
An Efficient Algorithm for Finding Highly Conserved Regulatory Elements
among Orthologous DNA Sequences

Shyong Jian Shyu Chun-Kai Yang

Department of Computer Science and Information Engineering
Ming Chuan University

5 Teh-Ming Rd., Gwei Shan, Taoyuan, Taiwan 333, R. O. C.

sjshyu@mcu.edu.tw ckyang@turing.csie.mcu.edu.tw

Abstract- In current genome research, the
identification of regulatory elements required for the
correct expression of genes is an essential topic.
FootPrinter (Blanchette, 2000; Blanchette and
Tompa, 2003) is a well established tool for
identifying regulatory elements from a set of
orthologous non-coding DNA sequences of various
species under a given phylogenetic tree. Such a
motif/substring finding problem has been defined as
the substring parsimony problem by Blanchette
(2000). We design a new algorithm which adopts the
hashing technique and a fast approach to detect the
Hamming distance between two substings to resolve
this problem. Experimental results show that our
approach is more efficient than FootPrinter when the
substrings needed are highly conserved.

Keywords: Regulatory element, Hamming distance,

Substring parsimony problem, Hashing.

1. Introduction

To understand how gene expression is regulated is
an essential challenge of current genomics. The first
thing to do for such understanding is the ability to
identify regulatory elements associated with a given
gene. Most of these regulatory elements are
relatively short stretches of DNA (5 to 25
nucleotides long), located in the non-coding
sequence surrounding a gene (Tompa, 1999;
Blanchette et al, 2000). Most known regulatory
elements are located 5’ of the coding region, but
some are also found in the 3’ sequence, or even in
introns. In all these cases, regulatory elements are
located in otherwise non-functional sequences.

Phylogenetic footprinting was first proposed by
Tagle et al., (1988), which is a technique that uses
such a functional/non-functional sequence
dichotomy to identify regulatory elements. The idea
underlying phylogenetic footprinting is that selective
pressure causes regulatory elements to evolve at a
slow rate than the non-functional surrounding
sequence. Therefore the best conserved motifs in a
collection of homologous regulatory regions are

excellent candidates as regulatory elements
(Blanchette et al, 2002).

This technique of phylogenetic footprinting was
further implemented as a tool, named as FootPrinter
(Blanchette and Tompa, 2003), It can not only
identify many known functional binding sites but
also find several highly conserved motifs. It is
effective to predict new unknown regulatory
elements. The empirical studies by Blanchette,
Kwong and Tompa (2003), which evaluate the
accuracy of the motif-finding tools including
FootPrinter, MEME (Bailey and Elkan, 1995) and
Dialign (Morgenstern et al., 1998) on synthetic and
real biological data, reveal that FootPrinter would be
the most accurate tool in identifying motifs in most
cases. One of the main reasons for its good
performance is that it takes into account the
phylogenetic relationships of species.

It is our aim in this paper to improve the
execution time needed by FootPrinter, especially
when dealing with those highly conserved regulatory
elements among orthogonal sequences. The rest of
the paper is organized as follows. Section 2 defines
the substring parsimony problem formally and
describes briefly the essential idea of FootPrinter.
Our method which is specifically designed for highly
conserved short motifs is presented in Section 3. The
experimental results are summarized in Section 4.
Section 5 gives the concluding remarks.

2. The Substring Parsimony Problem

From the computational viewpoint, the well
conserved motifs finding problem is as follows.
Given a set of orthologous sequences S = {s1, s2, …,
sn} from n related species, we are looking for
sequences t1, t2, …, tn, where ti is a substring with
length k for all 1≤i≤n such that t1, t2, …, tn have an
unusual high measure of sequence similarity. To
avoid the overrepresentation of the problem, we do
not weight the n sequences equally, but instead we
assume a good phylogenetic tree with the n species at
its leaves is given and we would like to measure the
mutual sequence similarity by parsimony.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1018

This problem was formally defined as the
substring parsimony problem (Blanchette, 2002)
which has been shown to be NP-hard (Akutsu, 1998).
The substring parsimony problem is defined as
follows:

Given: a set of orthologous sequences S = {s1,
s2, …, sn} from n different species, the phylogenetic
tree T=(V, E), V=S, relating these species, the length
k of the motifs to look for, and an integer d.

