
 1 

多核心處理器系統中利用互嵌式技巧之排程方法多核心處理器系統中利用互嵌式技巧之排程方法多核心處理器系統中利用互嵌式技巧之排程方法多核心處理器系統中利用互嵌式技巧之排程方法 

 

A Module-Interlock Technique for Task Scheduling in a  

Multi-core Processor System 

 
 

 

 

 

 
 

 

摘要摘要摘要摘要 

在多核心系統平行計算的工作管理上，相依

性與互斥是必須克服的難題。因此在本論文中，

我們提出基於單一非循環圖的互嵌式排程技巧，

用以提昇處理器的使用率，並使得多個非循環圖

的最終執行時間能夠提前。由非循環圖中，我們

乃依關鍵路徑的概念進行排程，以得出甘特圖。

我們設計一個資料結構來將排程中所需的甘特圖

上的資訊紀錄下來，並將此資料結構命名為積

木。根據甘特圖上的處理器需求變化的情形，進

而將積木分為四種型態。判別積木之型態後，可

使適合嵌合的積木數目變少，再依我們所提出技

巧，來進行嵌合的工作，而排程之結果，會使得

處理器的使用率隨著最後執行時間的提前而提

高。 

關鍵詞:多核心系統，平行計算，互嵌式排程技巧    

Abstract 

Data dependence and mutual exclusion are 

problems must be overcome in the task management 

of multi-core systems for parallel computing. In this 

paper, we propose a directed acyclic graph (DAG) 

based task scheduling technique, module-interlock 

technique (MIT), to keep the processor utilization as 

high as possible, so as to obtain a shortest execution 

time. According to the critical path scheme on the 

DAG, the result of the task scheduling can be 

presented in a Gantt chart that is then translated into 

bricks for further scheduling. Bricks in the proposed 

system are categorized in four types, rectangular, 

protruding, concave, and uneven, according to the 

usage of processors. Applying the proposed technique 

by interlocking proper type of bricks to perform the 

task re-scheduling, a higher processor utilization with 

shorter execution time can be achieved. 

Keywords: Multi-core system, Parallel computing, 

Module-Interlock Technique 

 

 

1. Introduction 

     While executing tasks are represented by a 

directed acyclic graph (DAG) [1-4], the critical path 

concept is commonly used to find out the shortest 

execution time. Since applied DAG and critical path 

schemes focus on finding the shortest execution time, 

the utilization of processors is not always satisfied. 

Once a task arrives, the system runs the scheme to 

determine its execution order. In most tasks 

scheduling schemes, the number of processors needed 

for the scheduled unit is always the same during the 

executing period. That is, the processors are occupied 

by the task until the task is finished. In fact, not all 

scheduled units need the same amount of processors 

during the period of execution. 

     In this paper, we propose a new task scheduling 

technique, module-interlocking technique (MIT), to 

keep the processor utilization as high as possible, so 

as to obtain a shortest execution time without 

modifying the original scheduling result to obtain the 

shortest execution time in DAG. 

     The scheduled unit is considered as a brick. The 

relations among bricks are independent [5]. Thus, 

other bricks can not affect their characteristics. The 

process of the proposed technique is similar to the 

game of building bricks. In the game of building 

brick, the objective is to keep the building stable and 

as high as possible. In order to fully utilize the 

resources, to reduce the vacant spaces between bricks 

is important in our approach. In the proposed scheme, 

the maximum width of bricks is treated as the number 

of processors in the system and the height of bricks is 

the time needed to handle all the tasks. If the number 

of tasks is greater than the number of processors, the 

optimal solution can be obtained if all processors are 

always keeping in busy. 

李良德 

Liang-Teh Lee 

大同大學資訊工程系 

ltlee@ttu.edu.tw 

 

董維鈞 

Wei-Chun Taug 

大同大學資訊工程系 

wctung@ms29.hinet.net 

 

潘昆祺 

Kun-Chi Pan 

大同大學資訊工程系 

g9506039@ms2.ttu.edu.tw 

 



 2 

     According to the critical path approach on the 

DAG, the result of the task scheduling can be 

presented in a Gantt chart [6] that is then translated 

into bricks in for further scheduling. Bricks in the 

system are categorized in four types, rectangular, 

protruding, concave, and uneven, according to the 

usage of processors. Fig. 1 shows the scheme of the 

module-interlock technique. The new brick is sent to 

the corresponding queue in the brick set, according to 

the brick type. The proposed technique that uses the 

shape’s complementary advantage for task scheduling 

will be discussed in section 3. 

