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Abstract- In current genome research, the 
identification of regulatory elements required for the 
correct expression of genes is an essential topic. 
FootPrinter (Blanchette, 2000; Blanchette and 
Tompa, 2003) is a well established tool for 
identifying regulatory elements from a set of 
orthologous non-coding DNA sequences of various 
species under a given phylogenetic tree. Such a 
motif/substring finding problem has been defined as 
the substring parsimony problem by Blanchette 
(2000). We design a new algorithm which adopts the 
hashing technique and a fast approach to detect the 
Hamming distance between two substings to resolve 
this problem. Experimental results show that our 
approach is more efficient than FootPrinter when the 
substrings needed are highly conserved. 
 
Keywords: Regulatory element, Hamming distance, 

Substring parsimony problem, Hashing.  
 
1. Introduction 
 

To understand how gene expression is regulated is 
an essential challenge of current genomics. The first 
thing to do for such understanding is the ability to 
identify regulatory elements associated with a given 
gene. Most of these regulatory elements are 
relatively short stretches of DNA (5 to 25 
nucleotides long), located in the non-coding 
sequence surrounding a gene (Tompa, 1999; 
Blanchette et al, 2000). Most known regulatory 
elements are located 5’ of the coding region, but 
some are also found in the 3’ sequence, or even in 
introns. In all these cases, regulatory elements are 
located in otherwise non-functional sequences.  

Phylogenetic footprinting was first proposed by 
Tagle et al., (1988), which is a technique that uses 
such a functional/non-functional sequence 
dichotomy to identify regulatory elements. The idea 
underlying phylogenetic footprinting is that selective 
pressure causes regulatory elements to evolve at a 
slow rate than the non-functional surrounding 
sequence. Therefore the best conserved motifs in a 
collection of homologous regulatory regions are 

excellent candidates as regulatory elements 
(Blanchette et al, 2002). 

This technique of phylogenetic footprinting was 
further implemented as a tool, named as FootPrinter 
(Blanchette and Tompa, 2003), It can not only 
identify many known functional binding sites but 
also find several highly conserved motifs. It is 
effective to predict new unknown regulatory 
elements. The empirical studies by Blanchette, 
Kwong and Tompa (2003), which evaluate the 
accuracy of the motif-finding tools including 
FootPrinter, MEME (Bailey and Elkan, 1995) and 
Dialign (Morgenstern et al., 1998) on synthetic and 
real biological data, reveal that FootPrinter would be 
the most accurate tool in identifying motifs in most 
cases. One of the main reasons for its good 
performance is that it takes into account the 
phylogenetic relationships of species.  

It is our aim in this paper to improve the 
execution time needed by FootPrinter, especially 
when dealing with those highly conserved regulatory 
elements among orthogonal sequences. The rest of 
the paper is organized as follows. Section 2 defines 
the substring parsimony problem formally and 
describes briefly the essential idea of FootPrinter.  
Our method which is specifically designed for highly 
conserved short motifs is presented in Section 3. The 
experimental results are summarized in Section 4. 
Section 5 gives the concluding remarks. 

 
2. The Substring Parsimony Problem  
 

From the computational viewpoint, the well 
conserved motifs finding problem is as follows. 
Given a set of orthologous sequences S = {s1, s2, …, 
sn} from n related species, we are looking for 
sequences t1, t2, …, tn, where ti is a substring with 
length k for all 1≤i≤n such that t1, t2, …, tn have an 
unusual high measure of sequence similarity. To 
avoid the overrepresentation of the problem, we do 
not weight the n sequences equally, but instead we 
assume a good phylogenetic tree with the n species at 
its leaves is given and we would like to measure the 
mutual sequence similarity by parsimony.  
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This problem was formally defined as the 
substring parsimony problem (Blanchette, 2002) 
which has been shown to be NP-hard (Akutsu, 1998). 
The substring parsimony problem is defined as 
follows:  

Given: a set of orthologous sequences S = {s1, 
s2, …, sn} from n different species, the phylogenetic 
tree T=(V, E), V=S, relating these species, the length 
k of the motifs to look for, and an integer d.  