Problem: find all sets of substrings t1, t2, …, tn of
s1, s2, …, sn respectively, each of length k, such that
the parsimony score of t1, t2, …, tn on T is at most d.
Note that the parsimony score of a set of sequences is
the minimum total number of substitutions over the
tree T needed to explain the observed sequences. It is
defined as the minimum, over all possible labelings
of the internal nodes with sequences of length k, of
the sum of the Hamming distance between the labels
of the nodes connected an edge in T. In more detail,
suppose the internal nodes are labeled as n+1,
n+2, ... , ⎜V ⎜. We would like to find t1, t2, …, tn of s1,
s2, …, sn respectively and tn+1, tn+2, …, t⎜V ⎜ that
minimize

P(T) = ∑
∈Evu

vu tt
),(

),(δ

where δ(t, t') is the Hamming distance between string
t and t', i.e., the number of positions at which they
differ. Looking for sets of substrings that achieves a
low parsimony score P(T) corresponds to searching
for highly conserved regions.

Blanchette et al. (2000) introduced a dynamic
programming algorithm to solve the substring
parsimony problem optimally in time O(n×k×(42k +l))
(which was further improved as O(n×min(l×(3k)d/2,

 k×(4k×l))) by Blanchette (2001)), where l is the
average length of all sequences in S. Let C(v) be the
set of children of v and Σ = {A, C, G, T}. The
dynamic programming algorithm for this problem is
as follow.

Wv[s] =

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+
∞

∑
∈ Σ∈)(

 leafa not is if)),(][(min
 of substringa not is and leafa is if

 of substringa is and leafa is if 0

vCw
wt

v

v

vtstW
ssv

ssv

k
δ

The algorithm proceeds from the leaves up to the
root. At each node v of the tree, computing a table Wv
containing 4k entries, one for each possible sequence
of length k. For a string s of length k, Wv[s] is defined
as the best parsimony score that can be achieved for
the subtree rooted at v, if v was to be labeled with s.

Please refer to Blanchette (2001) and Blanchette
et al. (2002) for a more detail review of the substring
parsimony problem and some improved techniques
for solving this problem.

Figure 1 illustrates an example of the substring
parsimony problem where the parsimony score of the
input five sequences under the given tree is 1 which
is the minimum score (number of substations) for
AGTCG (substring labeled at all of the internal nodes)
to be the substring of all the five input. Note that the
value annotated on the edge (u, v) denotes the
minimum score from the ancestor node u to the
descendant node v and the substring labeled at the
internal node, say u, is the one with the minimum
score within the subtree rooted at u.

Figure 2 shows the straightforward algorithm.

 AGTCGTACGTA 1

AGTCG AGTCGACGTACG 2

AGTCG AGTCG AGTCGCGAGA 3

0 0 GAACAGTCGTAA 4

AGTCG TCGTAGTCTAAC 5

Figure 1. Example of a substring parsimony problem

Algorithm substring parsimony
Input: S={s1, s2…, sn}, k∈IN, T = (V, E) with the root labeled as r
Output: find all sets of substrings t1, t2,…, tn in s1, s2…, sn respectively, each of

length k, such that the parsimony score of t1, t2, …, tn on T is minimized.
1 for (each leaf v of T) do
2 let Wv[t] = 0 for each k-substring t of Sv; Wv[t] = ∞ otherwise;
3 for (each internal node u of T, from the leaves toward the root r) do
4 for (each sequence t∈Σk) do
5 compute Wu[t] = Σv∈C(u)mint'∈Σk(Wu[t']+δ(t, t'));
6 select a tr∈Σk such that Wu[tr] is minimal;
7 for (each child v of a node u, from the root r toward the leaves) do
8 choose tv such that Wv[tv]+d(tu, tv) is minimal;

