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Abstract 

Kernel-based nonlinear feature extraction 
and classification algorithms are popular 
research topics in machine learning. In this 
paper, we propose an improved photometric 
stereo scheme based on the basic reflectance 
model. In order to reconstruct a human face 
as a 3D model, we use kernel independent 
component analysis (KICA) to obtain the 
face’s surface normal vector on each point 
of the image. In this procedure, we find that 
the x-axis, y-axis and z-axis values of the 
normal vector’s coordinates are not arranged 
in order. Thus, an improved KICA (IKICA) 
method is proposed that takes the normal 
vector of a synthetic spherical surface 
normal vector as the supervised reference 
for solving this problem. After obtaining the 
correct normal vector’s sequence form 
surface, we use a method for enforcing 
integrability to reconstruct 3D objects. We 
test our algorithm on synthetically generated 
images to reconstruct object surfaces on a 
number of real images captured from the 
Yale Face Database B, and use three kinds 
of methods to fetch characteristic values. 
Those methods are called contour-based, 
circle-based, and feature-based methods. 
Then, a three layer feed-forward neural 
network trained by back-propagation 
algorithm is used to realize a classifier. All 
the experimental results were compared to 
those of the existing human face 
reconstruction and recognition approaches 
tested on the same images. The experimental 
results demonstrate that the proposed 
improved kernel independent component 

analysis (IKICA) method of reconstruction 
and human recognition are efficient 
approaches. 
Keywords: Independent component 
analysis, 3D human face reconstruction, 3D 
human face recognition, back-propagation 
algorithm, neural networks. 
 

1. Introduction 

When we use a camera to capture 3D 
objects, we lose the depth information of the 
3D objects and only obtain the 2D image 
information. However, the depth 
information of the 3D objects plays an 
import role in many applications, such as 3D 
object recognition and 3D object display. In 
order to show the original information of the 
3D objects, the problems of reconstructing 
3D objects from 2D images need to be 
resolved. One of the approaches to computer 
vision is the photometric stereo approach to 
surface reconstruction. This approach is able 
to estimate the local surface orientation by 
taking several images of the same surface 
from the same viewpoint but under 
illuminations from different directions. The 
main limitation of the classical photometric 
stereo approach is that the light source 
positions must be accurately known. This 
necessitates a fixed, calibrated lighting rig. 
Hence, an improved photometric stereo 
method for estimating the surface normal 
and the surface reflectance of objects 
without a priori knowledge of the light 
source direction or the light source intensity 
was proposed by Hayakawa [1]. 
Hayakawa’s method uses the singular-value 
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decomposition (SVD) method to factorize 
an image data matrix of three different 
illuminations into a surface reflectance 
matrix and a light source matrix based on 
the Lambertian model. However, Hayakawa 
still uses one of the two added constraints 
for finding the linear transformation 
between the surface reflectance matrix and 
the light source matrix. McGunnigle [2] 
introduced a simple photometric stereo 
scheme, which only considered a 
Lambertian reflectance model, where the 
self and cast shadows, as well as the 
inter-reflections, were ignored. Three 
images at a tilt angle of 90∘increments 
were captured. McGunnigle suggested using 
his method as a first estimate for an iterative 
procedure. 

Lin et al. also proposed a novel 
ICA-based photometric stereo approach 
based on a non-Lambertian model [3]. The 
goal of the ICA model is to separate the 
independent component of a surface normal 
at each point of an image. But the ICA 
model still has the problem of the x-axis, 
y-axis and z-axis values of the separated 
normal vector not being arranged in order. 
Thus, a constrained independent 
components analysis (cICA) model [4][5] 
was proposed. It is a supervised ICA model 
which may arrange the outputs of a normal 
vector’s coordinate values in order. Thus, 
Lee et al. proposed a cICA-based 
photometric stereo reconstruction method to 
solve the normal vector disorder problem [6]. 
But we find that the cICA model has other 
problems. Generally, the input data which 
we feed into the cICA model are linear data. 
Actually, the input data that we obtain from 
2D images are non-linear. Thus, all the 
non-linear data must be changed into linear 
data first before the cICA process is used. 
But this transformation would unavoidably 
cause some distortion. One kind of linear 
transformation method that we utilize kernel 
algorithm [7][8]. It does not need to know 
the necessary parameter in the linear 
transformation, and enable us to transform 
smoothly and fast.  

