A DK-PHBT Based Key Management Mechanism in Heterogeneous Wireless

Sensor Networks

*Chih-Hung Wang and Shih-Yi Wei
Department of Computer Science and Information Engineering
National Chiayi University, Taiwan, R.O.C.
*whangch@mail.ncyu.edu.tw

Abstract- In the security of wireless sensor
network, the most important problem is how to
distribute keys for the sensor nodes to establish a
secure channel in an insecure environment.
Because the sensor node has limited resources, for
instance, low battery life and low computational
power, the key distribution scheme must be
designed in efficient manner. Recently many
studies added a few high-level nodes into the
network, which called the Heterogeneous Sensor
Network (HSN), and made some experiments to
show that the security and performance can be
enhanced. But these studies need a higher
communication overhead for negotiation among
sensor nodes in inter-group session key
distribution. In addition, some studies used
probability key pool distribution and non-pairwise
key distribution, which causes lower connectivity
and lower resilience. In this paper, we employ the
Deployment Knowledge with Polynomial Hash
Binary Tree (DK-PHBT) to design a key
management mechanism in HSN. A PHBT is a
binary tree, built by shifting and hashing the
coefficients of a bivariate polynomial. Using
PHBT, the high-level nodes in different group can
negotiate each other for a shared polynomial
without communication. The mechanism we
proposed can ensure that each pair of nodes can
share a pairwise key with lower computational
costs and communicational costs in sensor nodes.
In addition, because of establishing the
deterministic pairwise keys in the system, the
higher resilience ability and connectivity can be
achieved.

Keywords: Heterogeneous Sensor Networks, Key
Management Mechanism, Deployment Knowledge,
Polynomial Hash Binary Tree

1. Introduction
Compared to the traditional network system,
the wireless sensor network (WSN) is a special

network, which becomes popular in recent years

due to the greatly potential low cost solutions to a

variety of real-world challenge, and extensible

network in regardless of the network topology

[15].

In a hostile environment, sensor nodes need
keys to protect the transmitted data through the
insecure environment so that a key management
mechanism must be established.

Recently many studies added a few high-level
nodes into the network [9], [5], [11], which called
the Heterogeneous Sensor Network (HSN), and
made some experiments to show that the security
and performance can be enhanced.

In general way, except for the basic security
requirements, a key management mechanism in
WSN has to consider the following additional
design principles:

1) Enhancing Network Connectivity.

2) Improving Resilience Ability.

3) Decreasing Memory Requirement.

4) Reducing Communication and
Computation Overhead.

5) Improving Security Degree of the
Distribution Model. The mathematical
scheme has to consider the secure degree in
the model. For example, Du et al. used
Blom’s key distribution method [13] to
generate a pairwise key [16]. Since the
security degree of Blom’s method is based
on A-degree, if the number of compromised
nodes is greater than A+1, the key space will
not be secure anymore.

6) Scalability of the Network.

Related Work. In WSN, [3] proposed a

probability key pre-distribution scheme. [16]

proposed a scheme based on group-wise model

with Blom’s pairwise key establishment and
deployment knowledge of random key distribution,
and [18] enhanced the resilience ability of [16] by
using hexagonal deployment model. In [10], Shi et
al. proposed a hash binary tree (HBT) based key

pre-distribution, and it reached the self-healing
property. In HSN studies, [9] proposed a
polynomial pool based key management
framework of multi-level heterogeneous sensor
network. [11] presented a hybrid mechanism,
which mixed Lion and Tiger up.

In our key management mechanism, we use the
Deployment Knowledge [16] with Polynomial
Hash Binary Tree (DK-PHBT) to develop an
efficient and secure scheme for heterogeneous
sensor network. A PHBT is a binary tree [10],
built by shifting and hashing the coefficients of a
bivariate polynomial. Using PHBT, the high-level
nodes in different group can negotiate a shared
polynomial without = communication. The
mechanism we proposed can ensure that each pair
of nodes can share a pairwise key with lower
computational and communicational costs.
Because of establishing the deterministic pairwise
key in the system, the higher resilience ability and
connectivity can be achieved. Furthermore, the
amount of memory usages in both high-level
nodes and the low-level nodes are very small.