Figure 2. Straightforward algorithm by Blanchette et al. (2000)

0
0

0

0

1

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1019

3. Our Method for the Substring
Parsimony Problem

From Figure 2, we find that the algorithm

generates all substrings with length k (step 5) for
each sequence (step 4) and all internal nodes (step 3).
When the input sequences are highly conserved or
we only need to find motifs among the sequences
with a small parsimony score, it might be more
efficient to compute the parsimony score of each
node on the evolutionary tree by starting from some
motif, say t, of a sequence and test whether itself or
its neighbors (substrings t' such that δ(t, t')≤d) are
already contained in all the other sequences,
assuming the test process can be accelerated
effectively. That is, our idea is to focus on a
substring t with length k with its 3k neighbors,
referred to as N containing the substrings t' such that
δ(t, t')≤d, and to check first whether these candidates
need to compute their scores further. Our expectation
is that no further scoring computations are needed if
some, even most, of them are no longer legal
candidates.

There are two elementary operations that occur
heavily in the substring parsimony problem: (1)
checking whether a substring is in some other
sequences, and (2) determining the Hamming
distance of two substrings. We apply the hashing
technique and some data structures to speedup the
first search process and an efficient approach to
compute the Hamming distance of two substrings.

We adopts a code to represent the consecutive k
characters (a k-substring) in a sequence, thus we only

use code calculation for the Hamming distance
instead of using one-to-one character comparisons.
Each DNA sequence with l bases long would contain
(l–k+1) overlapping k-characters. We associate each
letter of nucleotides with a specific code respectively,
namely si[j] = 0, 1, 2 or 3 for A, C, G, T, respectively,
1≤i≤n and 1≤j≤ | si | −k+1. Thus the jth substring of
sequence si can be coded as a number K[i, j], which
is defined as

K[i, j] = ∑
−

=

1

0

k

l

si[j+l]|∑ |k－l－1

where si[j+l] is the code corresponding to the (j+l)th
character of sequence si, | Σ | is the number of
symbols in the alphabet, for DNA sequences | Σ | = 4,
0 ≤ K[i, j] ≤ | Σ |k－1. For example, when k = 3,
substring ACG in sequence si is represented as 6. We
then score (i, 6) in a hash table H with size hash_size,
in fact, (i, 6) is append into a list pointed by H[K[i, j]
mod hash_size]. Through such a structure, the
existence of some k-substring in a sequence can be
easily detected.

Since the parsimony score is required to be less
than d, the substrings we are looking for should
satisfy δ(ti, tj)≤ d where ti and tj are substrings of si
and sj respectively, 1≤ i, j≤ n. Starting from some k-
substring p of a sequence st, our approach generates
all of the k-substrings with distance at most d for a
certain substring p, then we calculate the parsimony
scores between p and all of the substrings in the
sequences other than st.

The detail of our approach is described in the
pseudo codes as follows:

Algorithm Our approach
Input: A set of orthologous sequences S={s1, s2…, sn} from n different species, the length k of motifs to look

for, and an integer d≥1
Output: find all sets of substrings t1, t2,…, tn in s1, s2…, sn respectively, each of length k, such that the

parsimony score on T is at most d.
1 for (si∈S, 1≤i≤n) // coding all k-substrings among S

b = 0
for (1≤j≤(| si |−k+1))

 if (si[j~j+k-1] is a new k-substring of si) // Calculate the code Ki[j] for the jth substring of si

K[i, b] = ∑
−

=

1

0

k

l
si[j+l]|Σ|k−l−1

insert (i, K[i, b]) into H[K[i, b] mod hash_size]
b++

 endif
 endfor
 endfor
2 // Initialization

Let st be the sequence with the minimum number of k-substrings of S
Let L be the number of distinct k-substrings of st
j = 0

3 while (j＜L)
3.1 generate all m, d(m ,K[t, j]) ≤ d, into a set N // N contains the codes of substrings x’s, x∈N
3.2 Compute_Score = true
3.3 for (each si ∈ S and Compute_Score) do