In this paper, an improved kernel 

independent component analysis (IKICA) 
method is proposed to take the normal 
vector of a synthetic spherical surface as the 
supervised reference. The proposed IKICA 
extends the traditional kernel independent 
component analysis (KICA) model [9]-[13]. 
It is a non-linear ICA model which can 
directly transform non-linear data from 2D 
images. Therefore, introductory data do not 
need to undergo linear conversion in 
advance. Thus, the proposed model can 
reduce the number of normal vector errors 
of 3D objects effectively. The 3D surface 
model is then reconstructed from the surface 
normal at each pixel of an image, obtained 
by using the IKICA technique and a method 
for enforcing integrability [14]. The reason 
for using these methods is that they are easy 
to implement. After using reconstructive 
method, we get lots of 3D human faces as 
our 3D database. Therefore we fetch the 3D 
information of 3D face model to make 3D 
human recognition. 

The rest of this paper is organized as 
follows. The details of the proposed 
IKICA-based reflectance model and its 
derivations are presented in Section 2. We 
present the 3D model reconstruction in 
Section 3. After face reconstruction, we 
discuss with 3D face recognition in Section 
4. Experimental results are given in Section5. 
The last Section describes the conclusions. 

 

2. The improved KICA model 

2.1 The KICA model 
ICA is a technique that transforms a 

multivariate random signal into a signal 
having components that are mutually 
independent in the complete statistical sense 
[4]. Let the time-varying observed signal be 

,) , , ,( 21
T

mxxx K=x  and the desired signal 
consisting of independent components (ICs) 
be T

nsss ) , , ,( 21 K=s . The classical ICA 
assumes that the signal x is an instantaneous 
linear mixture of ICs, or independent 
sources misi ,...2,1, = . Therefore, x=As, where 
the matrix A of size mn×  represents the 
linear memoryless mixing channels. The 
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goal of the ICA is to obtain a nm×  
demixing matrix W to recover all the ICs of 
the observed signal. 

T
myyyy ) , , ,( 21 K=  is 

given by y=Wx. For simplicity, in this 
section, we address the case of a complete 
ICA, in which mn = . 

The main idea of KICA is to map the 
input data into an implicit feature space F 
firstly: FxRx N ∈Φ→∈Φ )(: . Then KICA is 
performed in F to produce a set of nonlinear 
features of input data. As ICA algorithm 
described in the above part, the input data X 
is whitened in feature space F. The 
whitening matrix is: TVW )()(~

2
1

ΦΦΦ Λ= , here 
ΦΛ , ΦV  are the eigenvalues matrix and 

eigenvectors matrix of covariance matrix 

∑
=

−
ΦΛ=Φ=

n

i

T
n KXC

1

11 )()(ˆ α , respectively. Then 
we can obtain the whitened data WXΦ  as   

                   
KXWX TTW α1)()()~( −

ΦΦΦ Λ=Φ=      (1) 

where K is defined by : ))()((: jiy xxK Φ⋅Φ=&&  
and α is the eigenvectors matrix of K. After 
the whitening transformation, the learning 
algorithm calculated by the following 
iterative algorithm: 

 ,~
ΦΦΦ = XWY             (2) 

    [ ] ,)~()(
1

2
ΦΦ+Φ Φ−−+=Δ WYJJW T

e Y     (3) 

 ΦΦΦΦ →Δ+= WWWW ρ~
      (4) 

until ΦW  converged, and ρ is a learning 
constant. According to the above algorithm, 
the feature of a test data s can be obtained 
by: 

),()( 1 sXKWy Tα−
ΦΦ Λ=       (5) 

where T
n sxksxksxksXK )],(),,(),,([),( 21 L= , k is a 

kernel function. 

In the above iteration algorithm, the 
function Ф is an implicit form. The kernel 
function k can be computed to instead of Ф. 

This trick is named as kernel trick. Many 
functions can be chosen for the kernel such 
as polynomial kernel: 

      
dsxsxk )(),( ⋅=            (6) 

Gaussian kernel )exp(),( 2

2

2σ

sxsxk −−=  and 
sigmoid kernel )),(tanh(),( θ+= sxksxk . Liu 
and Cheng et al use a cosine kernel function 
[12] derived from the polynomial kernel 
function as shown in Eq.(6), which can give 
a better performance than the polynomial 
kernel function for feature extraction: 

 ),(),(
),(),(ˆ

sskxxk
sxksxk =

         (7) 

where k is a polynomial kernel. Practically 
speaking, Kernel-ICA = Kernel-Centering+ 
Kernel-Whitening+ ICA. Selecting an 
appropriate kernel function for a particular 
application area can be difficult and remains 
largely an unresolved issue. Any new kernel 
function derived from the kernel ),( sxk  
with form ),()()(),(ˆ sxkscxcsxk = , has been 
proved to be a valid kernel function when 

)(xc  is a positive real valued function of x, 
which is always satisfied. So, the cosine 
kernel is a valid kernel function. We adopt 
cosine kernel in our experiments. 