Problem: find all sets of substrings t1, t2, …, tn of 
s1, s2, …, sn respectively, each of length k, such that 
the parsimony score of t1, t2, …, tn on T is at most d. 
Note that the parsimony score of a set of sequences is 
the minimum total number of substitutions over the 
tree T needed to explain the observed sequences. It is 
defined as the minimum, over all possible labelings 
of the internal nodes with sequences of length k, of 
the sum of the Hamming distance between the labels 
of the nodes connected an edge in T. In more detail, 
suppose the internal nodes are labeled as n+1, 
n+2, ... , ⎜V ⎜. We would like to find t1, t2, …, tn of s1, 
s2, …, sn respectively and tn+1, tn+2, …, t⎜V ⎜ that 
minimize  

P(T) = ∑
∈Evu

vu tt
),(

),(δ  

where δ(t, t') is the Hamming distance between string 
t and t', i.e., the number of positions at which they 
differ. Looking for sets of substrings that achieves a 
low parsimony score P(T) corresponds to searching 
for highly conserved regions. 

Blanchette et al. (2000) introduced a dynamic 
programming algorithm to solve the substring 
parsimony problem optimally in time O(n×k×(42k +l)) 
(which was further improved as O(n×min(l×(3k)d/2,

 k×(4k×l))) by Blanchette (2001)), where l is the 
average length of all sequences in S. Let C(v) be the 
set of children of v and Σ = {A, C, G, T}. The 
dynamic programming algorithm for this problem is 
as follow.  
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The algorithm proceeds from the leaves up to the 
root. At each node v of the tree, computing a table Wv 
containing 4k entries, one for each possible sequence 
of length k. For a string s of length k, Wv[s] is defined 
as the best parsimony score that can be achieved for 
the subtree rooted at v, if v was to be labeled with s.  

Please refer to Blanchette (2001) and Blanchette 
et al. (2002) for a more detail review of the substring 
parsimony problem and some improved techniques 
for solving this problem. 

Figure 1 illustrates an example of the substring 
parsimony problem where the parsimony score of the 
input five sequences under the given tree is 1 which 
is the minimum score (number of substations) for 
AGTCG (substring labeled at all of the internal nodes) 
to be the substring of all the five input. Note that the 
value annotated on the edge (u, v) denotes the 
minimum score from the ancestor node u to the 
descendant node v and the substring labeled at the 
internal node, say u, is the one with the minimum 
score within the subtree rooted at u. 

Figure 2 shows the straightforward algorithm. 

                                                                     AGTCGTACGTA  1 
 

AGTCG                                AGTCGACGTACG  2 
 

AGTCG               AGTCG        AGTCGCGAGA  3 
 

0                                   0                       GAACAGTCGTAA  4 
 

AGTCG                                              TCGTAGTCTAAC  5 

Figure 1. Example of a substring parsimony problem 

Algorithm substring parsimony 
Input: S={s1, s2…, sn}, k∈IN, T = (V, E) with the root labeled as r 
Output: find all sets of substrings t1, t2,…, tn  in s1, s2…, sn respectively, each of 

length k, such that the parsimony score of t1, t2, …, tn on T is minimized. 
1 for (each leaf v of T) do 
2   let Wv[t] = 0 for each k-substring t of Sv; Wv[t] = ∞ otherwise; 
3  for (each internal node u of T, from the leaves toward the root r) do 
4   for (each sequence t∈Σk) do 
5 compute Wu[t] = Σv∈C(u)mint'∈Σk(Wu[t']+δ(t, t')); 
6  select a tr∈Σk such that Wu[tr] is minimal; 
7  for (each child v of a node u, from the root r toward the leaves) do 
8   choose tv such that Wv[tv]+d(tu, tv) is minimal; 

Figure 2. Straightforward algorithm by Blanchette et al. (2000) 

0
0

0

0

1
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3. Our Method for the Substring 
Parsimony Problem 

 
From Figure 2, we find that the algorithm 

generates all substrings with length k (step 5) for 
each sequence (step 4) and all internal nodes (step 3). 
When the input sequences are highly conserved or 
we only need to find motifs among the sequences 
with a small parsimony score, it might be more 
efficient to compute the parsimony score of each 
node on the evolutionary tree by starting from some 
motif, say t, of a sequence and test whether itself or 
its neighbors (substrings t' such that δ(t, t')≤d) are 
already contained in all the other sequences, 
assuming the test process can be accelerated 
effectively. That is, our idea is to focus on a 
substring t with length k with its 3k neighbors, 
referred to as N containing the substrings t' such that 
δ(t, t')≤d, and to check first whether these candidates 
need to compute their scores further. Our expectation 
is that no further scoring computations are needed if 
some, even most, of them are no longer legal 
candidates.  