 

Fig. 1: Module-interlock technique scheme 

     In the proposed system, useful metric for 

performance evaluation is the utilization of processor, 

and execution time. According to the Gantt Chart of 

the task scheduling, the effectiveness is measured. By 

using MIT, the processor utilization can further be 

improved so as to reduce the execution time.       

2. Related Work 

     According to different goals, various task-
scheduling techniques are designed. In order to 

achieve main objective, the designer may trade in 

something for accomplishing better performance. For 

example, in the Earliest Deadline First (EDF)  [7,8], it 

must ensure that tasks should be completed to their 

deadlines. However, if we are discussing time critical 

problem in the EDF algorithm, the shortest execution 

time, the fairness of job execution and the processor 

utilization are neglected in order to let all jobs 

finished before their deadlines. 

     In another example, the Optimal Scheduling 

algorithm for distributed memory machines is NP-

hard complete problem. The critical path approach is 

similar to the Task Duplication based Scheduling 

(TDS) algorithm [9-11], which can schedule DAGs 

with the time complexity of O (n
2
) for n nodes. And 

the system has the unlimited processors. It assumed 

that the numbers of processors are unlimited and 

tasks can be duplicated to be executed in different 

processors. 

     The critical path scheme is still the best when 

dealing with the scheduling problem of a single DAG. 

If the processor usage is always the same for a task in 

an execution time then it is unreasonable. When we 

apply the same method on multiple DAG which are 

scattered and with poor communication, one can not 

guaranteed the performance. The processor utilization 

can be very poor. Therefore, we are proposing a new 

technique, Module-interlock technique, to increase 

the processor utilization even when it is used in a 

multiple-DAG situation. 

     The proposed module-interlock technique can 

achieve higher processor utilization by taking 

advantage of the idle time of the processor without 

changing the scheduling result.  We interlock two 

bricks by the information that is provided in the 

bricks. We will apply for the static mode scheduling 

technique. It will be able to promote the utilization of 

processors and decrease the total execution time. 

3. The Module-interlock for the task     

scheduling 

     This section will introduce how to transform the 

scheduling unit, Gantt chart, into brick form. A brick 

contains the needed information for scheduling. 

Furthermore, we will use the transformed brick to 

perform the scheduling job. The main goal of this 

activity is to leave no vacant space between bricks. If 

we look at the activity in the angel of processor 

utilization, we are actually fulfilling the ability of all 

processor. 

3.1 Brick 

     The scheduling unit is a Gantt chart in the MIT, 
and Gantt chart is a scheduling result that is generated 

by the critical path scheme on the DAG. We designed 

the brick that collects the necessary information in the 

Gantt chart in MIT. A Gantt chart can be transformed 

into a corresponding brick.  After the transformation, 

we can say that the scheduling unit is a brick in MIT. 

     The data structure of a brick is divided into two 

parts, internal and external, as shown in Fig. 2. The 

external part is for allocating brick into corresponding 

queue and the internal part for the interlocking work. 

The detail of it will be explained in the following 

subsections. 

 

Fig. 2: Brick structure for interlocking module 



 3 

3.1.1 External data structure 

     In the external part, it describes the outlook of the 

Gantt chart, which includes the brick number, length, 

and type. The number is an integer that records how 

many bricks in the corresponding queues. The length 

presents the total execution time of the Gantt chart.  

Before we explain the function of different type, we 

will first define the type. 

 

Fig. 3: Four shapes of the MIT 

     Fig. 3 shows four different types of bricks. They 

are type A: Rectangular brick, type B: Protruding 

brick, type C: Concave brick, and type D: Uneven 

brick. There are two reasons for dividing the bricks 

into four different types. First, it will be easier to send 

different type of bricks into the corresponding queue. 

When we interlock brick, we can easily choose the 

suitable brick. Second, through the different types we 

can know the change of the processor utilization of 

the original scheduling result. The different processor 

usage variations are expressed in Fig. 4. Four 

different process usage situations are discussed and it 

is used to decide which types the Gantt chart should 

belong to. 

