Finding Homologous Sequences in Genomic Databases
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Abstract. Homologous sequences contain invaluable information about evolution. To search for homologous
sequences in genomic databases, or homology search, is one of the most fundamental and crucial tasks in bio-
logical knowledge discoveries, and required in many biological applications. With exponentially increasing
database size and number of queries, efficient algorithms and tools for homology search are required. In this
paper, we will introduce some famous and important approaches in the context of finding homologous se-
quences.
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1 Background

Based on the assumption of the theory of evolution and natural selection, almost all species shared a common
ancestor at some point in time. Random mutations in the DNA of some organisms lead to differently structured
proteins. If such a change gave rise to advantages in survival, the change prevailed in the gene pool. Over time,
species with different needs and abilities evolved in this way. A consequences of evolution is that if we find suf-
ficiently similar DNA sequences within different species, we can conclude that the corresponding proteins in the
species have similar biological functions [1,2,3,4].

Sequences are called homologous if they have significant similarity and evolved from a common ancestral se-
quence. Given query sequences, homology searches are to find their similar, or homologous, sequences in ge-
nomic databases. To search for homologies is one of the most fundamental and essential tasks in biological
knowledge discoveries. Homology searches are required in several applications, for example [5,6,7]:

1. Function determination. It is assumed that sufficiently high sequence similarity implies functional simi-
larity. For example, the comparative analysis of the predicted proteins suggests that nearly 30% of the
fly genes have putative orthologs in the worm genome [8]. Nearly 20% of the fly proteins have a puta-
tive ortholog in both worm and yeast; these shared proteins probably perform functions common to all
eukaryotic cells.

2. Conserved region identification. Proteins are often different identifiable domains, and domains can oc-
cur in different combinations within different proteins. Short sequence similarities reflect conserved do-
mains within proteins. The domains are likely to correspond to essential sites for the structure or func-
tion of the sequence.
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3. EST clustering. EST clusters are produced by comparing every sequence in an EST database against all
other sequences. Two sequences are assigned to the same cluster if they overlap with a sufficiently high
degree of identity. We can try to assemble and align the sequences in an EST cluster, which come from
the same gene. This makes it possible to infer the nucleotide sequence in the gene.

The term “Expressed Sequence Tag” (EST) was first introduced in 1991 by a landmark study from Venter and
his colleagues [10]. After the initial demonstration of the utility and cost effectiveness of the EST approach,
many similar projects were initiated, resulting in an ever-increasing number of human ESTs [11,12,13,14,15]. In
addition, large-scale EST projects were launched for several other organisms of experimental interest. In 1992, a
database called dbEST [10] was established to serve as a collection point for ESTs, which are then distributed to
the scientific community as the EST division of GenBank [16]. The EST division continues to dominate Gen-
Bank, accounting for roughly two-thirds of all submissions. The 20 organisms with the largest numbers of ESTs
in the public database (as of March 7, 2002) are shown in Table 1.

Accumulating sequence data among different species provide ample materials for comparative analysis. As the
consequence of large-scale DNA sequencing activities, there are now more DNA sequences in GenBank than
there are related publications in the literature [17]. The large-scale study of genes is the hallmark of the transition
from ’structural’ to *functional’ genomics [18]. With huge DNA sequence data, one of the biologists’ desires is to
understand the secrets of DNA sequences, the language of life. However, nothing is known about the coding
potential of these stretches of DNA as they are being sequenced. As such, automated methods will become an
important role in annotating the human and other genomes to increase the intrinsic value of these data as they are
being deposited into the public databases.

Table 1. Top 20 organisms in dbEST (as of March 7, 2002).

Organism EST

Homo sapiens (human) 4,070,035

Mus musculus (mouse) 2,522,776
Rattus norvegicus (rat) 326,707
Drosophila melanogaster (fruit fly) 255,456
Glycine max (soybean) 234,900
Bos taurus (cow) 230,256
Danio rerio (zebrafish) 197,630
Xenopus laevis (African clawed frog) 197,565
Caenorhabditis elegans (nematode) 191,268
Lycopersicon esculentum (tomato) 148,338
Zea mays (maize) 147,658
Medicago truncatula (barrel medic) 137,588
Arabidopsis thaliana (thale cress) 113,330
Chlamydomonas reinhardtii 112,489
Hordeum vulgare (barley) 104,803
Oryza sativa (rice) 104,284
Sus scrofa (pig) 103,321
Anopheles gambiae (mosquito) 88,963
Ciona intestinalis (sea squirt) 88,742
Sorghum bicolor (sorghum) 84,712

2 Approaches for Finding Homologous Sequences

In the literature, many algorithms have been proposed for homology searches. The algorithms can be simply
categorized into three classes: exhaustive search, heuristic search and filter algorithms.
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2.1 Exhaustive-Search Algorithms

An algorithm Needleman-Wunsch [19] is the first instance of dynamic programming being applied to biological
sequence comparison. The algorithm performs, with an exhaustive search, an optimal global alignment on two
sequences of similar lengths. It is guaranteed to find the alignment with the maximum score. However, the algo-
rithm is unsuitable for searching databases because databases often contain sequences of different lengths.