There are two elementary operations that occur 
heavily in the substring parsimony problem: (1) 
checking whether a substring is in some other 
sequences, and (2) determining the Hamming 
distance of two substrings. We apply the hashing 
technique and some data structures to speedup the 
first search process and an efficient approach to 
compute the Hamming distance of two substrings. 

We adopts a code to represent the consecutive k 
characters (a k-substring) in a sequence, thus we only 

use code calculation for the Hamming distance 
instead of using one-to-one character comparisons. 
Each DNA sequence with l bases long would contain 
(l–k+1) overlapping k-characters. We associate each 
letter of nucleotides with a specific code respectively, 
namely si[j] = 0, 1, 2 or 3 for A, C, G, T, respectively, 
1≤i≤n and 1≤j≤ | si | −k+1. Thus the jth substring of 
sequence si can be coded as a number K[i, j], which 
is defined as 

K[i, j] = ∑
−

=

1

0

k

l

si[j+l]|∑ |k－l－1 

where si[j+l] is the code corresponding to the (j+l)th 
character of sequence si, | Σ | is the number of 
symbols in the alphabet, for DNA sequences | Σ | = 4, 
0 ≤ K[i, j] ≤ | Σ |k－1. For example, when k = 3, 
substring ACG in sequence si is represented as 6. We 
then score (i, 6) in a hash table H with size hash_size, 
in fact, (i, 6) is append into a list pointed by H[K[i, j] 
mod hash_size]. Through such a structure, the 
existence of some k-substring in a sequence can be 
easily detected. 

Since the parsimony score is required to be less 
than d, the substrings we are looking for should 
satisfy δ(ti, tj)≤ d where ti and tj are substrings of si 
and sj respectively, 1≤ i, j≤ n. Starting from some k-
substring p of a sequence st, our approach generates 
all of the k-substrings with distance at most d for a 
certain substring p, then we calculate the parsimony 
scores between p and all of the substrings in the 
sequences other than st.  

The detail of our approach is described in the 
pseudo codes as follows: 

 
Algorithm Our approach 
Input: A set of orthologous sequences S={s1, s2…, sn} from n different species, the length k of motifs to look 

for, and an integer d≥1 
Output: find all sets of substrings t1, t2,…, tn in s1, s2…, sn respectively, each of length k, such that the 

parsimony score on T is at most d. 
1 for (si∈S, 1≤i≤n)  // coding all k-substrings among S 

b = 0 
for (1≤j≤( | si |−k+1)) 

 if (si[j~j+k-1] is a new k-substring of si)           // Calculate the code Ki[j] for the jth substring of si  

K[i, b] = ∑
−

=

1

0

k

l
si[j+l]|Σ|k−l−1 

insert (i, K[i, b]) into H[K[i, b] mod hash_size] 
b++ 

 endif 
 endfor 
 endfor 
2 // Initialization 

Let st be the sequence with the minimum number of k-substrings of S 
Let L be the number of distinct k-substrings of st 
j = 0 

3 while (j＜L) 
3.1 generate all m, d(m ,K[t, j]) ≤ d, into a set N  // N contains the codes of substrings x’s, x∈N 
3.2 Compute_Score = true 
3.3 for (each si ∈ S and Compute_Score) do 
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if (si does not contain all substrings in N)  Compute_Score = false 
endfor 

3.4 if (Compute_Score) then 
Let α be the leave of T which is labeling with st 
Wα[K[t, j]] = 0    // assume K[t, j] to be the candidate motif in st 
for (each m ∈ N) do  Xα[m] = δ(K[t, j], m) // N is the set of codes of the neighbors of α 
for (each leave v≠α of T) do   

for (each mv∈N and mv is a substring in v) do Wv[mv] = 0  
for (each m ∈ N) do Xv[m] = min δ(mv, m), where mv∈N and mv is a substring in v 

endfor  
for (each internal node u≠r of T and Compute_Score) do   

for (each m ∈ N) do Wu[m] = Xu[m] = Σv∈C(u)Xv[m] 
if (minm∈N(Wu[m]) > d) then  Compute_Score = false 
for (each m' ∈ N with Wu[m'] ≤ d) do 

for (each m ∈ N with Xu[m] > Wu[m']) do 
Xu[m] = min(Xu[m], min(Wu[m']+δ(m, m')))  

endfor 
if (Compute_Score) then  

for (each m ∈ N) do  Wr[m] = Σv∈C(r)Xv[m]; 
select all mr∈ N such that Wr[mr] ≤ d; 
for (each v∈C(u) of an internal node u, from the root r toward the leaves) do 

