translate policies into sets of configu-
ration directives and push them to the correspond-
ing network devices. In order to make sure cer-
tain security requirements are met, the administra-
tor only needs to examine the policy, which is easier
and less error-prone than examining every piece of
the configuration.

While the separation of policy from mechanisms
is an important step towards eliminating human er-
rors, an equally important question is how to make
policy itself less error-prone. A good policy lan-
guage design should require little technical knowl-
edge to write a “correct” policy. However, this ideal
is often hard to achieve, largely because most secu-
rity problems are caused by complex interactions
among different network components. The correct
behavior of a device is not only dependent on its
own configuration, but also on other devices in the
network. This kind of interactions are usually ex-
plicitly expressed in policies, either in the form of
policy constraints [12, 15] or as a set of conditions
associated with a policy rule [11]. This puts more
burden on the policy maker to take caution in defin-
ing those constraints or policy conditions. Any mis-
take in this process may lead to insecure system.
For example, a policy regarding logging in to hosts
may have a rule “allow logging in to A only if the
protocol is SSH”. The purpose is to prevent machine
A’s data from being transmitted as plain text. How-
ever, one can telnet to a machine B (if that is al-
lowed by the policy) and then ssh into A, potentially
leaking information communicated with A through
the telnet hop. To fix this problem one can either
set a constraint on policy rules to avoid any such in-
secure multi-hop logins, or put an extra condition
on A’s login policy like “allow logging in to A from
B only if the protocol is SSH and communication
to B is secure”. While it is relatively easy to ex-
press the inter-domain configuration constraints in

this simple example, in reality they can be too com-
plex to specify and reason about. A better policy
should start from a higher level, i.e. the goal of
security administration. For the login example, a
high-level policy could be “information communi-
cated with machine A should not appear as plain-
text in the network”. This way we abstract away the
complex interactions among different components
and state the ultimate effect desired. In comparison
to low-level policies, a high-level policy says “what
we want” instead of “what to do”. Since it closely
matches the intention of policy decision-maker, a
high-level policy is easier to get right.

Another problem with low-level policies is that
they are often designed to control a particular kind
of resource. For example, a packet-filtering policy
only controls configuration elements such as fire-
walls, routers, and network topology. Changes in
other configuration elements may require modifica-
tion to the packet-filtering policy in order to achieve
the ultimate security goal. Frequent policy update
is undesirable because a policy’s correctness affects
security. A high-level policy, on the other hand, is
much more stable because the goals of security ad-
ministration usually do not change very frequently.

Figure 1 illustrates the proposed framework. Mul-
tiple low-level policies describe different parts of
configurations; for each low-level policy domain,
there will be a tool to check that implementations
conform with the low-level policy (or in other words,
the low-level policy is a correct description of the
actual network). A checker described in this pa-
per will detect violations of the high-level policy,
given a set of low-level configuration descriptions.
The high-level policy does not replace the low-level
ones. Instead, it is used to reason about them —
making sure that together they satisfy certain secu-
rity criteria.

1.2 Dealing with software vulnerabilities

Many security problems are caused by software vul-
nerabilities. Thus when configuring a network, a
system administrator must take into consideration
the security robustness of installed software com-
ponents. While one should generally avoid run-
ning bug-ridden software, the ubiquitous existence
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Figure 1: Levels of security policy

of vulnerabilities is a status quo that has to be dealt
with for the foreseeable future. And it is a harsh
reality that some vendors of popular software do
not release patches for even a critical vulnerabil-
ity quickly. In the wake of a new bug report, an
automatic tool that quickly identifies what security
risks it brings to the network would be useful. This
allows the system administrator to take preemptive
actions before a patch is available — modifying fire-
wall rules, moving sensitive information from po-
tentially compromisable zones or disabling the buggy
software if there is no other alternative. To this end,
the tool presented in this paper takes potential soft-
ware vulnerabilities into consideration when check-
ing compliance with high-level policies.