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1020

if (si does not contain all substrings in N) Compute_Score = false
endfor

3.4 if (Compute_Score) then
Let α be the leave of T which is labeling with st
Wα[K[t, j]] = 0 // assume K[t, j] to be the candidate motif in st
for (each m ∈ N) do Xα[m] = δ(K[t, j], m) // N is the set of codes of the neighbors of α
for (each leave v≠α of T) do

for (each mv∈N and mv is a substring in v) do Wv[mv] = 0
for (each m ∈ N) do Xv[m] = min δ(mv, m), where mv∈N and mv is a substring in v

endfor
for (each internal node u≠r of T and Compute_Score) do

for (each m ∈ N) do Wu[m] = Xu[m] = Σv∈C(u)Xv[m]
if (minm∈N(Wu[m]) > d) then Compute_Score = false
for (each m' ∈ N with Wu[m'] ≤ d) do

for (each m ∈ N with Xu[m] > Wu[m']) do
Xu[m] = min(Xu[m], min(Wu[m']+δ(m, m')))

endfor
if (Compute_Score) then

for (each m ∈ N) do Wr[m] = Σv∈C(r)Xv[m];
select all mr∈ N such that Wr[mr] ≤ d;
for (each v∈C(u) of an internal node u, from the root r toward the leaves) do

Choose mv such that Wv[mv] + δ(mv, mu) is the minimal;
endif

endif
3.5 j++

endwhile

Note that the above algorithm deals the cases with

d≥1. When the parsimony score is restricted to be 0,
we have a more efficient algorithm to this restricted
problem. The pseudo codes are described as follows:

Algorithm Our approach for d=0
Input: A set of orthologous sequences S={s1, s2, …, sn } from n species, the length k of motifs to look for
Output: find all sets of substrings t1, t2,…, tn in s1, s2…, sn respectively, each of length k, such that the mutation

of substrings is zero
1 Let li be the length of ith sequence in s1, s2, …, sn
2 for (i = 0 to 4k–1) do P[i] = 0
3 for (i = 1 to n) do
4 for (j = 0 to li−k) do

4.1 Kj
i = ∑

−

=

1

0

k

l
cj+l

i |Σ|k-l-1 // code Ki for the sunstring at j position in the ith sequence

4.2 if (P[Kj
i] == i−1) then

 P[Kj
i]++

 if (P[Kj
i] == n) then the substring represented by Ki is a solution; report it

 end_if
 end_for

 end_for

4. Experimental Results

To examine the performance of our approach
when applied to find regulatory elements among
orthogonal sequences, we use two kinds of test sets:
(1) DNA sequences randomly selected from NCBI
(National Center for Biotechnology Information);
and (2) real sequences reported in the literature,
namely (Blanchette and Tompa, 2002) whose
regulatory elements have been known.

The experimental platform is a personal computer
with an AMD Athlon 2100+ CPU and 1GB RAM
running the red head Linux. Our program is coded in
C. Table 1 shows four test sets in our experiments.
All of these data sets are DNA sequences randomly
selected from the query results of searching for rbc-L
in NCBI. Note that n denotes the number of
sequences and Length indicates the range of the
minimum and maximum lengths of the sequences in
the data set.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1021

Table 1. Test sets
Data Set n Length Source

#1
#2
#3
#4

20
30
50

100

628~2367
310~782
310~820

999~2095

randomly
selected from
the results of

querying rbc-L
in NCBI

Table 2. CPU time results
CPU time (sec.) d Data

set k
Our FP

8 0.00 1.05
10 0.00 1.05 #1
12 0.01 1.05
8 0.00 1.23
10 0.00 1.23 #2
12 0.00 1.22
8 0.01 2.12
10 0.00 2.11 #3

12 0.00 2.09
8 0.02 N/A
10 0.04 N/A

0

#4

12 0.04 N/A
8 0.06 1.69
10 0.09 1.85 #1
12 0.33 2.01
8 0.04 7.48
10 0.05 1.36 #2
12 0.22 1.39
8 0.04 2.30
10 0.06 2.34 #3