2.2 The IKICA model 
Our previous research used the KICA 

model to solve the problem of finding the 
surface normal on each point of an image. 
But in the KICA model, it is easy to see that 
the following ambiguities exist in Fig.1: (1) 
We cannot determine the variances (energies) 
of the independent components; and (2) We 
cannot determine the order of the 
independent components. We generally 
discover that finding the surface normal 
vector involves the two problems. For those 
reasons, we use a constrained learning 
adaptation algorithm (IKICA) based on 
image intensities to handle these 
ambiguities. 
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Figure 1. “Ambiguities of KICA model.” The 
source signals are shown in first row, mixing 
underlying sources shown in second row, and 

estimated sources shown in third row. 

The IKICA algorithm described in [5] 
brings in the use of a constraint which is 
used to obtain an output that is statistically 
independent of other sources and is closest 
to a reference signal r(t). This constraining 
signal need not be a perfect match but it 
should be enough to point the algorithm in 
the direction of a particular IC spanning the 
measurement space. The closeness 
constraint can be written as 

 0)()( ≤−= ξε wwg        (8) 

where w denotes a single demixing weight 
vector such that vwy T= ; )(wε  represents the 
closeness between the estimated output y 
and the reference r, andξ  represents some 
closeness threshold. The measure of 
closeness can take any form, such as mean 
squared-error (MSE) or correlation, or any 
other suitable closeness measure. In our 
implementation of the algorithm, we use 
correlation as a measure of closeness such 
that )(wg  becomes 

                         
0)}({)( ≤−= vwrEwg Tξ       (9) 

where ξ  now becomes the threshold that 
defines the lower bound of the optimum 
correlation. 

With the constraint in place, the IKICA 
problem is modeled as follows: 

Maximize: 
2)}]({)}({[)( vGEvwGEwf T −= ρ       

Subject to: 01}{)(,0)( 2 =−=≤ yEwhwg  and            

01}{ 2 =−rE              (10) 

where f(w) denotes the one-unit IKICA 
contrast function; g(w) is the closeness 
constraint; h(w) constrains the output y to 
having a unit variance; and the reference 
signal r is also constrained to having a unit 
variance. In [5], the problem of Eq.10 is 
expressed as a constrained optimization 
problem which is solved through the use of 
an augmented Lagrangian function, where 
learning of the weights and the Lagrange 
parameters is achieved through a 
Newton-like learning process. 

For example, the IKICA algorithm was 
tested using a synthetic data set of four 
known sources, as shown in Fig.2(a), which 
was used for the IKICA work. The sources 
were linearly mixed by a randomly 
generated mixing matrix, producing the data 
set shown in Fig.2(b). With this mixture of 
data, the IKICA algorithm was run 100,000 
times, each time with one of the five 
reference signals shown in Fig.2(c) as a 
reference. The first four of these references 
were obtained from the sign of the four 
original sources. These were purposely kept 
as coarse representations of the true sources. 
The fifth reference is a sine wave which has 
a frequency radically different than that of 
any of the original sources, allowing study 
of the algorithm’s behavior given a “false” 
reference. Typical outputs of the algorithm 
are depicted in Fig.2(d). Thus, if we want to 
find the surface normal vector at each point 
of an image, we can use the IKICA model. 
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Figure 2. (a) The four underlying sources of the 
synthetic dataset. (b) The linearly mixing underlying 

sources shown in (a). (c) The different references 
used for executions of IKICA on 4 channels of data in 

(b). The first four references are derived from the 
signs of the four underlying source, the fifth 

reference is a “false” reference. (d) Examples of each 
recovered source using only the references given in 
(c), the fifth recovered source shows a “mixture” of 

two underlying sources. 

3. 3D model reconstruction 

3.1 Determining the surface normal of 
objects using the IKICA model 

Suppose that the recovering of surface 
shape, denoted by ( )yxz  , , from shaded 
images depends upon the systematic 
variation of image brightness with surface 
orientation, where z is the depth field, and x 
and y form the 2D grid over the domain D of 
the image plane. Then, the Lambertian 
reflectance model used to represent a surface 
illuminated by a single point light source is 
written as: 

( ) ( )( ) ( ) ( ){ }0 , ,  , max ,, , yxyxLyxyxR T nsn αα =  
    Dyx ∈∀ ,            (11) 

where R(.) is reflectance component 
intensity, ( )yx,α  is reflectance albedo on 
position ( )yx,  of surface, s is a column 
vector indicating the direction of point light, 
and L is light strength. The surface normal 

on position ( )yx, , denoted by ),( yxn , can 
be represented as 

( ) ( )[ ]
( ) ( )

T

yxqyxp

yxqyxpyx
1,,

1,,) ,(
22 ++

−−
=n

    (12) 

where ),( yxp  and ),( yxq are the x- and y- 
partial derivatives of ( )yxz  , , respectively. 
In Eq.(11), }max{⋅  sets all negative 
components that correspond to the surface 
points lying in attached shadow to zero, 
where a surface point ( )yx,  lies in an 
attached shadow iff 0 ) ,( <sn yx  [15]. 