Another algorithm Smith-Waterman [20] gives the local alignment of two sequences; that is, for determining
similar regions between two nucleotide or protein sequences. Like the Needleman- Wunsch algorithm, the Smith-
Waterman algorithm is also an exhaustive search approach based on dynamic programming. As such, it has the
desirable property that it is guaranteed to find the optimal local alignment with respect to the scoring system
being used (which includes the substitution matrix and the gap-scoring scheme).

The dynamic programming strategy employed in the Needleman-Wunsch and Smith-Waterman algorithms
needs O(mn) time and space to find the best alignment between two strings of lengths m and »n [19,20]. In general,
the two technique is infeasible in terms of both time and space for large data and query sequences.

2.2 Heuristic Algorithms

Most heuristic homology searching algorithms have the same basic idea: first, they use a fast searching program
to identify the regions that are likely to be homologous, and then, if possible, combine them to longer chains of
sufficient sequence similarity. Finally, these chains are aligned using a slower but more accurate method, for
example the Needleman-Wunsch algorithm. However, the techniques employed in the stages of the algorithms
are quite different; for example, some of them use contiguous seed models, but the others use spaced models;
some are hash-table-based algorithms, but the others employ suffix trees.

FASTA [21,22] is a well-known heuristic algorithm for sequence comparisons. When looking for an alignment,
we might expect to find a few segments in which there will be absolute identity between the two compared se-
quences. FASTA is using this property and focuses on these identical regions. The algorithm consists of several
processing stages. In the first stage, it seeks for matched segments between the two sequences, and combines the
segments to find better alignments in the rest stages.

BLAST (Basic Local Alignment Search Tool) [23] is one of the most popular programs for searching biose-
quences against databases. The algorithm integrates the substitution matrix in the stage of finding hot spots. The
idea results fewer and better hot spots found in the process, and thus increases the speed of the FASTA algorithm.
The two stages, scanning and extension, in BLAST are as follows:

1. Specify a length parameter w and a threshold parameter ¢. It is recommended to set w to values of 3 to 5
for amino acids and 12 for nucleotide sequences. Finds all the w-tuples, called words, of database
sequences, which align with words from the query with an alignment score higher than ¢. Such hot
spots are referred to as hits.

2. Extend each hit to find out if it is contained in a segment pair with score above a predefined threshold s.
The threshold must be chosen such that it is unlikely to find a random sequence that achieves a score
higher than s when compared with the query sequence.

FASTA and BLAST are heuristic local alignment algorithms. They do not guarantee finding out the optimal
alignment between the query and database sequences. However, the algorithms are much faster than the ordinary
dynamic programming alignment algorithms, and, with respect to the optimal alignment, the resulting alignment
scores are well. The detail description of the programs in the FASTA3 and BLAST packages can be found at
http://helix.nih.gov/ and http://www.ncbi.nlm.nih.gov/ .

Gapped BLAST and Position-Specific Iterated (PSI) BLAST [24] are two improved BLAST algorithms.
Gapped BLAST allows alignments with gaps. PSI BLAST constructs a profile, or position specific scoring ma-
trix, PSSM, based on the results from the ordinary BLAST search. MegaBLAST [25], instead of using dynamic
programming, employs a greedy method in the similarity search. It is one of the tools in the current NCBI
BLAST package. The algorithm is very efficient for aligning DNA sequences that are extremely similar, for ex-
ample the sequences that differ only by sequencing errors.

SAHA [26] preprocesses sequences in the database by breaking them into consecutive k-tuples, and then using
a hash table to store the occurrence positions of the tuples. The similarity search is done by obtaining, from the
hash table, the hits for each k-tuple in the query sequence, and then performing a sort on the matches to find pos-
sible extensions. BLAT [27] indexes all nonoverlapping 4-tuples in the database. The algorithm uses the index to
find regions in the database likely to be homologous to the query sequence, performs an alignment between the
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candidate regions, and then combines these aligned regions (often exons) into larger alignments (typically genes).
Finally, BLAT revisits small internal exons possibly missed at the previous stages and adjusts large gap bounda-
ries that have canonical splice sites where feasible.

Unlike the above approaches that use tuples of contiguous bases, PatternHunter [28] finds short word matches
under a spaced model in similarity searches. A spaced model can be represented as a binary string, for example
11010, where a 1 bit at a position means that a base match is required at the position and a 0 bit means either a
base match or mismatch is acceptable. The number of 1 bits in a spaced model is referred to as the weight of the
model. For examples, the two words ACGTC and ACTTG form a word match under the spaced model 11010 of
weight 3. Because PatternHunter allows mismatches in seeds, or words, it is able to find more homologous re-
gions than the algorithms, for example BLAST, which find matches under a contiguous model. However, it is
very difficult to find the optimal spaced model for comparisons. A new version of BLASTZ also adapts the idea
of spaced models [29].