2. Preliminaries

The network model poposed in this section is
extended from the studies of [16] and [18], and we
choose the polynomial as the pairwise key
establishment method. In our method, the security
is based on the degree ¢, or called a t-secure
method, which means it will be broken if # + 1 or
more nodes are compromised.

2.1. The network model

In large scale wireless sensor network, we
assume that the deployment is a group-based
deployment model like [16]. But there are
something different; first we assume that there are
2 level nodes in the sensor network, namely the
high-level node, which is used to be a cluster head
(called CH), and the low-level node (called
L-node), which is the sensor node. Then we
assume that few H-nodes and large amount of
L-nodes are in a deployment group, and deployed
at a single desired point, called deployment point
like [16]. Using this deployment model, the nodes
can reside at points around this deployment point
by a certain PDF, and the nodes are static once
they are deployed to the reside point. The density
of the two level nodes fits for P (H) + P (L) = 1,
where P (L) >> P (H), and H and L means the
H-node and L-node respectively. Finally, after
deployment, each L-node will find its CH by the
best Received Signal Strength Indicator (RSSI),
and then the network groups are built. The

assumptions of the network are listed as follows:

1) There are total N L-nodes arranged to |D|
groups, and |Lp| L-nodes in the D; group,
where 1 = i =< |D|. The number of H-nodes
in each deployment group is |H p; | The
equation [Hp;| + [Lpj| = ¢ holds, where ¢ is
the security degree.

2) The deployment groups can be arranged as a
grid or hexagonal distribution. In this paper
we mainly focus on the grid as Figure 1.
And the distance between the deployment
point and grid border is 20.

3) The resident point that means the final
location of the deployed node, of the node &
in the deployment group D; follows a PDF

f(x,ylkeD;) ; here we use the
two-dimensional Gaussian distribution:
PDF (x,y) = — . g s+ 1207)
27ZO'C2

, where (x, y) is a coordinates and the o’ is
the variance of distribution for the nodes in
node level c. The variances of different
masses of different level nodes are also
different.

4) Different level of nodes, have different
masses, which will cause different variances.
However, we can throw different level of
nodes in different height by using a
helicopter. Hence it can be assumed that the
variances of different level are all the same.

5) After deployment, all the H-nodes can
broadcast a hello message within a large
range area, so that all the L-nodes can
choose an H-node as its cluster head (CH)
by the best Received Signal Strength
Indicator (RSSI) [5]. And the hierarchical
architecture group is built after this hello
phase. In our model, the best signal
represents the shortest straight distance
between H-node and L-node.

6) Each network group has different number of
L-nodes. Following the assumption 1), we
also assume that there are less than ¢ nodes
in a network group, where ¢ is the degree of
security.

7) Adversary model: Adversaries can perform
attacks only after the hello phase. We
assume that the attack model follows the
uniform distribution.

Figure 1 shows the proposed deployment model.
In grid arranged deployment model, there are
many deployment groups (in Figure 1 left-top).
The center of each grid is the deployment point.
After deployment, the H-nodes and L-nodes

follow the PDF of two-dimensional Gaussian
distribution: the higher density will appear near the
deployment point and the lower density will
appear far away from the point (in Figure 1
right-top). In addition, we cannot predict the exact
coordinates that an H-node or an L-node will
locate. The H-nodes now become cluster heads;
they broadcast hello message and then build the
network topology rapidly. The final topology of
network group is formed as an irregular shape, and
the key management mechanism is performed for
this final static model (in Figure 1 left-bottom).