Software bugs can be quite subtle and it requires
expertise to fully understand their security impact.
Since new varieties of exploits emerge every day,
security administrators need to pay attention to re-
ports like CERT advisory or BugTraq to keep up-
dated on the most recent threats. This poses a sig-
nificant challenge for incorporating software vul-
nerabilities into automatic security management: the
tool must be able to take as input new software bugs
and reason about them. This requires a formal lan-
guage to specify software vulnerabilities. These for-
mal descriptions could be written by security ex-
perts from an outside source like CERT and local
administrators would only need to plug them into
the tool.
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Figure 2: Example

2 A Motivating Example

We use the example network in Figure 2 to illustrate
our approach. There are three zones (Internet,
dmz and corp) separated by two firewalls (FW1
and FW2). The administrator manages the webServer
and the fileServer while the projectPC is
operated by corporate employees. The company
owns proprietary information so the security man-
agement needs to ensure that their confidentiality
will not be compromised by an outside attacker. To
achieve this security goal, multiple configuration el-
ements must be set up appropriately. First, the topol-
ogy and firewall configuration allow outside pack-
ets to reach dmz zone, but not corp zone where the
confidential projectPlan is stored. Second, the
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file sharing service running on fileServer re-
quires authentication for access to projectPlan.
Only project managers have the access rights. Third,
the administrator maintains a collection of applica-
tion binaries so that individual employees do not
need to install programs on the projectPC.

This scheme may look quite secure — even if
an attacker can compromise webServer, it is still
hard for him to get his hands on the confidential
data. Since FW2 only allows webServer to com-
municate with fileServer, the attacker will have
to somehow compromise fileServer to proceed.
If the file sharing service is secure, it seems that we
can rest assured.

However, a dedicated and clever attacker can
still cause a security breach in this configuration.
Remember webServer is managed by the admin-
istrator. So if webServer is compromised, it is
likely that the credential of the administrator will
also be leaked to the attacker, through a password
sniffer for example. The administrator’s credential
does not enable the attacker to access projectPlan
on fileServer (it can only be accessed by project
managers). However, it does allow the attacker to
update the application binaries. So he can install
his version of Acrobat Reader. Some day a project
manager will open a project plan in PDF format,and
besides showing the file, the Trojan horse Acrobat
Reader communicates the content to the attacker.

A safer way to configure the network is to move
web pages from corp zone to dmz zone and ban
any inbound access to corp zone.

In our management framework, the administra-
tor can define a high-level policy for data confiden-
tiality such as “projectPlan can only be read
by project managers”. He can then run our tool to
check if the policy is upheld. In this case the tool
will report a violation and attack steps as described
above.

3 DACL — A High-level Policy

Our high-level policy language is in the form of data
access list (DACL). The grammar of the language is
defined in Figure 3.

A data access list is a list of data access rules
(DataAccRule). Each rule specifies a legal opera-

Principal ����� p
�
p � Principal

Data ����� d
�
d � Data

Op ����� read
�

write
DataAccRule ����� allow Principal Op Data

DACL ����� DataAccRule�	��

��
��������������
� DACL

Figure 3: The DACL Policy Language

tion a subject (Principal) is permitted to perform on
an object (Data). Principal is represented by a list
of symbols. Each symbol stands for a group of peo-
ple. The list of symbols stands for the union of the
groups represented by each symbol. A similar rep-
resentation is used for Data. Op can be either read
or write. A DACL policy for the example is shown
below.