     Fig. 4 shows the fundamental situations of 

processor usage variations. In the graph, the x-axis is 

the time and y-axis is the number of processors. The 

total number of processors in the system is m  x is the 

number of busy processors and y denotes the number 

of idle processors. The relation of m, x, y is y = m –x 

and T1, T2, T3, and T4 are times that record the 

variation number of the processors. In Fig. 4 (a), the 

processor usage is fixed. From the beginning to the 

end, x is always equal to m. There is no idle processor, 

i.e., y = 0.  This is the best situation for the processor 

usage. If the situation of process usage in Gantt chart 

is similar to Fig. 4 (a), the Gantt chart belongs to the 

type A, Rectangular brick. In Fig. 4 (b), it starts at x= 

m, all processors are busy until T1. When time is T1, 

y is not equal to 0 and x keeps going down until T2. 

We can name this type of brick as Type B, Protruding 

brick. In Fig. 4 (c), x is the minimum value from T1 

to T2 and continues to rise until T2. Form T2 to T3, x 

is unchanged and falls from T3 to T4. We call this 

type of brick is type C, Concave brick.  At last, in Fig. 

4 (d), x rises form T1 to T2, and equals to m until the 

job is finished. This type of brick is Type D, Uneven 

brick. 

 

Fig. 4: Processor usage situations 

                           (a)for the Rectangular brick 
                           (b)for the Protruding brick 
                           (c)for the Concave brick 
                           (d)for the Uneven brick 

     We can easily understand the change of 

processor’s utilization during execution time by the 

help of Gantt chart. The change can be translated into 

graph by plotting the x-axis with time and y-axis with 

the number of processors. Four fundamental bricks 

have been presented in Fig. 4. By referencing graphs 

in Fig. 4, a relative type can be assigned to the Gantt 

chart. However, there are still some situations that 

processor usage can not match the fundamental type 

expressed in Fig. 4. 

     The following algorithm is used to convert a Gantt 

chart into a curve, so as to connect to a proper brick 

type. In the algorithm, i and hi represent the time and 

the required processor number in the Gantt chart 

respectively. The pair (i, hi) repents the hi processors 

required at time i, considered as a point in the Gantt 

chart. In the following algorithm, appropriated points 

are selected to be connected to a polygon, for 

matching to a brick type. 

Fig. 5: Matching brick type algorithm 

Input: 

 A Gantt chart 

Output: 

 A type of Gantt chart  

Begin 

 // SP: the number of processors in the system  

 for  i = 1 to n  

 If (hi == SP) then i = target; 

 For t1 = 1 to n 

  For t2 = 1 to n 

  If  ((t2>t1) and (ht1 < ht2)) 

   {If (t1 < target)  

Draw a line from (t1, h t1) to (target, h t1); 

If (t1 > target) 

  Draw a line from (t1, h t2) to (t2, h t2);} 

  Else ((t2>t1) and (ht1 > ht2)) 

   Draw a line from (target, h t1) to (t1, h t1); 

  Else if ((t2>t1) and (ht1 == ht2) and (ht1 ==SP)) 

Draw a line from (t1, h t1) to (t2, h t1); 

For t = 1 to n 

  Connecting the height sub line of each time sector  

  To match the types in Fig. 4 



 4 

     In Fig. 6, we list some situations when the 

processor usage is not matched exactly to the types in 

Fig. 4. What we do is to record the variation of the 

processor needed and make the variation to match the 

types in Fig. 4. 

 

Fig. 6: Non-fundamental types  

                             (a)for the Rectangular brick 
                   (b)for the Protruding brick 
                  (c)for the Concave brick 
                   (d)for the Uneven brick 

3.1.2 Internal data structure 

The internal data structure of brick is for 

interlocking purpose. It records different time points 

that contain the index, sub-length and the number of 

busy processors. For those three columns, the index 

records changed point in the number of busy 

processor variation.  But, here we must point out that 

we are only recording the height of the polygon, not 

all the changes of processors. And the sub-length is 

the keeping time of the number of busy processors. In 

the view of the polygon, the sub-length is the width 

and the number of busy processors is the height. 

Those values are used to calculate the interlocked 

saved time and help us to choose the appropriated 

brick for interlocking.  

     As an example, Fig. 7 shows an 8-processor 

situation. The needed processor number arises from 

time t = 1 to time t = 4 in the Gantt chart. When time 

t = 4, the needed processor number becomes the 

maximum. The processor usage number is fall at time 

t =5 and rises at t = 6.  But, in time t = 8, the 

processor usage number is the same as the value at t = 

4. We draw the line from time t = 4 to 8 and make it 

as the maximum number of processors. From t = 8 to 

10, the required processor number is decreasing. The 

Gantt chart of this example is determined as type C 

and the total execution time is 10. The internal and 

external data structures of the Gantt chart are shown 

in Fig. 7(c) and Fig. 7(d). The type of brick is shown 

in Fig. 7(b). 