12 0.24 2.36
8 0.36 N/A
10 0.31 N/A

1

#4

12 0.52 N/A
8 0.96 5.18
10 0.61 5.24 #1
12 1.29 5.99
8 0.93 2.99
10 0.46 2.77 #2
12 0.80 3.08
8 1.43 4.26
10 0.50 4.71 #3

12 0.85 5.23
8 9.28 N/A
10 2.55 N/A

2

#4

12 2.21 N/A
8 78.09 28.21
10 13.24 35.72 #1
12 10.12 45.15
8 41.75 120.07
10 20.90 15.58 #2
12 12.11 9.89
8 57.16 11.81
10 29.04 12.74 #3

12 12.96 15.68
8 520.46 N/A
10 117.75 N/A

3

#4

12 18.19 N/A

Table 2 summaries the CPU time results of the
program of FootPrinter (FP) and the proposed
method (Our) on the four data sets where d is the
allowable parsimony score and k is the length of the
substrings needed.

As can be seen from Table 2, our approach
outperforms FP when the allowed parsimony score is
small (i.e., d≤2). It means that if our aim focuses on
finding highly conserved substrings from a set of
orthologous sequences, our approach is more
efficient than FP. When d is small, the neighbor code
numbers m of Mi in the shortest sequence of input
sequences would be quite few so that the
computation time can be reduced. For the cases of d
= 0, our method has an appealing improvement over
FP. However, for the cases that some high
parsimony score is required (d>3, or cases that do
not look for highly conserved substrings), it would
be better to use FP. When d is large, the size of
neighbor code numbers m of Ni in our approach
increases considerably. This consumes execution
time. Note that FP stops running due to memory
faults when dealing with data sets #4 which contains
100 sequences.

We further examine the computational results of
our method and FP on the test data sets reported in
(Blanchette and Tompa, 2002) which are accessible
via http://bio.cs.washington.edu/GR/. Table 3 reveals
the results including the DNA regions investigated,
names of the tested species, highly conserved motifs
found by both Our and FP (capitalized nucleotides),
parsimony score (d) of the capitalized motifs with
respect to the whole set of species, known functional
information (column “Ref.” of Table 3) about the
motif. Note that we tested all data sets in FP by
choosing the option that the motifs should appear in
all the sequences.

Again, from Table 3, our method is slower than
FP for only one test instance which requires d=4,
while our method is more efficient than FP when d is
small. Both programs report the same set of motifs
for the test data sets.

5. Concluding Remarks

We propose a new method for the substring
parsimony problem. It is more efficient than the well-
known tool, FootPrinter, when the needed substrings
are highly conserved with a low mutating rate among
the given sequences. Experimental results reveal the
efficiency of the proposed algorithm in identifying
the regulatory elements in a set of orthologous
sequences, especially for highly conserved substrings.
For larger sets of sequences, our approach also
shows the feasibility as compared to FootPrinter.

In the near future, the author would like to apply
some rules to filter out substrings which are
impossible to be solutions as soon as possible in
order to reduce the computation time of our method

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1022

for the cases that some large parsimony score is demanded.

Table 3. Regulatory elements found by Our and FP
CPU time (sec.)DNA Region Species Motif (length) (position) d Ref.# Our FP

TcagcccccaGCCATCTGCC (10)(-122) 1 1.1 0.06 0.54Insulin family 5'
promoter (500bp)

Human, chimp, aotus,
pig, rat (I, II), mouse

(I, II) CTATAAAGcc (8) (-32) 0 1.2 0.00 0.31

c-myc second
intron

(971 to 1376 bp)

Chicken, pig, rat,
marmoset, gibbon,

human

TAGGGAGTTG (10) (670)
ATTTGCAGCTat (10) (698)
GAAGTGTTCT (10) (725)
TTCCTTTCTT (10) (1362)