In general, a single spaced seed can not achieve the sensitivity of exhaustive-search algorithms, for example
Smith-Waterman algorithm [20]. It has been pointed out that more spaced seeds increase sensitivity [28]. Pat-
ternHunter II [30] extends the single spaced seed of original Pattern Hunter to multiple ones.

Some homology search algorithms use suffix trees and its derivatives (see [31]) to index the sequences, for ex-
ample MUMmer [32], AVID [33] and CHAOS [34]. MUMmer builds suffix trees on both of the sequences to
finds maximal matches that are unique, and orders these matches to form the basis of an alignment that can span
even very long mismatch regions between the two input sequences. The algorithm assumes the sequences are
closely related, and extracts information on single nucleotide changes, translocations and homologous genes
under the assumption. AVID is a global alignment tool. The algorithm transforms the problem of finding all
maximal matches between two sequences to the problem of finding maximal repeated substrings in one sequence,
and then solves the problem using suffix trees. CHAOS uses a variation of trie (called a threaded trie), which is a
cross between a suffix tree and a hash table in spirit, to index the k-tuples of one sequence. LAGAN [35] em-
ployed CHAOS to find global alignments; Shuffle-LAGAN [36] combines the CHAOS local alignment algorithm
and the LAGAN global aligner to perform global alignments, a combination of global and local alignments.

2.3 Filters

As discussed in Section 2.1, the dynamic programming-based algorithms provide the best alignments. However,
because of the quadratic time involved, the dynamic programming-based algorithms may not be directly or prac-
tically applied for searching on databases of large scale. Several heuristic algorithms, for example the methods
discussed in Section 2.2, have been proposed to speed up homology search tasks. Nevertheless, these algorithms
may not be efficient enough because they often need to inspect the entire database while only a very small part of
the database might actually be of interest. Thus, another type of algorithms called filter algorithms was intro-
duced. The sort of algorithms does not find the final alignments for the compared sequences, but the algorithms
employ some techniques, for example domain transformation, to reduce the searching space of similarity search,
and thus speed up the search operation. The algorithms can be used as a preprocessing phase on top of the ex-
haustive-search approaches, for example the Smith-Waterman algorithm, and heuristic approaches, for example
the FASTA and BLAST algorithms.

QUASAR [37] builds a suffix array, a derivative of suffix trees, on the grams, short substrings of certain
length, from the sequence. The algorithm works based on the g-gram lemma (see [38]), and achieves proximity
filtration. QUASAR partitions the database into several blocks and maintains a counter for each of them. During
query time, the counter value of a certain block reflects the amount of the grams in the query sequence, which
occur exactly within the block. The blocks having counter values satisfying the g-gram lemma are chosen as
candidates, and searched using BLAST. [39] is a study on gapped g-grams.

Chavez et al. [40] translate the problem of approximate string search into a range query or proximity search in
a metric space. The algorithm selects &k pivots randomly, maps each sequence with a k-dimensional vector, and
further uses triangle inequality to prune non-relevant sequences. The method employs Suffix Trees as index
structures. SST [41] partitions the database sequences into a set of overlapping w-segments, and translates them
into 4*-dimensional vectors, where k<w. Each element of the vectors indicates the number of occurrences of
each k-tuple in the w-segment. The vectors are clustered hierarchically using a k-means clustering algorithm. The
nonoverlapping segments are extracted from the query sequence, and compared against the clusters to prune the
segments which are far from the query segments.

Aghili et al. [42] study on vector transformations, and conduct the application of discrete fourier transforma-
tion (DFT) and discrete wavelet transformation (DWT) dimensionality reduction techix niques for DNA se-
quence proximity search to reduce the search time of queries. And, Aghili et al. [43] also map the problem of
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whole-genome sequence homology search into an approximate vector comparison in the well-established multi-
dimensional vector space.

Kahveci et al. [44] proposed a frequency vector-based algorithm for aligning large genome sequences. They
define the frequency vector of a sequence as S-dimensional vector (for the alphabet set = {A, C, G, T, N}, where N
stands for unknown) in which entries are the number of occurrences of the different letters in the sequence. The
algorithm computes the frequency vectors for all subsequences in the database sequence, which are of a certain
length, and aggregates the vectors into a index structure called F-index, in which an entry records the boundries
of a certain amount of consecutive frequency vectors. Then, the algorithm constructs a boolean match table by
partitioning the query sequence into subsequences and searching these subsequences in the F-index of the data-
base sequence. The subsequence pairs containing potential similar patterns are given to BLAST (or any other
alignment tool) for further processing.

3 Conclusions

In this paper, we introduce some approaches for finding homologous sequences. On some popular databases,
such as the large GenBank nucleotide collection, the number of access has increased to over 120,000 queries per
day. Moreover, the GenBank collection is doubling in size almost yearly, query lengths are steadily increasing,
and the number of users continues to grow. It is an essential issue to develop efficient homology search ap-
proaches continuingly.
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