Insiders = projectManager; sysAdmin.
Everyone = outsiders; Insiders

sysAdminData = webPages; sharedBinary

allow Everyone read webPages;
allow Insiders read sharedBinary;
allow projectManager read projectPlan;
allow sysAdmin write sysAdminData;

There is a subtle difference between the seman-
tics of DACL and that of a low-level access-control
policy. A DACL rule cannot simply be translated
into some enforcement mechanism that controls ac-
cess to the data. As shown by the example, an at-
tacker can steal confidential information from the
fileServerwithout violating the file server’s ac-
cess control mechanism. Rather, he exploits vulner-
abilities in webServer, which is allowed to access
fileServer by the firewall. The security of a
piece of data is affected not only by the authentica-
tion mechanisms on the host where it is stored, but
also depends on the “hardness” of all machines that
can access the host. The security property specified
by DACL is enforced collectively by the configu-
rations of all those hosts. Thus, to verify that the
high-level DACL policy is upheld, all configuration
parameters in the network must be taken into ac-
count.

DACL is a positive policy — there are no “deny”
rules and anything not explicitly allowed is forbid-
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den. In such a policy, access rules are independent
of each other and there are no possible conflicts
among them. This further eases the job of policy-
making. For example, to make sure a policy rules
out certain data access, it suffices to examine every
rule independently, without having to worry about
interactions among positive and negative rules.

4 Configuration Description

To verify that a DACL policy is upheld, our checker
needs descriptions of the actual network. Part of the
descriptions can be low-level policies that control
certain aspects of network configurations. In par-
ticular, a host access control list (HACL) is a good
abstraction for the overall effects of packet-filtering
devices and there are existing firewall management
tools that can be used to relate a HACL policy to
the actual status of those devices [2, 6]. So we
use HACL as the description language for those de-
vices.

This section shows description languages for the
other configuration information — information about
principals and hosts.

4.1 Principal binding

Usr ����� privileged
�
unprivileged

PLoc ����� Usr � Hostgrp
Trust ����� trusted

�
incompetent

�
malicious

PBnd ����� Principal ��� location � PLoc �
trust � Trust 	

A principal binding (PBnd) provides security-
relevant information about people. The location
field includes the hosts from which the principal
can operate and the local user account he has on the
hosts. As a first step we only differentiate two kinds
of users: privileged and unprivileged. The
trust field indicates the principal’s trustworthiness.
A principal is trusted if his intention is always
good and it is unlikely he will perform potentially
dangerous operations. An example of such opera-
tions is opening attachments in unsolicited emails.
A principal is incompetent if his intention is al-
ways good but he may inadvertently perform those
potentially dangerous operations. A malicious

principal has bad intentions and may try to illegally
access information by launching attacks.

A sample principal binding for the example is
shown below. In reality one can write a program
to query a LDAP database to get the information,
although we have not done so.

sysAdmin �
� location � privileged �


fileServer � webServer �
�
trust � trusted 	

projectManager �
� location � unprivileged � projectPC �

trust � incompetent 	
outsiders �

� location ��� Internet �
trust � malicious 	

The importance of principal binding informa-
tion in policy verification lies in two aspects. First,
the locations of malicious principals provide an ini-
tial attack condition for the attack simulation al-
gorithm; second, the locations of incompetent
principals provide a set of targets for client-side at-
tacks. These will become clear in section 5.

4.2 Host configuration

The language for describing configuration of a host
is shown below.

HostConf ����� Host ��� app � AppList
data � DataList �

A host configuration (HostConf ) includes the
network address of the host (Host)3, descriptions of
applications running on the host, and descriptions
of data accessible from the host. The latter two are
explained below.

Application Description

Option ����� Tag � Value
OptionList ����� nil

�
Option � OptionList

App ����� � SwID � Version � Usr � OptionList �
AppList ����� nil

�
App � AppList

An application (App) is a piece of software run-
ning under the privilege of Usr and with certain
configuration options (OptionList). Each software

3If DHCP is used, Host is the range of network addresses
the host may be assigned.
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Figure 4: Configuration description languages

is given a unique ID (SwID). The configuration op-
tions are application-specific but they all come as
a list of tags and the corresponding values for the
tags.

An example configuration of an Apache web
service is shown here.
�
apache � 1.3 � privileged � � port � 80 � nil ���

The software is apache version 1.3. It is running
under the permission of a privileged user, with op-
tion port set to 80.