ADeployment Group

o

3

o

]

0% o
g 0o ©

OO
2o
Co

OO
O dp

Deployment Point

After Deployment Hello Phase

A Network Group

Figure 1. The Network and Deployment Model
following two-dimensional Gaussian distribution

2.2. Bivariate polynomial

We choose the bivariate polynomial as our key
establishment method. A bivariate polynomial like
[2] is built by randomly generating its coefficients
a;. We assume that the identity of each node is
unique and f(x, y) equals to f (y, x) for any x, y.
The polynomial is preloaded into all CHs as a
secret function. If two CHs would like to build a
shared polynomial, all they needs is just shifting
and hashing the coefficients of the polynomial.

3. Sketch of the DK-PHBT Key
Distribution Mechanism

3.1. Design concepts

The goals of our design are described here in
detail. For security consideration, we choose a
pairwise key because it provides the best resilience
ability; due to the node with only limited memory
resource, the number of keys in a node should be
as few as possible. In a pairwise key system,
optimal length of a key ring is the number of
neighbors of a node. Due to the advantage of the

H-node, the key assignation and calculation should
be managed by H-nodes. Because of the
non-infrastructure of sensor network, apportioning
all the key rings into nodes in pre-load phase is
impossible. Hence only the master key is loaded in
pre-load phase. And eventually, the CHs in the
different group can find a cooperative-function
without communicating with each others.

To do this, we can use a random bivariate
polynomial as a root polynomial to build a binary
tree, and the leaves in the tree are the pairwise key
generation functions, and they will be preloaded
into the CHs. By using a binary tree, any two
nodes in the leaf can find a lowest common
ancestor, which is a polynomial, too. Finally, the
ancestor node of the two CHs is the basic of their
cooperative-polynomial, called co-polynomial.

In secure consideration, we have to apply a
one-way pseudorandom function to this tree. Since
that, even if an adversary compromises a CH node
and gets the polynomial, he cannot trace back the
root to compromise the entire network. Although
we use a one-way pseudorandom function, it may
be insecure if we distribute the root to all CHs in
pre-loaded phase.

Consequently, the main problem here is that
how to distribute the leaves to CHs so that the
neighboring groups can share a co-polynomial but
the adversary cannot compromise the whole
network when only few CHs have been
compromised.

In deployment knowledge, we know there are
99.7% nodes distributed in the range of 3 times of
standard deviation (30) from the deployment
point.Hence, the CH keeps only the co-polynomial,
which is the common ancestor with CH’s neighbor
deployment groups, so that there is no need to
deploy the root to the CH.

To build this Polynomial Hash Binary Tree,
two methods are given here: building polynomial
tree and building coefficient tree.

3.2. Building polynomial tree

Figure 2 shows what an HBT is. HBT is a
binary tree, built by hashing a value of shifting bits.
We define a shift function: shiftLeft(.) and a
one-way hash function: H(.). The left-child
polynomial is built by hashing the coefficients of
its parent polynomial after left-shifting 1 bit, and
right-child polynomial is built by hashing the
coefficients of its parent polynomial after
left-shifting 2 bits. For example, P(2,1) =
H(shiftLeft(P(1,1),1)) and P(2,2) =
H(shiftLeft(P(1,1),2)). There are two types of HBT:
one for deployment group, called HBT(D), and the

other for network group, called HBT(N). A leaf of
the HBT(D) is assigned to the CHs of a
deployment group, and it is the root of the HBT(N).
When CHs need to get their own polynomial, they
can use the leaf of HBT(D) as a new root to build
the HBT(N), and the leaves of HBT(N) can be
their polynomials.

Palynomial Hash Binary Tree (PHBT)

D& D7 Da
Co-palynomial between deployment g-
roup D3 and D4,

@ Co-polynomial between all the CHs in
the deployment group D3.

Polynomial of the CH1 in the deploy-

PD3) (roD3
I\ B34 ment group D3.

z The white nodes, i.e. P(3,3), P_D3(2,2)
D3CH1 D3CH2 D3CH3 D3CH4 @ and P_D3(3,4), denote the coefficients

of CH4 polynomial in the coefficient tr-
ee model.