In this section, we describe the method of 
applying the IKICA model to estimate the 
normal vector ),( yxn  on the object surface 
corresponding to each pixel in an image. 
Since the ),( yxn  vector is a 3×1 column 
vector, we need at least three images under 
illumination from lights coming from 
different directions for the normal vector 

),( yxn  estimation. Hence, to reconstruct the 
3D surface of an object using its images, we 
have to take three gray-value images under 
three different illuminants. Assuming an 
image contains T pixels in total, we can 
rearrange all the gray values of the three 
images into a 3×T matrix, with each row 
representing an image, and each column 
representing the gray values of a single pixel 
under three different illuminants. When this 
matrix is put into Eq.(11), and Eq.(11) is 
compared with Asx= , we find that s is the 

),( yxn  vector that we are looking for. 

Using the IKICA decomposition, we 
rewrite equation Eq.(11) in matrix form as 

           
)(ˆˆ)()()( iiii nAAsx α==      (13) 

where 1
321

ˆ],,[ˆ −== WTaaaA  is the matrix 
depending on the lighting and viewing 
directions and has unit length; )(ˆ tn  is the 
estimated normal vector corresponding to 
the tth pixel, i = 1, 2, …, T; and )(iα  is the 
albedo of the ith pixel. However, the 
decomposition in Eq.(13) is not unique. If 
there is an invertible matrix G, which 

 
(a) (b) 

 
(c) (d) 
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satisfies 

 GAA ˆ=  and )(ˆ)( 1 ii nGn −=      (14) 

where A is the true matrix depending on the 
lighting and viewing directions of the 
images, and )(in  is the normal vector of 
the ith pixel in the standard XYZ 
coordinates, then the linear ambiguity 
belongs to the subset of GBR [16]-[18]. On 
the one hand, according to Georghiades’s 
[18] studies, if the surface of an object is 
seen under variable light directions, but with 
a fixed viewpoint, then the linear ambiguity 
can be reduced to three GBR parameters. As 
far as the surface normal vectors are 
concerned, we can only recover nGn ˆ1−≅ , 
and 

                     

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
=−

1
00
00

1 

21

3

3

3

1

gg
g

g

g
G

        (15) 
where gi are the three GBR parameters. On 
the other hand, the three light sources 
corresponding to the three images do not lie 
in the same plane (non-coplanar); therefore, 
the columns of matrix A are linearly 
independent. In addition, using the IKICA 
decomposition in Eq.(13), we can obtain an 
independent basis matrix Â ; thus the 
ambiguity can further be denoted by a 
diagonal matrix, i.e., g1 = 0 and g2 = 0. The 
relation, then, between the normal vectors in 
the standard XYZ coordinates and those in 
the independent coordinates system differs 
only by the g3 factor. For the performance 
evaluation of 3D image reconstruction, both 
estimated surfaces and synthetic surfaces are 
normalized within the interval [0, 1]. 
Therefore, the influence of the g3 factor on 
the estimated 3D surface can be removed. 

3.2 3D surface reconstruction using the 
method for enforcing integrability 

In this section, we discuss using the 
method for enforcing integrability to obtain 
detailed information for reconstructing the 
surface of an object using its normal vectors. 
This approach was proposed by R. T. 

Frankot and R. Chellappa [14].  

Suppose that we represent the surface 
( )yxz  ,  by the functions ( )ω , , yxφ  so that 

           
( ) ( ) ( )ωω

ω

 , ,  , yxcyxz φ∑
Ω∈

=
      (16) 

where ( )vu  ,=ω  is a two-dimensional index, 
Ω  is a finite set of indexes, and the 
members of ( ){ }  , , ωyxφ  are not 
necessarily mutually orthogonal. We choose 
the discrete cosine basis so that ( ){ }  ωc  is 
exactly the full set of discrete cosine 
transform (DCT) coefficients of ( )yxz  , . 
Since the partial derivatives of the basis 
functions ( )ω,, yxxφ  and ( )ω,, yxxφ  are 
integrable, the partial derivatives of ( )yxz  ,  
are guaranteed to be integrable as well; that 
is, ( ) ( ).,, yxzyxz yxxy = . Note that the partial 
derivatives of ( )yxz  ,  can also be expressed 
in terms of this expansion, giving 

           
( ) ( ) ( )ωω

ω
 , ,  , yxcyxz xx φ∑

Ω∈

=
  (17) 

           
( ) ( ) ( )ωω

ω
 , ,  , yxcyxz yy φ∑

Ω∈

=
  (18) 

where ( ) ( ) xyxx ∂⋅∂= φφ ω,,  and 
( ) ( ) yyxy ∂⋅∂= φφ ω,, . 