Data binding

DataAcc ����� Usr readable
�
Usr writable

FileMnt ����� Protocol � MntInfo
DataLoc ����� local

�
remote FileMnt

DataBnd ����� Data � � access � DataAcc
location � DataLoc �

DataList ����� nil
�
DataBnd � DataList

Data binding relates a conceptual notion of data
to its physical representation on a host. The ac-
cess field indicates the access control mechanism
on the local host to protect the data. For example,
“privileged writable” means privileged users
can modify the data. The location field tells if the
data is locally stored on the host or resides in a re-
mote file server. For the latter case, the file trans-
fer protocol, the address of the server, and relevant
mount information must be provided. If the same
data has more than one access or location attributes,
there will be multiple bindings for the data.

A sample data binding for projectPlan on
projectPC is shown below.

projectPlan ���
access � unprivileged readable
location � remote AFS fileServer

credential � projectManager � �
The binding information shows an unprivileged

user can issue a read request to projectPlan,
which is stored remotely at fileServer through
the AFS file sharing protocol. The mount informa-
tion indicates the credential of projectManager
is necessary for the request to succeed.

A sample configuration description for the three
hosts in the example is shown in Figure 5. In re-
ality a configuration scanner such as Nessus or a
host management tool such as HP OpenView can
be used to gather this information.

5 Compliance Checking

In this section we address the problem of the higher-
level check — assuming a given configuration de-
scription is a truthful representation of the actual
network, how can we reason about it in order to de-
termine whether the high-level policy is upheld. We
achieve this goal in two stages.

In the first stage, we model the whole network
as a state-transition system. This gives us the abil-
ity to reason about multi-stage attacks. The tran-
sition rules are contributed by all components in
the system. For each component class, there is a
general specification as to what kind of transition
rules the component generates under various con-
figuration options. From this specification, com-
bined with the component description information,
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webServer ���
app � � apache � 1.3 � privileged � � port � 80 � nil ����� nil
data � � webPages � sharedBinary � � �

access � unprivileged readable �
location � remote AFS fileServer � �

� webPages � sharedBinary � ���
access � privileged writable �
location � remote AFS fileServer

credential � sysAdmin � � �
nil � �

fileServer ���
app � � OpenAFS � 1.2.11 � privileged �

� export list �
�
� webPages � sharedBinary � � readAccess � Anyone ���
�
� webPages � sharedBinary � � writeAccess � sysAdmin ���
� projectPlan � readAccess � projectManager ���
nil ���

nil �
data � nil � �

projectPC ���
app � nil �
data � sharedBinary ���

access � unprivileged readable �
location � remote AFS fileServer � �

projectPlan ���
access � unprivileged readable �
location � remote AFS fileServer

credential � projectManager� � �
nil � �

Figure 5: Example host configurations.
(All this data could be automatically collected)
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we can uniquely determine the set of transition rules
a particular instance of the component contributes.
The transition rules of the whole network system is
the collection of all transition rules contributed by
every component on every host.

In the second stage, we simulate attacks on the
state-transition system. An initial attack condition
is introduced in the system and an efficient algo-
rithm finds out the final state under the transition
rules. Conditions in the final state are examined to
see if any of them is in violation of the policy.

Section 5.1 discusses the component specifica-
tion language, and section 5.2 discusses the attack
simulation algorithm.

5.1 Component specification

A component specification describes the transition
rules a software or data module generates under var-
ious configuration situations. This specification can
be provided by an outside source with expertise in
security analysis. Local administrators only need to
supply the relevant configuration information. Thus,
component specifications should be general so that
they can be reused across sites.

Following is an example specification for a buffer
overflow bug in certain versions of Apache:

specDef{
SwID = apache
Version = 1.2.2 - 1.3.24
perm = Usr
net in anyHost http exploit

==> fullControl Usr
}

Intuitively, the above specification says “if a soft-
ware component apache with version from 1.2.2
to 1.3.24 is running under the permission of Usr,
and a malicious packet from an attacker arrives through
http protocol, then he can hijack the software and
do whatever Usr is allowed in the local system.