Figure 2.Hash Binary Tree

In Figure 2, CH1 of a deployment group D3
can get its own polynomial P_D3(3,1). The leaf
P(3,3) is also a root of HBT(N), thus it is a
co-polynomial for all the CHs of the deployment
group D3. If the CH of D3 needs to establish a
pairwise key with the CH of D4 for their member
connection, they can use the co-polynomial of
P(2,2) of the HBT(D).

In the first method, the node of the HBT(D)
consists of all the coefficients of the polynomial.
HBT(D) is built as follows:

1) Define |D| as the number of deployment
group, and the depth of the tree is equal to
d=|log, |D||

2) Randomly select a bivariate polynomial
defined in Session 2.2 as the root
polynomial.

3) For the depth k, where 1<k <d, the left
child of a node P(ki), where i is the node
number, is built by
H(shiftLeft(P(k —1,[i/2),1)) , and
H(shiftLeft(P(k —1,[i/27),2)) for the right child.

After extending, the leaves P(d,i) are the
co-polynomial of each deployment group D;. And
P(d,i) is assigned to all CHs of the deployment
group D;.

Then the CHs can build a HBT(N) by the
co-polynomial as the similar steps from 1 to 3. Let
|Dj| be the number of CHs of a deployment group
D; and the depth d is equal to d =[log, | D; [|. The

HBT(N) can be built as the above step 2 and 3.

Figure 2 shows the HBT(N). After extending,
the CHs of the D; can get their own polynomial
from the leaves of HBT(N), and the root is their
co-polynomial.

After deployment, any two CHs in the same
deployment group can find a co-polynomial in the
leaf from the HBT(D). If two neighboring CHs are
not in the same deployment group, they need to
share a lowest ancestor polynomial to derive their
co-polynomial. Since that, even if a CH is
compromised and its co-polynomial is revealed,
the adversary cannot get all the polynomials of
other deployment groups and figure out their
ancestor polynomial.

3.3. Building coefficient tree

There is another way to build this HBT.
Instead of randomizing and hashing the whole
coefficients of a polynomial, we can build the tree
by hashing only one coefficient in a time. In this
method, each node is a coefficient of a polynomial,
if a CH need to get its polynomial, it needs to
collect a path from the leaf of its ID to the tree root,
and the polynomial can be built by these
coefficient nodes.

In the second method, the HBT(D) is built as
follows:

1) Define |D| as the number of deployment
group, and the depth is denoted by d.

2) Randomly select a number ¢ as a root
coefficient.

3) For the depth k, where 1<k <d, the left
child of a node P(ki), where i is the node
number, is built by
H(shiftLeft(P(k —1,[i/2),1)) , and
H(shiftLeft(P(k —1,[i/27),2)) for the
child..

4) After extending, the leaves are the root
coefficients of the co-polynomials for
deployment groups. And we can assign each
root coefficient P(d,i) to CHs, which belong
to a deployment group D;.

Now HBT(N) can be built for each network
group in D;:

1) Set a security degree ¢, and the depth d; of
the polynomial tree for deployment group D;

is| .
2
2) For the depth k, where 1<k <d,, the left
child of a node P(ki), where i is the node

right

number, is built by
H(shiftLeft(P(k—1]i/2),1)) and
H(shiftLeft(P(k —1]i/2 },2)) for the right
child.

3) After extending, the CH in the D; can get a
polynomial by tracing the HBT(N) from leaf
to the root of HBT(N). The root of the
HBT(N) is the first of coefficients of the
polynomial, represented as a[0][0], and the
next node is a[l1][0], and so on. We only
need to build HBT(N) with a half of
coefficients because a[i][j]=a[j][i], hence we
can get total £*t coefficients of a bivariate
polynomial.