2
2
2
2

3.1

1.12 3.26

c-fos 5' UTR +
promoter (800bp)

Tetraodon, chicken,
mouse, hamster, pig,

human
CACAGGATGTcc (10) (-479) 4 4.1 641.64 39.27

c-fos first intron
(376 to 758 bp)

Fugu, tetraodon,
chicken, pig, mouse,

hamster, human

agcgcagacgtcAGGGATATTTA
(10) (472) 1 5.1 0.05 0.48

GTCTGTGGTTTtCTATGGAGGT
TCCATGTCAGATAAAG (8) (-195) 0 6.1 0.00 0.22

Interleukin-3 5'
UTR + promoter

(490 bp)

Rat, mouse, cow,
sheep, human, macaca

TTGAGTACTagaaagt (8) (-228)
GATGAATAATt (8) (-208)
TCTTCAGAGc (8) (-56)
AGGACCAG (8) (-40)

1
1
1
1

6.2

0.03 0.38

The information comes from TRANSFAC (Wingender et al. 1996) with accession number in brackets.
Insulin: 1.1 IEB1 [R04457], 1.2 TATA-box [GenBank annotation]. C-myc: 2.1 NHE [R01804]. C-myc
second intron: 3.1 Part of 3’ splice site. C-fos: 4.1 [many factors bind in this region; R00466, R00465,
R00464, R01889]. C-fos first intron: 5.1 (Transcription elongation signals; Mechti et al. 1991). IL-3: 6.1
[R02682, R05026, R05027], 6.2 [R02736].

References

[1] T. Akutsu, Hardness results on gapless local

multiple sequence alignment, Technical Report
98-MPS-24-2, Information Processing Society of
Japan, 1998.

[2] T. L. Bailey, and C. Elkan, Unsupervised learning
of multiple motifs in biopolymers using
expectation maximization, Machine Learning,
21:51-80, 1995.

[3] M. Blanchette, B. Schwikowski, and M. Tompa,
An exact algorithm to identify motifs in
orthologous sequences from multiple species,
Proc. 8th Intl. Conf. on Intelligent Systems for
Molecular Biology, 37-45, AAAI Press, La Jolla,
USA, 2000.

[4] M. Blanchette, B. Schwikowski, and M. Tompa,
Algorithms for phylogenetic footprinting, J.
Comput. Biol, 9(2), 211-223, 2002.

[5] M. Blanchette, and M. Tompa, Discovery of
Regulatory Elements by a Computational Method
for Phylogenetic Footprinting, Genome Research,
12(5), 739-748, 2002.

[6] M. Blanchette, and M. Tompa, FootPrinter: a
program designed for phylogenetic footprinting,

Nucleic Acids Research, 31(13), 3840-3842, 2003.
[7] M. Blanchette, S. Kwong, and M. Tompa, An

Empirical Comparison of Tools for Phylogenetic
Footprinting, Proc. 3rd IEEE Symposium on
Bioinformatics and BioEngineering, 69-78, 2003.

[8] B. Morgenstern, K. Frech, A. Dress, and T.
Werner, DIALIGN: Finding local similarities by
multiple sequence alignment, Bioinformatics,
14(3), 290-294, 1998.

[9] D. Tagle, B. Koop, M. Goodman, J. Slightom, D.
Hess, and R. Jones, Embryonic ε and γ globin
genes of a prosimian primate (Galago
crassicaudatus); nucleotide and amino acid
sequences, developmental regulation and
phylogenetic footprints, J. Mol. Biol., 203:439-
455, 1988.

[10] M. Tompa, An exact method for finding short
motifs in sequences, with application to the
Ribosome Binding Site problem, Proc. 7th Intl.
Conf. Intelligent Systems for Molecular Biology,
262-271, Heidelberg, Germany, 1999

[11] E. Wingender, P. Dietze, H. Karas and R.
Knuppel, TRANSFAC: A database on
transcription factors and their DNA binding sites.
Nucleic Acids Res., 24:238-241, 1996.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1023