Choose mv such that Wv[mv] + δ(mv, mu) is the minimal; 
endif 

endif 
3.5 j++ 

endwhile 
 
Note that the above algorithm deals the cases with 

d≥1. When the parsimony score is restricted to be 0, 
we have a more efficient algorithm to this restricted 
problem. The pseudo codes are described as follows:

Algorithm Our approach for d=0 
Input: A set of orthologous sequences S={s1, s2, …, sn } from n species, the length k of motifs to look for 
Output: find all sets of substrings t1, t2,…, tn in s1, s2…, sn respectively, each of length k, such that the mutation 

of substrings is zero 
1 Let li be the length of ith sequence in s1, s2, …, sn 
2 for (i = 0 to 4k–1) do P[i] = 0 
3 for (i = 1 to n) do 
4  for (j = 0 to li−k) do 

4.1 Kj
i = ∑

−

=

1

0

k

l
cj+l

i |Σ|k-l-1    // code Ki for the sunstring at j position in the ith sequence 

4.2 if (P[Kj
i] == i−1) then 

 P[Kj
i]++ 

 if (P[Kj
i] == n) then the substring represented by Ki is a solution; report it 

 end_if 
 end_for 

 end_for 
 

4. Experimental Results 
 

To examine the performance of our approach 
when applied to find regulatory elements among 
orthogonal sequences, we use two kinds of test sets: 
(1) DNA sequences randomly selected from NCBI 
(National Center for Biotechnology Information); 
and (2) real sequences reported in the literature, 
namely (Blanchette and Tompa, 2002) whose 
regulatory elements have been known.  

The experimental platform is a personal computer 
with an AMD Athlon 2100+ CPU and 1GB RAM 
running the red head Linux. Our program is coded in 
C. Table 1 shows four test sets in our experiments. 
All of these data sets are DNA sequences randomly 
selected from the query results of searching for rbc-L 
in NCBI. Note that n denotes the number of 
sequences and Length indicates the range of the 
minimum and maximum lengths of the sequences in 
the data set. 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1021



Table 1. Test sets 
Data Set n Length Source 

#1 
#2 
#3 
#4 

20 
30 
50 

100 

628~2367 
310~782 
310~820 

999~2095 

randomly 
selected from 
the results of 

querying rbc-L
in NCBI 

 
 

Table 2. CPU time results 
CPU time (sec.) d Data 

set k 
Our  FP 

8 0.00 1.05 
10 0.00 1.05 #1 
12 0.01 1.05 
8 0.00 1.23 
10 0.00 1.23 #2 
12 0.00 1.22 
8 0.01 2.12 
10 0.00 2.11 #3 

12 0.00 2.09 
8 0.02 N/A 
10 0.04 N/A 

0 

#4 

12 0.04 N/A 
8 0.06 1.69 
10 0.09 1.85 #1 
12 0.33 2.01 
8 0.04 7.48 
10 0.05 1.36 #2 
12 0.22 1.39 
8 0.04 2.30 
10 0.06 2.34 #3 

12 0.24 2.36 
8 0.36 N/A 
10 0.31 N/A 

1 

#4 

12 0.52 N/A 
8 0.96 5.18 
10 0.61 5.24 #1 
12 1.29 5.99 
8 0.93 2.99 
10 0.46 2.77 #2 
12 0.80 3.08 
8 1.43 4.26 
10 0.50 4.71 #3 

12 0.85 5.23 
8 9.28 N/A 
10 2.55 N/A 

2 

#4 

12 2.21 N/A 
8 78.09 28.21 
10 13.24 35.72 #1 
12 10.12 45.15 
8 41.75 120.07 
10 20.90 15.58 #2 
12 12.11 9.89 
8 57.16 11.81 
10 29.04 12.74 #3 

12 12.96 15.68 
8 520.46 N/A 
10 117.75 N/A 

3 

#4 

12 18.19 N/A 
 

Table 2 summaries the CPU time results of the 
program of FootPrinter (FP) and the proposed 
method (Our) on the four data sets where d is the 
allowable parsimony score and k is the length of the 
substrings needed. 