After deployment, the co-polynomial of a
deployment group is made by the root of the

HBT(N). For a required security degree ¢, the CHs

can find depth d = Fﬂ , and use
2

H(shiftRight(root,1))d times to build the
co-polynomial of the deployment group D;. Due to
the possibility of two CHs in neighbor but not in
the same deployment group, we can find the
lowest ancestor coefficient node c¢;; of leaf
neighbors in HBT(D), and extend the polynomial
by H(shiftRight(c;;,1))d times which required for
security degree. Obviously, the second method
gets less memory requirement.

3.4. Using deployment knowledge with
PHBT

Obviously, the security of the network has no
concern with sensor nodes due to using the
polynomial pairwise key method. But the
resilience ability for the CH node needs to be
discussed if the CH node is assumed to be able to
be compromised.

29 | 24 |17

30 31 26 19

25 27 28 2

18 20 22

Figure 3. Deployment Knowledge and Tree
Traversal

To reduce the number of compromised
polynomials when a CH is captured, the height of
the ancestor node of any two deployment groups
should be as low as possible. To do this, we should
set the neighbor leaves of an HBT(D) into the
neighbor deployment groups as tight as possible.
We can assign numbers to the leaves of HBT(D)
from left to right for the deployment groups D,
D,... D4by a mapping algorithm. Let d; denote the
ID of polynomial assigned to D;. The goal is to
find an optimal algorithm for finding the minimal
value of the maximum difference between

deployment groups:

MAX D =MAX{|d;-d;||Vd;,d; €D,
andd ; isaneighbor of d;,d; #d ;}

By using the deployment knowledge, we only
need to deploy the lowest ancestor among the
neighbors instead of deploying the root to all CHs.

An efficient algorithm is roughly described
below (demonstration by Figure 3):

1) As Figure 3, there are 16 deployment groups
in the grid model and 17 deployment groups
in the hexagonal model. The depth of
HBT(D) is less than 5, and we can build a
HBT(D) with 32 leaves. Then we mark these
leaves as a number from 1 to 32.

2) Assign 32 to the leftmost and top block, and
the other blocks are assigned by breadth-first
traversal. The number assignment is in
descending order.

3) The assignment rule is center first, then left,
and right last for the traversal tree.

Figure 3 shows the result of this algorithm. For
estimating the resilience ability, we can know the
maximum difference among the neighbors in grid
model is 28 — 19 = 9, and in hexagonal model is
24 — 17 = 7. In this example, the hexagonal model
has better resilience ability than the grid model.

4. The DK-PHBT Based

Management Mechanism
Table 1. Notations
K, :Initial key of all nodes

Key

G, : The network group i
CH, :The CH of G;
n;; : The node jof G;
fi(x,y): Polynomial of G;
fj’ (x, y):Co - polynomial between G(i, j)
K:[“/’ : The pairwise key of twonodes
C,, : Thekeyring of n; ;
7; - Random number broadcasted
by nodeiin session s.
Update_ MSGg : The session key update
message in session s
R : The revocation message in session s
MAC(:) : Message authentication function
H(:) : One way hash function

Now we describe a key management
mechanism based on DK-PHBT. Table 1 shows
the notations used in this mechanism. There are 3
phases in this mechanism: (1) pre-loaded phase:
some keys and parameters are preloaded in the
sensor nodes before deployment; (2) key

distribution phase: the network topology is
established after deployment; (3) session key
update phase: the session key is updated regularly
in case of with and without revocation nodes.
Finally, we discuss the scalability issue.

4.1. Pre-loaded phase

1) The system randomly chooses a system key
K; and loads it into all nodes.

2) The system builds PHBT as described in
Section 4:
1. Set the distribution mechanism as a grid

or hexagonal model.
2. Calculate the depth of HBT(D), end build

the tree.
3. Build HBT(N) and assign the
polynomials to all CHs.

4.2. Key distribution phase

As network assumption in Section 3, the nodes
are deployed by a helicopter in different height
zones. After deployment, both the key distribution
and network establishment start at the same time.