 

 

Fig. 7: Example of the Gantt chart and the data 

structure of the brick 

            (a)Example of the Gantt chart 
            (b)The type C 
            (c)The internal data structure of the brick 
            (d)The external data structure of the brick 
 

3.2 The brick interlocking algorithm  

     Interlocking is the process of combining two 

bricks into a single brick. The advantage of 

interlocking is that the idle part of the processors of 

the brick can be shared for interlocked brick. For a 

certain time point, if the number of processors in the 

system is enough for two bricks to be executed, we 

say that the brick is complementary at this time point. 

     By referencing Fig. 4, a better clarity to explain 

the interlocking type B and type C bricks. For type B 

brick, in Fig. 4 (b), the processor usage is decreasing 

from T1 to T2. However, the processor usage of the 

type C brick is raising form T1 to T2. Thus, the 

interlocked area can be obtained from combining two 

bricks type B and type C.  

By combining two bricks, the total execution time 

can be reduced and the processor utilization can be 

promoted. After interlocking type B and type C 

bricks, we can obtain a new interlocked type B brick. 

If the interlocked objects are type B and type D bricks, 

we obtain the interlocked brick shape is the type A. 

From the view of the graph, the interlocking of brick 

is complementing and combination of graphs. 

     The pseudo code of interlocking type B and type C 

bricks is shown in Fig. 8. In Fig. 8, type B and type C 

bricks are interlocked. We use the tail of type b brick 

to interlock the head of the type C brick. Since areas 

of two bricks are not complete, they are interlocked to 

get the better processor utilization and reduce the 

execution time. All type B bricks can be chosen to 

interlock with type C brick. We choose the type B 

brick with the best processor utilization to interlock 

with brick C. Of course, to interlock the type B and D 

bricks can apply the same interlocking procedure 

with the same reason. 



 5 

Fig. 8: The interlocking algorithm 

 

3.3 The module-interlock technique 
algorithm for the static mode 

     After introducing the two bricks interlock action, 

how to interlock a group of bricks will be discussed. 

Fig. 9 presents an algorithm to make every 

incomplete brick C to interlock with another 

appropriate brick.  

    Four different types of bricks are defined 

previously. The purpose is to provide a convenient 

way to choose the appropriated brick type for 

interlocking. The best choice to match the rectangular 

brick, type A, is the type like itself. Protruding brick, 

type B, can be interlocked with the brick type C or D. 

Concave brick, type C, can be execute with type B in 

the tail and type C or D in the head. Uneven brick, 

type D, can be combined with the brick type B or C. 

 

Fig. 9: The set interlocking algorithm 

     The time complexity of the interlocking algorithm 

depends on the length of the internal data structure of 

the brick. The complexity is O(p
2
), where p is the 

length of the brick. Since interlocking set of bricks 

must perform the interlocking algorithm, for n bricks, 

the time complexity will be O(n
2
p
2
). 

     The interlocking scheme has been applied in the 

static mode for simulation. The information of all 

bricks is known before starting the scheduling.  It also 

means that all external and internal information of 

bricks are known. The pseudo code of the MIT 

algorithm is presented in Fig. 10 

 
The module-interlock technique algorithm 

Input:   

Brick sets A, B, C, and D 

Output: 

A schedule 

Begin 

Call the set interlocking algorithm for sets B and C   

Call the set interlocking algorithm for sets B and D   

To dispatch the brick A by sequence  

End 

Fig. 10: The module-interlock technique algorithm      

4. Performance measurements 

     We evaluate the performance of the Module-
interlock technique (MIT) for task scheduling in the 

static mode through simulations. In the module-

interlock technique, two useful measuring factors of 

performance are the total saved execution time and 

the utilization of all processors. The variables that we 

concerned are the brick size, the processor number, 

and the tested brick number for the simulation. 

The utilization of all processors is defined as: 

(total actual execution time of all processors) /  

(total execution time * processor number) 

     saved time = the execution time with MIT –  

the execution time without MIT. 

     Parameters used in the sumualtion are shown in 

Table 1. 