As can be seen from Table 2, our approach 
outperforms FP when the allowed parsimony score is 
small (i.e., d≤2). It means that if our aim focuses on 
finding highly conserved substrings from a set of 
orthologous sequences, our approach is more 
efficient than FP. When d is small, the neighbor code 
numbers m of Mi in the shortest sequence of input 
sequences would be quite few so that the 
computation time can be reduced. For the cases of d 
= 0, our method has an appealing improvement over 
FP. However, for the cases that some high 
parsimony score is required (d>3, or cases that do 
not look for highly conserved substrings), it would 
be better to use FP. When d is large, the size of 
neighbor code numbers m of Ni in our approach 
increases considerably. This consumes execution 
time. Note that FP stops running due to memory 
faults when dealing with data sets #4 which contains 
100 sequences. 

We further examine the computational results of 
our method and FP on the test data sets reported in 
(Blanchette and Tompa, 2002) which are accessible 
via http://bio.cs.washington.edu/GR/. Table 3 reveals 
the results including the DNA regions investigated, 
names of the tested species, highly conserved motifs 
found by both Our and FP (capitalized nucleotides), 
parsimony score (d) of the capitalized motifs with 
respect to the whole set of species, known functional 
information (column “Ref.” of Table 3) about the 
motif. Note that we tested all data sets in FP by 
choosing the option that the motifs should appear in 
all the sequences.   

Again, from Table 3, our method is slower than 
FP for only one test instance which requires d=4, 
while our method is more efficient than FP when d is 
small. Both programs report the same set of motifs 
for the test data sets. 
 
5. Concluding Remarks 
 

We propose a new method for the substring 
parsimony problem. It is more efficient than the well-
known tool, FootPrinter, when the needed substrings 
are highly conserved with a low mutating rate among 
the given sequences. Experimental results reveal the 
efficiency of the proposed algorithm in identifying 
the regulatory elements in a set of orthologous 
sequences, especially for highly conserved substrings. 
For larger sets of sequences, our approach also 
shows the feasibility as compared to FootPrinter. 

In the near future, the author would like to apply 
some rules to filter out substrings which are 
impossible to be solutions as soon as possible in 
order to reduce the computation time of our method 
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for the cases that some large parsimony score is demanded. 

Table 3. Regulatory elements found by Our and FP 
CPU time (sec.)DNA Region  Species Motif (length) (position) d Ref.# Our FP

TcagcccccaGCCATCTGCC (10)(-122) 1 1.1 0.06 0.54Insulin family 5' 
promoter (500bp) 

Human, chimp, aotus, 
pig, rat (I, II), mouse  

(I, II) CTATAAAGcc (8) (-32) 0 1.2 0.00 0.31

c-myc second 
intron  

(971 to 1376 bp) 

Chicken, pig, rat, 
marmoset, gibbon, 

human 

TAGGGAGTTG (10) (670) 
ATTTGCAGCTat (10) (698) 
GAAGTGTTCT (10) (725) 
TTCCTTTCTT (10) (1362) 

2
2
2
2

 
 
 

3.1 

1.12 3.26

c-fos 5' UTR + 
promoter (800bp) 

Tetraodon, chicken, 
mouse, hamster, pig, 

human 
CACAGGATGTcc (10) (-479) 4 4.1 641.64 39.27

c-fos first intron  
(376 to 758 bp) 

Fugu, tetraodon, 
chicken, pig, mouse, 

hamster, human 

agcgcagacgtcAGGGATATTTA  
(10) (472) 1 5.1 0.05 0.48

GTCTGTGGTTTtCTATGGAGGT 
TCCATGTCAGATAAAG (8) (-195) 0 6.1 0.00  0.22

Interleukin-3 5' 
UTR + promoter 

(490 bp)  

Rat, mouse, cow, 
sheep, human, macaca

TTGAGTACTagaaagt (8) (-228) 
GATGAATAATt (8) (-208) 
TCTTCAGAGc (8) (-56) 
AGGACCAG (8) (-40) 

1
1
1
1

 
6.2 

 
 

0.03 0.38

# The information comes from TRANSFAC (Wingender et al. 1996) with accession number in brackets. 
Insulin: 1.1 IEB1 [R04457], 1.2 TATA-box [GenBank annotation]. C-myc: 2.1 NHE [R01804]. C-myc 
second intron: 3.1 Part of 3’ splice site. C-fos: 4.1 [many factors bind in this region; R00466, R00465, 
R00464, R01889]. C-fos first intron: 5.1 (Transcription elongation signals; Mechti et al. 1991). IL-3: 6.1 
[R02682, R05026, R05027], 6.2 [R02736]. 
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