In this phase, all transmission messages in the

following steps include MAC(.) authentication

information.
After deployment:

1) CH; broadcasts hello message with a nonce
ri;: <HelloMsg, r;; |[MAC(HelloMsg, K,
CH;, r;;)> to notice other nodes for its ID.

2) L-nodes n;; chooses CH; as its cluster head
by the best RSSI (Received Signal Strength
Indicator).

3) my; sends hello message <HelloMsg,
7;|IMAC(HelloMsg,K;,n;;, 7;))> to all
neighbors and puts their ids into its
neighboring list NeighborList(7;).

4) m;; sends its registry message and
NeighborList(#;): <RegistMsg||
NeighborList(n;)|

MAC(RegistMsg,K;, NeighborList(;,),n; ;,
CH,‘, }","1)> to CH,
5) m;y; calculates the pairwise key shared with

C
CH: K, =H(K,CH,n;,r,) , and

i
calculates H(K;,7;;) as the new group
master key K.

6) CH; calculates:
:{fi.(n[,j,n,. G) ifi=ij#)
o\ ny) ifi#i

and adds them into a key ring C, .

, then CH; sends the key ring C,; ton

7) Node n,; saves the paiewise key with CH;

and the group master key for its key ring.
Now all the pairwise keys are distributed
successfully.

4.3. Session key update without revocation
In the session s, CH; must update the keys of
whole network group. To do this, CH; just needs to
broadcast a nonce r;;, and the members of this
network group to update its key ring. The sensor
nodes only needs to update the keys shared with its
neighbor nodes in the same network group. If a
communication between two nodes in the different
network groups at session s is required, the two
nodes exchange their r;;’s to each other, and
update the session key by hashing their 7;’s .
1) CH; chooses a nonce r;, and broadcasts < 7;
IMAC(Kyy, 7i5)>
2) n;; updates Ky =H(Ky .5,)-
3) mj;updates C;;:

., H(Kn";_;) Lifi =ij)

K" =
i j 1
H(K," .7 77)

n
,VK " eC,-J-'
AfD #i "

4.4. Session key update with revocation

If there are some revocation nodes, CH; has to
broadcast its nonce through a secure channel. That
makes the nodes belonging to the revocation group
get nothing about the nonce in this session.

For a revocation group Ris {mrs.. ng} in
session s:
1) CH; chooses a nonce 7;; in session s.
2) CH; generates UpdateMsg=

CH; CH;
{rn,®K ", ®K -1
S my P bS Mo !

EKMi,s {Ri,s }

where ny; €R, and E,(.) is an encryption

QKM

N .
’ 1y

>

function using key k.

3) CH; broadcast <UpdateMsg ||
MAC(K)y.1,UpdatMsg, CH;)> to all nodes
in the group.

4) Foreachn;; ¢R, ;,itcanfind r; @ KfH‘
g 9

ij>
and get r;; by using
(i @K’ICH,)@K’SH, , where ;& R, And then it

updates its master key asx,, =H(K,, ,r,)>

and gets R; ;.

5) Now the node n;; can get the revocation list.
Then it will throw out all the pairwise keys
with the revocation nodes in its key ring.

6) The node n;; updates its key ring:

n ; PN .. .
e H(K, " .ny) Wi =ij #)
i - i ifi .
H(Kn’.i Tipli) Jif i #i
n; i
VK " eC;;
n,_» J

7) Steps 1 to 6 only update the key rings of
CHy’s group members. Since the revocation
member may be located on the border near
to another group, CH; should announce the
revocation members to its neighboring
groups.

S. Discussions

This section analyzes some security issues.

5.1. Improving connectivity and energy
consumption

According to [3], the probability of the CH
being deployed 3o out of deployment point is less
than 0.3%.

Figure 4 shows what will happen with this
situation. In Figure 4, the distance between the
deployment point and the grid border is 2o.
Although most of CHs are deployed into the range
of 30, some CHs such as Ag and Cg have no
co-polynomials with their neighbors. In this case,
if some L-nodes are deployed into the range of Ag
or Cg, which means they choose Ag or Cg as their
cluster head, the L-nodes of network group Ag
have no pairwise keys with the L-nodes of network
group Cg even if they are very close to each other.