Table 1. Parameters used in the sumualtion 

Parameter Explanation 

B_num Task number that handle  

the system 

B_max_size The maximize execute  

task size 

P_num The processor number of  
the system 

 

4.1 Scheduling of practical applications 

     In this section, we give some examples to illustrate 

the brick concept. The first example is the analysis of 

Quick-sort algorithm [12] 

     The number to be sorted is assumed to be 8 and 

the corresponding data flow chart and Gantt chart can 

be obtained as shown in Fig. 11. As mentioned before, 

the Gantt chart is corresponding to the type D brick. 

Procedure interlocking (the brick B, the brick C)  

// SP: the number of processor in the system 

{ 

Do 

{ 

num = B.Index .P +C .Index . P; 

if (num > SP) 

 B.Index ++; 

else 

{ 

 Extra = B . Index .the sub_length - C. Index .the sub_length; 

  Calculate the saved time  

 If (extra > 0 ) { 

 B.Index.sub_length = B.Index.sub_length - C.Index.sub_length; 

  C.index++; 

 } 

 If (extra < 0 ) 

 { 

C.Index.sub_length = C.Index.sub_length-B. Index.sub_length; 

     B.index++; 

  } 

  If (extra = = 0 ) 

  { 

  B.index++;  

  C.index++; 

    } 

If (C.index .the busy number of processor = = SP) 

   Break; 

}  

While (B . index is not the last one ); 

} 

} 

The SET interlocking algorithm 

The |C| is the total number of the brick C in the corresponding queue */ 

Input: 

Queue B  

Queue C  

Output: 

B bricks that are interlocked by C bricks  

Begin 

For j =1 to |C|   

  Interlock all B bricks and the j-th brick C  

  Select the best processor utilization after interlocking brick B and brick C 

  Modify the  B brick 

End  



 6 

 

Fig. 11: The brick example of quick-sort 

     Fig. 12 shows the multiplication of two matrices. 

The matrix multiplication is performed in a 4-

processor multiprocessor system, where all operations 

can be done in parallel and completed in three steps. 

The steps are shown in Fig. 12(a). Fig. 12(b) is the 

Gantt chart corresponding to the scheduling result of 

the steps in Fig. 12(a). By applying the previously 

method, the Gantt chart in the Fig. 12(b) is 

corresponding to the brick type A. 

Another example is a multiplication of a 2*2 

matrix and a 1*2 matrix. There are also 4 processors 

in the system. The parallel steps of operations in this 

example are list in Fig. 13(a), and the corresponding 

Gantt chart can be obtained as shown in Fig. 13(b). 

Similarly, by applying the previous method, the Gantt 

chart in the Fig. 13(b) is corresponding to the brick 

type B. 

     In Fig. 14, an example of DFS [12,13] is shown.  

If the number of processors in system is 4, a Gantt 

chart can be obtained from the DFS by applying the 

corresponding DAG, as shown in Fig. 14(b). 

Similarly, by applying the previously method, the 

Gantt chart is corresponding to the brick type C as 

shown in the Fig. 14(c). 

 

Fig. 12: The example of matrix multiplication 

 

Fig. 13: The example of matrix multiply 

 

Fig. 14: The brick example of DFS  

4.2 The simulation result 

     Fig. 15 shows the relation between the number of 

tested bricks and the processor utilization. We found 

that the utilization of the processor depends on the 

number of bricks. When the processor number is 

relatively large, the brick types B, C, and D have 

more opportunities to obtain the better interlocking 

performance. The processor utilization with MIT is 

always better than that with FIFO. Although the 

curves of MIT and FIFO in Fig. 15 are not increasing 

monotonically, the difference between  MIT and non-

MIT is always positive. 

 

 

Fig. 15: The utilization of processor with respect 

to brick size and brick number 

     Fig. 16 shows the relation of brick size and the 

saved time. When increasing the number of tested 

bricks, the processor utilization is going better as 

shown in Fig. 15, and the saved time is increased 

accordingly. The number of tested bricks and the 

brick size can be adjusted in the simulation. The brick 

size is set to 100, 200, and 400. The degree of the 

saved time depends on the brick size. When the brick 

size is increased, the test brick’s length in the 

simulation is enlarged, and the degree of idle 

processor is also increased. If the degree of idle 

processor is large, then it is easy for a brick to obtain 

the interlocked brick, so as to improve the processor 

utilization. Thus, when the brick size is bigger, the 

saved time is increased extensively in the simulation. 