Actually, this is just a formalization of the fol-
lowing excerpt from the CERT Advisory regarding
this bug4:

For Apache versions 1.2.2 through 1.3.24
inclusive, this vulnerability may allow the
execution of arbitrary code by remote at-
tackers . . .

4http://www.cert.org/advisories/CA-2002-17.html

According to the configuration description of
webServer, the apache component in our ex-
ample contributes the following transition rule to
the local host:

net in anyHost http exploit
==> fullControl privilegedUsr

A transition rule has the form
����� ��� ���
	��

.
It means if condition

�����
is true at the host, condi-

tion
�
��	��

will also be true at the host. A condition
is either a predicate applied to its arguments, or a
conjunction of two conditions:

�
����� ���
� � � ����� � �����

There is a collection of predefined predicates
in our system. For example, net is a predicate
that takes four arguments: a direction (either in
or out), a host group, a protocol and an annota-
tion of the network packet. The exploit annota-
tion indicates this is a malicious packet that contains
an exploit of the bug in the software. Specification
writers can also define new predicates.

A satisfaction relation is defined among condi-
tions. For example, condition
net in attackerHost http exploit

satisfies condition
net in anyHost http exploit.

Specification writers can specify the satisfac-
tion relation for a new predicate they introduce, or
the default relation, which only relates two identical
conditions, will be used.

We find this way of specifying components quite
flexible in expressing various security-relevant be-
haviors of software and data modules. For exam-
ple, one can specify the AFS file sharing service as
follows.

specDef{
SwID = AFS
Version = anyVersion
perm = privilegedUsr
export_list = ((Data, Acc, Cred)

; nil)
(net in anyHost AFS_RPC

(normal (access Acc Data))
& owns Cred

==> access Acc Data))
}

This is a simplified specification — there is only
one entry in export list. Our specification lan-
guage has libraries that include list operations, which
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can be used to write a full AFS specification. normal
is a packet annotation (like malicious). It takes
as argument a requested condition on the destina-
tion host. access is a predefined predicate which
means the attacker has certain access (read or write)
to the data. The specification indicates the attacker’s
request will succeed only if he owns the appropriate
credential.

Given specifications of the software and data
modules, one can generate a set of transition rules
for a host from the host configuration information.
Once the transition rules for every host are gener-
ated, the next step is to simulate attacks on the net-
work modeled as the state-transition system.

5.2 Attack simulation

We give definitions for the state of a host and the
state of a network.

Definition 1 A host state is a triple
��� ��� ��� � , where�

is the network address of the host, � is a set of
transition rules and � is a set of conditions that re-
flects the attacker’s status on the host.

Definition 2 A network state is a tuple���	� ��
�
�
 � �
� ��� ����� � , where
���

is the state of a
host in the network, � is a set of global conditions,
and � � is the global conditions that have not been
propagated to the hosts.

The reason to include transition rules as part of
the host state is that new rules may be generated
during simulation. For example, a host initially has
rule � ��� ��� ��� � and at one stage of simula-
tion condition � � becomes true. Then a new rule
��� � ��� will be added to the rule set for the next
stage.

The set of global conditions in the network state
is used to propagate attacks from one host to an-
other. For example, if an attacker compromises host
H it can generate a condition of “scanning the net-
work for new victims”:
net out anyHost anyProtocol exploit

the global form of this local condition is
netGlobal H anyHost anyProtocol exploit

Several functions are used in the attack simula-
tion algorithm:

Input: � � � � � � � � � , and �
1.

�	�
� condLocal � � ��� � ;��� �	�	 �

;
�"!

�$#
2. � �&% � � %� � � apply � � � �	� � ;� � �'%

;
� � � � %�)( �

3. If
� �

is empty, terminate and output
��� � � � � � � � � ! � .