To reach secure communication, the nodes of
network group Ag can transfer data securely
through the network group Bg to the network
group Cg. However, this will consume extra
energy.

To overcome this problem, we can assign a
higher level co-polynomial to CHs in pre-load
phase, so that CHs can calculate more pairwise
keys with their neighboring network groups. Due
to the higher ancestor being able to derive more
co-polynomials of the deployment groups; the
network resilience will be decreased.

Another way to solve this problem is to
increase the distance between the deployment
point and the grid border. For example, we can
increase the distance from 20 to 2.50. It will
reduce the probability that the CH is deployed into
a neighboring area.

In addition, if the CHs can connect to each
other directly, they also can use cryptography
system to securely exchange messages to get a
new co-polynomial. This can be done by the
higher ability CHs.

5.2. Scalability issue

In large application of wireless sensor network,
the system has to add nodes or groups in run time.
Due to the size of a tree being static, we can build
a tree bigger than the size of deployment group at
initial time. We discuss how to add L-nodes and
H-nodes into the network as follows.

1) L-nodes: To add new nodes into sensor
network, the nodes have to pre-load master
keys of all CHs in the possible deployment
groups. After deployment, each sensor node
chooses a H-node with best RSSI as its cluster
head, and uses the master key shared with CH
to register its ID and neighboring list, and
then it will get its pairwise key ring. In this
model, if the original number of sensor nodes
is |n| and the number of additional nodes is |a|,
the equation |n| + |a| = ¢ needs to hold, where
t is the security degree. Otherwise, the sensor
node will pick another H-node as its cluster
head.

2) H-nodes: To make the network group

more scalable, we can build the HBT(N)
bigger than we need at first. The remaining
polynomials can be distributed to the
additional H-nodes in the future. The similar
method also can be used to make the
deployment group more scalable.

5.3. Memory usage of L-nodes

Because the key ring of the L-node is built by the
shared keys of its neighbors after deployment.
Moreover, the key ring also contains a group
master key and a pairwise key shared with the CH.
Assuming that |Nei,; | is the number of neighbors
of node n;;, the memory usage size of the node
n;; is |Neim',/'| +2.

ot T Y 7\"\‘ @"Ji n“\‘
‘@ ~|®
® I . ¢
@2).,_()/-“‘- (E'B 20 C/f ® 20 J
" I\ N N @
D Group A D Group B D Group C

® | e

Figure 4. The Problem of the neighboring CHs

6. Conclusions and Future Works
Compared to Du et al.’s scheme [16], we use

deployment knowledge to determine the

polynomial distribution for CH that can provide

better resilience for H-nodes. Due to applying the
pairwise key system, both the local connectivity
and global connectivity in our key management
mechanism can reach near to 1. Compared with [9],
[5], and [11], our method does not need extra
communications for inter-group key exchange.

In the future work, we are planning to
implement this mechanism with a simulator, like
TOSSIM, to evaluate the performance and
correctness of our network model and analyze the
lower bound of security degree ¢. Also, applying
this model to the multi-level heterogeneous sensor
network and m-ary polynomial tree will be
discussed in the future.

Acknowledgement

This work was supported in part by
TWISC@NCKU, National Science Council under
the Grants NSC 97-2219-E-006 -003.

References

[1] Adi Shamir, “How to Share a Secret,”
Communications of the ACM, Vol. 22, Number 11,
pp.612-613, November 1979.

[2] C. Blundo, A. De Santis, A. Herzberg, S. Kutten,
U. Vaccaro, and M. Yung, “Perfectly-Secure Key
Distribution for Dynamic Conferences,”
Advances in Cryptology — CRYPTO 92, LNCS
740, pp. 471-486, 1993.