Suppose we now have the possibly 
non-integrable estimate ),( yxn  from which 
we can easily deduce from Eq.(5) the 
possibly non-integrable partial derivatives 

( )yxzx ,ˆ  and ( )yxzy ,ˆ . These partial 
derivatives can also be expressed as a series, 
giving 

           
( ) ( ) ( )ωω

ω
 , , ˆ ,ˆ 1 yxcyxz xx φ∑

Ω∈

=
  (19) 

           
( ) ( ) ( )ωω

ω
 , , ˆ ,ˆ 2 yxcyxz yy φ∑

Ω∈

=
  (20) 
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This method can find the expansion 
coefficients ( )ωc  given a possibly 
non-integrable estimate of surface slopes 

( )yxzx ,ˆ  and ( )yxz y ,ˆ : 

( ) ( ) ( ) ( ) ( )
( ) ( )ωω

ωωωω
ω

yx

yx

pp
cpcp

c
+

+
= 21 ˆˆ

 for ( ) Ω∈= vu,ω (21) 

where,              

 
( ) ( ) dxdyyxp xx ∫∫= 2,, ωω φ

    (22) 

( ) ( ) dxdyyxp yy ∫∫=
2

,, ωω φ     (23) 

In the end, we can reconstruct an object’s 
surface by implementing the inverse 2D 
DCT on the coefficient ( )ωc . 

4. 3D Human face recognition 

We success in reconstructing 3D human 
faces which are used to be 3D face database 
for human face recognition. There are the 
three methods which are proposed by us for 
characteristic values fetching. The neural 
network is used as classifier to discriminate 
the 3D face characteristic value of 3D 
human face database. In order to adjust the 
parameter of the neural network efficiently, 
we used back-propagation as a learning 
algorithm. The detail of the neural network 
and back-propagation is described in 
follows. 

4.1 Method of characteristic fetech 
In our system, in order to extract the 

characteristic value of 3D human faces, 
three type of fetching methods are defined. 
Then, we classified the characteristics by 
back-propagation learning network to 
complete 3D human face recognition. We 
would state the three kinds of characteristic 
value fetching methods separately in 
following section. 

4.1.1 Contour-based fetching method 
We can get the coordinate value of the 

human image every pixel in 3D picture, we 
fetch z coordinate from it that is the depth of 
faces of people. In the depth of 3D frontal 
face, we can be found a supreme point in 
person's 3D face model which is the 
so-called nose tip. We utilize the deep 
relation of 3D faces of people, accord with 
its deep size, and draw up contour map such 
as it. We suppose all numbers of value in 
every contour is n, every deep value is X, 
and each contour have j pieces of X. The 
method that we get ith characteristic value is 

∑
=

=
n

j
ji Xcontour

1           (24) 

4.1.2 Circle-based fetching method 
First, we fetch z coordinate from 3D 

human face that is the depth of faces of 
people. In the depth of 3D frontal face, we 
can be found a supreme point in person's 3D 
face model which is the nose tip. Regard 
nose tip as the centre of a circle, make the 
radius of the proportion of 3D human face, 
and draw a round of k in order. There is r a 
number of deep values in a round of k 
separately. The q order point depth is Y in 
each circle of deep value. We adds these 
deep values which written as  

∑
=

=
r

q
qk YSum

1            (25) 

Then, we fetch necessary k a characteristic 
value on average r pieces of Sum value 

r
Sum

Circle k
k =           (26) 

4.1.3 Feature-based fetching method 
Many researchers have investigated facial 

feature extraction from a frontal view. A 
number of manual feature extraction 
algorithms have been proposed, from frontal 
views, mostly for facial animation [19-22]. 
Ref. [19] manually picks five feature points 
from two images to deform a generic mesh 
model. Ref. [21] relies on manual feature 
extraction for synthesizing realistic facial 
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expression from video. Ref. [22] uses stereo 
frontal images of the face to compute the 
depth of manually picked feature points. Ref. 
[23] extracts the centers of the eyes and 
mouth based on head motion in video 
frames and knowledge about the facial 
geometry. Ref. [24] elaborates on the work 
of Ref. [23] and extracts the corners of the 
eyes and mouth using template matching for 
each corner. Ref. [25] utilizes two views of 
the face and only extracts automatically the 
pupils’ centers from the frontal view image 
based on eye template and pupil detector. 
Ref. [26] uses similar algorithm as Ref. [25] 
but estimates the 3D points of each feature 
from two 2D points from each view. The tip 
of the nose, chin, and upper and lower lip 
feature points are determined by tracking 
local maximum curvature at the profile view. 