4.
��� � �  �

,� %! � condGlobal � � � � � � , � ! � � %!  � !
goto step 2

Figure 6: Algorithm hostStateTrans

condLocal
��� ��� � finds in a set of global con-

ditions the ones that are relevant to host
�

and con-
verts them to the local form.

condGlobal
��� ��� � is the reverse process: find

in a set of local conditions the ones that affect other
hosts and convert them to the global form.

apply
� � ��� � finds all applications of rules in �

to conditions in � . It outputs the resulting condi-
tions and a rule set that includes both � and any
new rules generated by the application.

filter
�
HACL ��� � filters the network conditions

in � according to a given firewall policy HACL. It
leaves non-network conditions in � unchanged.

In each step of simulation, the new global con-
ditions in ��� are propagated to each host, possi-
bly causing the host state to change. Algorithm
hostStateTrans

��� ��� � (shown in figure 6) computes
the final state of a host, given an initial state

�
and

a set of global conditions � propagated to it. The
algorithm repeatedly applies the rule set � to the
newly generated conditions �*� until no more new
conditions can be generated. The set of new global
conditions ( �'+ ) is also returned. Figure 7 is the al-
gorithm for the attack simulation. The algorithm
continues as long as there are still new global con-
ditions generated by the hosts.

Let , be the number of predicates defined in
the system, ��- be the maximum arity of all pred-
icates, and ./- be the maximum cardinality of all
argument domains. The number of different condi-
tions that may enter � is bounded by ,0.21
3- (con-
junction conditions are decomposed before enter-
ing the condition set). Thus the algorithm will en-
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Input: host transition rule set
���

for host � � ,
initial global condition � � ,
a host access policy HACL

1. Construct initial network state
� � � � � � � ��� � # � ; � � � � ; � %� �$#

2. For each
�
,

� � %� � �	! � � hostStateTrans � � � � � � � ;
� � � � %� ; � %� � �	!  � %�

3. � %� � � %�)( �
4. � � � filter � HACL ��� %� �
5. If � � � # , terminate.

else � � � �  � ; goto step 2

Figure 7: Attack simulation algorithm

ter step 2 at most , . 1 3- times before terminating.
By the same argument, algorithm hostStateTrans
also will loop at most , . 1 3- times before termi-
nating. So the complexity of the attack simulation
algorithm is bounded by �������

� , . 1
3- � � , where �
is the number of hosts and � is the time complex-
ity for computing function apply

� � ��� � . Both ,
and � - are constants independent of the configu-
ration size (number of hosts and data entities). . -
is at most linear in the size of configuration. For � ,
our current implementation uses sequential search
so it is quadratic in the size of � and � . We be-
lieve an efficient implementation using hash tables
can achieve near constant time. In either case, the
time complexity of the attack simulation algorithm
is polynomial in the size of network configuration.

Simulating client-side attacks An attack can be
targeted to a server, like the apache program in
the example. It can also be targeted to a client,
like the projectManagerwho opens the Trojan
horse Acrobat Reader. For a client-side attack, the
attacker creates a situation such that if the client per-
forms a certain operation he will be compromised.
In the example, the attacker modifies the executa-
bles on the fileServer such that whoever in-
vokes them will become a victim.

To reason about client-side attacks, we use the
clientCompromise condition, 	 � , to describe the “trap”
situation the attacker creates. Intuitively it means if

a client performs an operation that leads to condi-
tion � , he will be compromised. The client-side
attack in the example can be expressed as the fol-
lowing trap condition on fileServer:

	
�
access read sharedBinary �

Anyone who retrieves the contaminated binaries may
be compromised.

To propagate client-side attacks, function apply
matches a trap condition against the post condition
of the rules. The application of rule Pre ��� Post to
condition 	 Post will generate a new condition 	 Pre,
because if condition Post can make a client compro-
mised, condition Pre will do as well.