[3] Chen, Yi-Jyun, “Location-Aware Pairwise Key
Predistribution Scheme for Wireless Sensor
Networks Against Colluding Attacks,” Master
Thesis of Department of CSIE, NCYU, Taiwan.
June 2007.

[4] Crossbow, “Wireless Sensor Networks,”
http://www.xbow.com/Products/Wireless_Sensor
Networks.htm, June 2005.

[5] Firdous Kausar, Sajid Hussian, Laurence T. Yang,
Ashraf Masood,”“ Scalable and efficient key
management for heterogeneous sensor networks.”
The Journal of Supercomputing, Springer, vol. 45,
no. 1, pp. 44-65, 2008.

[6] H. Chen, Adrian Perrig, and Dawn Song,
“Random Key Predistribution Scheme for Sensor
Networks,” Proc. IEEE Symp. Security and
Privacy (S&P’03), pp. 197-213, 2003.

[7] Laurent Eschenauer and Virgil Gligor, “A Key
Management Scheme for Distributed Sensor
Networks,” Proc. ACM Conf. Computer and
Comm. Security (CCS’02), pp. 41-47, Nov. 2002.

[8] Lihao Xu, Cheng Huang, "Computation-Efficient
Multicast Key Distribution, “IEEE Tansactions
on Parallel and Distributed Systems, vol 19, No5,
pp.577-587, May 2008.

[9] Lu, Kejie, Qian, Yi Hu, Jiankun, “A Framework
for Distributed Key Management Schemes in
Heterogeneous Wireless Sensor Networks,”

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Performance, Computing, and Communications
Conference, 2006.

Minghui Shi, XueminShen, Yixin Jiang, and
Ghuang Lin, “Self-Healing Group-Wise Key
distributtion Schemes with Time-Limited Node
Revocation for Wireless Sensor Networks,” /[EEE
Security in Wireless Mobile Ad hoc and Sendor
Networks, pp.38-46, Oct. 2007.

Patrick Traynor, Raju Kumar, Heesook
Choi,Guohong Cao, Sencun Zhu, and Thomas La
Porta, “Efficient Hybrid Security Mechanisms for
Heterogeneous Sensor Networks,” [EEE
Transactions On Mobile Computing, VOL. 6, NO.
6, pp.663-677, JUNE 2007.

Ross Anderson, Haowen Chan, and Adrian Perrig,
“Key Infection: Smart Trust for Smart Dust,”
Proc. IEEE Int’l Conf. Network Protocols (ICNP’
04), pp. 206-215, 2004.

Rolf Blom, “An Optimal Class of Symmetric Key
Generation Systems,” Advances in Cryptology:
Proc. EUROCRYPT ’84, pp. 335-338, 1985.

Seyit A. Camtepe and Biilent Yener,
“Combinatorial Design of Key Distribution
Mechanisms for Wireless Sensor Networks,”
IEEE/ACM Transactions on networking, vol 15,
No2, pp. 346-358, April 2007.

John Paul Walters, Zhengqiang Liang, Weisong
Shi, and Vipin Chaudhary, “Wireless sensor
network security: a survey.” In: Xiao Y. (ed)
Security in distributed, grid, and pervasive
computing. Auerbach Publications, CRC Press,
ISBN 0-849-37921-0.

Wenliang Du, Jing Deng, Yunghsiang S. Han, and
Pramod K. Varshney, “A key predistribution
scheme for sensor networks using deployment
knowledge,” IEEE Transactions on Dependable
And Secure Computing, VOL.3, No.1, pp.62-77,
March 2006.

Yun Zhou, Yuguang Fang, “Scalable and
Deterministic Key Agreement for Large Scale
Networks,” [EEE Transactions On Wireless
Communications VOL. 6, NO. 12, pp. 4366-4372,
DECEMBER 2007.

Zhen Yu and Yong Guan, “A key pre-distribution
scheme using deployment knowledge for wireless
sensor networks.” IEEE Information Processing
in Sensor Networks, pp.261 — 268, 2005.