In this section, we automatically extract 
15 corresponding facial feature points from 
the frontal view. These features are 
landmark points chosen based on their 
importance in representing a face. Fig.3(c) 
shows the facial features considered in this 
section for the frontal view. We measure the 
nose tip point to the distance of eyes (six 
points), the nose (three points), the mouth 
(six points) regards as characteristic value 
for 3D human face recognition system. 

   
(a).Contour-

based 
(b).Circle- 

based 
(c).Feature- 

based 
Figure 3. The Three characteristic value fetching 

methods of 3D human face. 

4.2. The structure of multi-layer neural 
networks 

Multi-neural network is the science of 
investigating and analyzing the algorithms 
of the human brain, and using the similar 
algorithm to build up a powerful 
computational system to do the tasks like 
pattern recognition, identification, 
controlling of dynamical system, system 

modeling, and nonlinear prediction of time 
series. The multi-neural network owns the 
capability, to organize its structural 
constituents, the same as the human brain. 
So the most attractive character of 
multi-neural network is that it can be taught 
to achieve the complex tasks.  

We use a simple three-layer multi-layer 
neural network as shown in Fig.4 for 3D 
face recognition. In Fig.4, we have m PEs in 
the input layer, I PEs in the hidden layer, 
and n PEs in the output layer; the solid lines 
show the forward propagation of signals, 
and the dashed lines show the backward 
propagation of errors. 

Let us consider an input-output training 
pair (x, d), where the superscript k is omitted 
for notation simplification. Given an input 
pattern x, a PE q in the hidden layer receives 
a net input of 

j

m

j
qjq xvnet ∑

=

=
1         (25) 

and produces an output of 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∑

=
j

m

j
qjqq xvanetaz

1      (26) 

the net input for a PE i in the output layer is 
then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∑∑∑

===
j

m

j
qj

l

q
iqq

l

q
iqi xvawzwnet

111 (27) 

and it produces an output of 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== ∑∑∑

===
j

m

j
qj

l

q
iqq

l

q
iqii xvawazwanetay

111

(28) 
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Figure 4. Three-layer multi-layer neural network. 

Transfer function is to do a input 
weighting value of input of the neuron the 
summation and is transferred to a kind of 
mapping rule that is outputted in the 
function of neural network, influence a kind 
of design that is channeled into the network 
of the non-linear one too.  

The Back propagation neural network 
most frequently used non-linear transfer 
function is sigmoid function. So we use 
sigmoid function Eq.(29) as transfer 
function. 

xe
xf −+

=
1

1)(
          (29) 

4.3. Back-propagation learning method 
The back-propagation learning algorithm 

[27] is one of the most important historical 
developments in neural networks. It has 
reawakened the scientific and engineering 
community to the modeling and processing 
of many quantitative phenomena using 
neural networks. This learning algorithm is 
applied to multilayer feed forward networks 
consisting of processing elements with 
continuous differentiable activation 
functions. Such networks associated with the 
back-propagation learning algorithm are also 
called back-propagation networks. Given a 
training set of input-output pairs {(x(k) , 
d(k))}, k=1, 2, …, p, the algorithm provides 
a procedure for changing the weights in a 
back-propagation network to classify the 
given input patterns correctly. The basis for 
this weight update algorithm is simply the 
gradient-descent method as used for simple 

perceptrons with differentiable units. 
Back-propagation algorithm has been widely 
adopted as a successful learning rule to find 
the appropriate values of the weights for 
NNs. Generally speaking, because we use 
the back-propagation learning algorithm, so 
the error quantity must propagate through 
time from a stable state to initial state. 

For a given input-output pair (x(k), d
(k)), the back-propagation algorithm perfo
rms two phases of data flow. First, the i
nput pattern x(k) is propagated from the 
input layer to the output layer and, as a
 result of this forward flow of data, it p
roduces an actual output y(k). Then the 
error signals resulting from the difference
 between d(k) and y(k) are back-propaga
ted from the output layer to the previous
 layers for them to update their weights.
 The above section’s equations indicate t
he forward propagation of input signals t
hrough the layers of neurons. Next, we c
onsider the error signals and their back 
propagation. 