5.3 Putting everything together
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DACL Policy
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attack trace
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Compliance 
Checker

Component 
Specifications

Figure 8: Compliance Checker

Figure 8 shows the complete structure of the
checker. It reads in the network configuration de-
scriptions — including a low-level HACL policy,
principal bindings and host configurations, and checks
them against a high-level DACL policy, with the
help of expert knowledge encoded as component
specifications. The checker is split into two stages.
The first stage computes an initial network state ac-
cording to the configuration description. This ba-
sically involves generating transition rules for ev-
ery host and providing an initial set of global con-
ditions. In generating host rule sets, the general
component specifications are instantiated according
to the particular settings on the host. Besides the
rules from software and data modules, there are also
rules generated from the principal binding informa-
tion. For each host a principal operates from, there
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will be a rule that states if the host is compromised,
the principal’s credential will be obtained by the at-
tacker. If the principal is also incompetent there
will be a rule stating that if the attacker can create a
trap condition on the host the principal will be com-
promised.

Theoretically, the initial network state could in-
cludes hosts with non-empty conditions. To make
our simulation algorithm concise we have required
that in the initial state all hosts have empty condi-
tions. We introduce a global condition inject H
C to “inject” an initial condition C to host H. The
initial set of global conditions is a collection of

inject H (net out
anyHost anyProtocol exploit)

for every host H where a malicious principal oper-
ates.

After the initial network state is computed, stage
two of the checker runs the attack simulation algo-
rithm to find the final state of the system. Every
access condition in the final state is examined to
detect any violation of the DACL policy.

Definition 3 An attack trace is a DAG with a single
source and a single sink. Each node in the DAG is
a pair

��� � ��� � � with
� �

being a host and � � being a
condition. The host in the source node is operated
by a malicious principal.

We use � � � � to denote the set of conditions got-
ten by decomposing all conjunctions (&) in � . A
trace is valid with respect to a set of host rules and
a HACL policy if for every nonsource node

��� ��� � ,
either one of the following holds

1. The node has only one predecessor � � % � � % � .
���� � % and
���

condLocal � � �
filter � HACL �

condGlobal � � % � � � % � nil �����
�
or

2. The node has one or more predecessors � � � � � � .
Host � has a rule

�
����� and 	 � ��
 � � � there

is a
� �

that satisfies
�
. And

����
 �
� � .
Informally, case 1 is when a condition is propa-

gated from another host and case 2 is when a condi-
tion is gotten by satisfying all the preconditions of
a rule on the host. An attack trace for the example

can be found in figure 9. The direction of the edges
is from bottom to top.

Theorem 1 (Completeness) For any attack trace
that is valid with respect to the HACL policy and
initial host rules, if the sink of the trace is

��� ��� � ,
then condition � is true at host

�
in the final state.

6 Discussion

In compliance checking, we use a polynomial attack
simulation algorithm to search all possible attack
scenarios. Another approach is to use a standard
model checker to do the search. It is well known
that the complexity of model-checking is inherently
exponential in the size of the state-transition sys-
tem. Our algorithm can achieve polynomial time
due to an implicit assumption of monotonicity [1,
14]. Under the monotonicity assumption, an at-
tacker does not need to relinquish the access he has
got in order to gain more accesses, thus no back-
tracking is needed during search. The monotonic-
ity assumption is generally true if the policy only
involves confidentiality and integrity. If one also
wants to reason about availability the assumption
will no longer hold — a denial of service attack not
only compromises the availability of a host, but also
compromises the ability of the attacker to launch
further attacks from that host. In that case back-
tracking would be necessary and we suspect an off-
the-shelf model checker may outperform a custom-
tailored search engine.

In reality trust management (TM) plays an im-
portant role in network security [5]. The TM poli-
cies themselves can be quite complex and the anal-
ysis of their security properties is hard [13]. We
simplified the modeling of trust relationships by ig-
noring the possible relationships between different
principals’ credentials. After the attacker obtains
one principal’s credential, our model does not infer
its effects on trust relationships other than that the
attacker can gain privileges of the victim principal.