 7 

 

Fig. 16: The relation of the saved time and the 

interlocked brick number. 

     Fig. 15 and Fig. 16 show that the proposed method 

is practicable. The processor utilization is improved 

by MIT, and the total execution time is reduced. 

5. Conclusion  

     Finding the smallest execution time is the main 

goal of the critical path scheme illustrated in a DAG.  

There is no doubt that the critical path idea is the best 

method for finding the shortest execution time in the 

DAG.  But, on the condition like critical path scheme 

the utilization of process is not considered.  As we 

can see, the reduction of the total execution time 

always leads to poor processor utilization.  In order to 

keep up the processor utilization and reduce the total 

execution time at the same time, a new scheduling 

technique, module-interlocking technique, has been 

presented. 

     In this paper, tasks are plotted on the Gantt chart 

and transformed into the predefined type of bricks.  

When the module-interlocking technique is applied 

on the tasks, the original scheduling result is not 

altered at all. By using the idle processor in the brick, 

we can interlock different bricks together to increase 

the processor utilization, so as to reduce the total 

execution time, and the original scheduling result is 

not altered. The proposed method is simple and is 

proved that the method is profitable in the simulation. 

6. References 

[1] Henan Zhao and Rizos Sakellariou, “scheduling 

Multiple DAGs onto Heterogeneous Systems,” 

International Parallel and Distributed 

Processing Symposium (IPDPS 2006), April 

2006. 

 

 

 

 

[2] Ligang He, Stephen A. Jarvis, Daniel P. 

Spooner, Graham R. Nudd, “Performance 

Evaluation of Scheduling Applications with 

DAG Topologies on Multiclusters with 

Independent Local Schedulers.” IEEE 

International on Parallel and Distributed 

processing Symposium, April 2006. 

[3] Sang Cheol Kim, Sunggu Lee, Jaegyoon Hahm, 

“Push-Pull:Deterministic Search-Based DAG 

Scheduling for Heterogeneous Cluster.” IEEE 

Transactions on Parallel and Distributed 

Systems, VOL 18, Issue 11,Page(s):1489-

1502,2007. 

[4] Rashmi Bajaj, Dharma P. Agrawal, “Improving 

scheduling of tasks in a heterogeneous 

environment.” IEEE Transactions on Parallel 

and Distributed Systems, VOL 15, Issue 

2,Page(s):107-118, Feb 2004. 

[5] Huiyang Zhou, “A case for fault tolerance and 

performance enhancement using chip multi-

processors.” IEEE Computer Architecture 

Letters, VOL 5, Issue 1, Page(s):22 – 25, Jan.-

June 2006. 

[6] Abraham Silberschatz, Peter Baer Galvin, Greg 

Gagne, "Operating System Concepts, 7/e, John 

Wiley, 2004. 

[7] Theodore P. Baker, “An analysis of EDF 

Schedulability on a Multiprocessor,” IEEE 

Transactions on Parallel and Distributed 

Systems, VOL 16, NO. 8, AUGUST 2005. 

[8] Prasad Calyam, Chang-Gun Lee, Phani Kumar 

Arava, Dima Krymskiy, “Enhanced EDF 

scheduling algorithms for orchestrating 

network-wide active measurements,” IEEE 

International Real-Time Systems Symposium, 

2005. 

[9] Liang-Teh Lee, Chin-Hsiian Liang, and Hung-

Yuan Chang, “An Adaptive Task Scheduling 

System for Grid Computing.” IEEE 

International Conference on Computer and 

Information Technology, Sept. 2006. 

[10] Kun He, Yong Zhao, “A New Task Duplication 

Based Multitask Scheduling Method,” 

Proceedings of the Fifth International 

Conference on Grid and Cooperative 

Computing (GCC’06), Page(s):221 – 227, Oct. 

2006. 

[11] Sekhar Darbha, Dharma P. Agrawal, “Optimal 

Scheduling Algorithm for Distributed-Memory 

Machines, “ IEEE Transactions on Parallel and 

Distributed Systems, vol. 9, No. 1, January 

1998. 

[12] Ellis Horowitz, Sartaj Sahni, Dinesh Mehta,  

Fundamentals of Data Structures in C++, 2/e,            

Silicon Press, 2006. 

[13] Thomas H. Cormen, Charles E. Leiserson., 

Introduction to algorithms, 2/e, MIT, 2001. 