In order to make the neural network works 
properly, we need to find the weights and 
biases by the learning algorithms. In this 
study, the supervise learning is used. The 
network is given a set of training data which 
contains a number of input pattern and 
corresponding target output. The learning 
objective is to reach the high accuracy of 
classification by minimize the error between 
target output and network output in the 
training set. Furthermore, the trained 
classifier also should to provide a good 
performance in the untrained data (testing 
set). 

5. Experimental results 

We implemented each method in Matlab 
7.0 software on a 1.8GHz K8-based PC with 
1024 MB RAM According to the results. 
For 3D reconstruction, we tested the 
algorithm on a number of real images from 
the Yale Face Database B [28] showing 
variability due to illumination. There are 
varying albedos in each point of the surface 
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of the human faces. First, we arbitrarily took 
from these test images the images of the 
same person who was photographed under 
three different light sources, as shown in 
Fig.8. We fed the normalized images into 
our algorithm. For the face surface 
reconstruction problem, the normal vectors 
of a sphere’s surface were used as the 
reference values for the IKICA model due to 
their similar structures. The true depth map 
of the synthetic sphere object is generated 
mathematically as 

( )
⎪⎩

⎪
⎨
⎧ ≤+−−=

                    otherwise   ,0
 if    ,,

222222 ryxyxryxz
(41) 

 
where r=48, 100 ,0 ≤< yx , and the center is 
located at (x, y)=(51, 51). The sphere object 
is shown in Fig.5. Fig.6 shows the normal 
vectors of a sphere’s surface.  

 

Figure 5. Synthetic sphere surface object. 

(a) 

(b) 

(c) 
Figure 6. The normal vectors of a sphere’s surface 
(a) the X-component, (b) the Y-component, and (c) 

the Z-component of the normal vectors. 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 7. (a)-(c) Three training images with 
different light source positions from Yale Face 

Database B [28] in frontal. (d)-(f) Surface normal 
corresponding to the three source images. 

(a) (b) 
Figure 8. (a) The surface albedo of human face in 
Fig.6. The results of 3D model reconstruction by (b) 

our proposed algorithm. 

After updating the parameters by several 
iterations, we obtained the normal vector of 
the surfaces of the human faces 
corresponding to each pixel in the image in 
the output nodes. The results are shown in 
the second row in Fig.7, which give the 
X-component, the Y-component, and the 
Z-component of the surface normal vector in 
order. Fig.8(a) shows the surface albedo of 
the human face shown in Fig.7. Fig.8(b) 
shows the result from using our proposed 
reconstructive algorithm. 

Third, the data set in the Yale Face 
Database B [28] is also used in our 
experiments for objective comparison. The 
database consists of 3D face coordinate data 
and their corresponding 2D front view. Fig.9 
shows 6 individuals in the database with 
160*160 image size. The results of 3D 
model reconstruction by our proposed 
algorithm are showed in second row. 
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(1) 
    

(2) 

   
 (a) (b) (c) (d) (e) (f) 

Figure 9. (1) Six individuals in the Yale Face Database B [28] used to test our algorithm (these images include 
both males and females.). The results of 3D model reconstruction by (2) our proposed algorithm (second row). 

For face recognition, we propose three 
effective algorithms for 3D human face 
recognition by back-propagation neural 
networks. We use Yale face database B [28] 
for reconstruction that provide the geometric 
properties of 3D face database. The Yale 
database B contains 10 people faces and 
each person has 50 2D images, per image is 
taken under different directions of source 
light. Therefore 1 person make 10 3D 
images, 100 3D images regard our 3D 
database as altogether. We take 50 3D 
images regard as training data, 50 3D 
images regard as test data in our 3D 
database for back-propagation learning 
network.  

The number of the input nodes is defined 
by the number of characteristic values. Since 
the 3D face recognition is classified to ten 
persons, we set the ten output nodes y1-y10 
corresponding to each person, respectively. 
If an input pattern is given, we expect that 
the value of the output node which is 
corresponding to the mental category of 
input pattern is near to 1, otherwise is near 
to 0. When an unknown data inputs to the 
network, we can determine which mental 
task the data belongs to by find the index of 
maximum value in the ten output nodes. In 
order to make the output value between 0 
and 1, the sigmoid function Eq.(39) is used 
as the activate function. 