7 Related Work

Policy-based network management has been stud-
ied extensively in the past ten years [8, 9, 2, 15, 7,
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(fileServer, access read projectPlan____________________
| |

(fileServer, owns (credential projectManager)) (fileServer,
| net in webServer afs

(projectPC, owns (credential projectManager)) (normal (access read projectPlan)))
| |

(projectPC, fullControl unprivilegedUsr) (webServer,
| net out fileServer afs

(projectPC, (normal (access read projectPlan)))
clientCompromise (net out fileServer afs |

(normal (access read sharedBinary)))) (webServer,
| request

(fileServer, privilegedUsr read projectPlan)
clientCompromise (net in anyHost afs |

(normal (access read sharedBinary)))) |
| |

(fileServer, clientCompromise (access read sharedBinary)) |
| |________________

(fileServer, access write sharedBinary)__________ |
| | |

(fileServer, owns (credential sysAdmin)) (fileServer, |
| net in webServer afs |

(webServer, owns (credential sysAdmin)) (normal (access write sharedBinary)) |
| | |
| (webServer, |
| net out fileServer afs |
| (normal (access write sharedBinary)) |
| | |
| (webServer, |
| request |
| privilegedUsr write sharedBinary |

(webServer, fullControl privilegedUsr)__________________________|______________________|
|

(webServer, net in internet http exploit)
|

(internet, net out anyHost anyProtocol exploit)

Figure 9: An example attack trace
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6]. Recent work by Burns et al. [6] has yielded a
tool that given a security policy specified as HACL,
automatically checks that the configuration of a net-
work with multiple firewalls upholds the policy. The
tool can also generate a complete configuration that
satisfies a given policy from a partial configuration.
A HACL policy only deals with packet-filtering de-
vices and its correctness cannot be easily verified
without reasoning about the interaction with other
parts of the network.

In the STRONGMAN project [11], multiple high-
level policy languages are used to specify security
requirements for different application domains. Those
high-level policies are compiled into a common in-
termediate policy language KEYNOTE [4], where
different applications’ policies can be composed. The
decoupling of high and low level policies and policy
composition provide better modularity and extensi-
bility across application domains. Our concern is
different. By specifying a policy at a level closer to
policy maker’s intention, we hope to increase secu-
rity assurance of the system. We also account for
possible software vulnerabilities in the compliance
checking.

Recent works have applied model checking tech-
niques in analyzing network security vulnerabilities
caused by combinations of exploits [16, 17, 18].
Our algorithm assumes the monotonicity of attacks
and thus avoids exponential complexity. However,
one could make a more expressive policy language
using the power of temporal logic, especially the
ability to use universal quantifiers. It is possible that
the OBDD techniques in model checking would deal
with quantified formulas more efficiently than ex-
panding the formula on the quantified domain.

Topological Vulnerability Analysis (TVA) [10]
combines an exploit knowledge base with a local
network vulnerability scanner to analyze exploit se-
quences leading to attack goals. Our framework is
similar to theirs in that general component specifi-
cations are combined with configuration situations
at local site in checking the compliance of a high-
level policy. Since TVA does not explicitly specify
the security policy to enforce, it cannot provide in-
formation as to whether a potential attack sequence
is really harmful. Also, our framework is aimed at
the analysis of complete network configurations, in-

cluding firewalls and simple trust relationships.

8 Conclusions

We have proposed a policy-based approach to auto-
matic network security management. The approach
has the following characteristics.

1. A high-level policy expresses security con-
cerns of protecting data. The policy language
is simple to understand and easy to get right.

2. Potential software vulnerabilities are taken into
consideration in compliance checking. Our
tool can incorporate knowledge of software
bugs from an independent outside source.

3. The two-level framework allows for leverag-
ing existing management tools based on low-
level policies and provides good modularity.

We have implemented the compliance checker
in a prolog-style logic program.
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