Pick the method of fetching in three 
characteristics that we propose, extract 15 
pieces of characteristic value as inputs 
separately for training. Back-propagation 
trains each 3D faces independently, it is 
adequate to recognition applications in 

which a model base is frequently updated. 
For the evaluation of a neural network, the 
root-mean-square-error (RMSE) is used to 
compute the average output error 

∑∑
= =

−=
nTr

i

nOut

j
jiji yt

nTr
RMSE

1 1

2
,, )(1

   (42) 

where the ntr is the number of training data, 
nOut is the number of network output, and 
ti,j and yi,j is the jth target output and real 
network output of ith training data, 
respectively. The back-propagation 
algorithm’s learning curves by three kind of 
characteristic value fetching methods are 
show by Fig.10. 

The performance of the back-propagation 
network is affected by many factors. If the 
performance is not good then the recognition 
rate of our method is also bad. One of the 
effect factors is hidden node numbers. In 
Fig.11, we test the back-propagation 
learning network structure’s hidden node 
number each and counts impact on 
recognition rate. Feature-based fetching 
algorithm has the minimum RMSE of our 
methods, and we want to know the 
recognition rate with hidden node number’s 
effect by feature-based fetching method. So 
we make the network’s hidden node 
numbers of feature-based fetching method, 
for 10 to 15, probe into node number impact 
on recognition rate respectively from this 
experiment. In there shows the best 
recognition rate in network with 10 hidden 
nodes. We find its recognition rate is up to 
90%, so our network structure uses 10 
hidden nodes to hidden layer.  
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Next, we try to find out the three methods 
of fetching characteristic value, which can 
be used to reach the better recognition 
performance. At the same time, we also 
make other reflectance model’s 3D face 
database by diffuse [29], specular [30], and 
cICA [6] reflectance model. We take 50 3D 
images regard as training data, 50 3D 
images regard as test data in our 3D 
database for back-propagation learning 
algorithm in the three layer feed-forward 
neural network. For efficiency testing, we 
take the number 15 characteristic values as 
training data. The inputs data is classified by 
the neural network with 10 hidden nodes. 
The result of recognition rate is showed in 
Table 1. The best recognition rate of our 
reflectance model is 90.15%. Furthermore, 
the recognition rate with used feature-based 
fetching method is close to the best 
recognition rate. Among other reflectance 
model 3D face databases, three recognition 
rates to fetch method, group different to 
have different high or low prices each in 
accordance with reflectance model, but 
method of us no matter in which 
characteristic fetching method which 
recognition rate is most high. It means that 
the feature-based method is an effective 
method.  

 
Figure 10. Back-propagation algorithm’s learning 
curves by three kind of characteristic value fetching 

methods. 

 
Figure 11. The back-propagation learning network 

structure’s hidden node number each and counts 
impact on recognition rate. 

Table 1. Each reflectance model pick the recognition rate followed the example of three fetching methods on 
characteristic value.

6. Conclusion 

In this paper, we proposed a new 
reflectance model for 3D surface 
reconstruction. IKICA as applied in this 
paper with temporal constraints results in a 
useful technique for the fast and efficient 
extraction of surface normal vectors from 
three surface reflection images. An 

important result derived from using the 
IKICA model for solving photometric stereo 
problems is that desired output values and 
smoothing conditions are not needed. This 
allows for easier convergence and makes the 
system stable. 

For 3D surface reconstruction, several 
conclusions are listed below. (a) When we 
estimate the surface shape, the success of the 

The diffuse 
reflectance model 

([29]) 

The specular 
reflectance model 

([30]) 

The cICA 
reflectance model 

([6]) 

The proposed 
reflectance model

      Reflectance 
         model 

 
Fetching 
method Rate of Recognition (%) 

Contour method 62.31 31.36 85.12 88.32 
Circle method 59.61 45.02 79.52 82.75 
Feature method 61.23 44.21 87.16 90.15 
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reflectance model depends on two major 
components, including the diffusion and 
specular components. (b) In our methods, 
we do not know the locations of light 
sources for solving the photometric stereo 
problems. (c) The proposed IKICA network 
does not need any special parameter setting 
and the smoothing conditions. 

For 3D face recognition, in order to 
make the neural network works properly, we 
need to find the weights and biases by the 
learning algorithms. In this study, the 
supervise learning is used. The network is 
given a set of training data which contains a 
number of input pattern and corresponding 
target output. The learning objective is to 
reach the high accuracy of classification by 
minimize the error between target output 
and network output in the training set. 
Furthermore, the trained classifier also 
should to provide a good performance in the 
untrained data. 

In the future, we will study other 
efficient detection algorithms and integrate 
global characteristic value to further 
improve the recognition performance of this 
system. We hope for combining 2D and 3D 
information of human face in our 
recognition system effectively to achieve 
higher recognition rate. Finally, we expect 
that one day the proposed method could be 
used to realize a 3D human face recognition 
system. 
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