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摘要 

在本論文中，我們研究了 k-元 n-立方體上之

泛迴圈性質及泛連接性質。當 k 為偶數且 n ≥ 2
時，我們證明了 k-元 n-立方體具有剩餘雙汎連接

性(residual bipanconnected)。也就是說此類的 k-元 
n-立方體具有雙汎連接性(bipanconnected)；並且對

於屬於相同雙分子集(bipartite set)的任兩結點 X及

Y，不但存在任意由 Dist(X, Y)至 N-2 偶長度之路徑

連接之，並且存在一個剩餘結點 Y 相鄰接，其中 N
為此圖結點數, Dist(X, Y) 標示 X 和 Y 的最短距

離。而且，我們還證明了當 k 為偶數及 n ≥ 2 時，

k-元 n-立方體具有汎雙迴圈性質(bipancyclic)。 

而對於奇數的 k 及 n ≥ 2 時，k-元 n-立方體也

被 證 明 具 有 嚴 格 m- 汎 連 接 性 質 (strictly 
m-panconnected)， 而其 m 值為(k - 1) n / 2。也就是

說，對任兩結點 X 及 Y，存在任意由(k - 1) n / 2 至

N - 1 長度之路徑連接之；而且(k - 1) n / 2 已經達到

了此問題之理論下限。我們也證明了當 k 為大於等

於 5 的奇數且 n ≥ 2 時，k-元 n-立方體具有嚴格

m-汎迴圈性質(strictly m-pancyclic)，而其 m 值為 k - 
1。 也就是說,它包含了所有介於 k - 1 到 N 的迴

圈，而且 k - 1 已達該問題之理論下限了。 

關鍵字: 連結網路，k-元 n-立方體，泛迴圈性質及

泛連接性質。 

1. Introduction 

A Path and a cycle are popular interconnection 
networks owing to their simple structures and low 

degrees. Moreover, many parallel algorithms have 
been devised on them [8, 10]. Many researchers have 
discussed how to embed cycles and paths into various 
interconnection networks [2, 5, 6]. To execute a 
parallel program on a path efficiently, the size of the 
path must accord with the problem size of the 
program [8]. Therefore, it makes sense to discuss 
how to join a specific pair of vertices by paths of 
various sizes. A graph G with N vertices is 
panconnected if for each pair of distinct vertices X, Y 
and for any integer l, where Dist(X, Y) ≤ l ≤ N-1, 
there exists a path of length l joining X and Y, where 
Dist(X, Y) is the distance between X and Y [5]. 

A graph is m-panconnected if each pair of 
vertices X and Y is joined by the m-panconnected 
paths of all lengths ranging from m to N-1. Clearly, 
every m1-panconnected graph must be 
m2-panconnected, where N-1 ≥ m2 ≥ m1. A graph is 
strictly m-panconnected if it is m-panconnected but 
not (m-1)-panconnected; that is, m has reached the 
lower bound of the problem. 

The bipanconnectivity is a restriction of the 
concept of the panconnectivity to bipartite graphs [9]. 
A bipartite graph is said to be bipanconnected if there 
exists a bipanconnected path of each length s joining 
an arbitrary pair of vertices X and Y for each dist(X, Y) 
≤ s ≤ N-1, where s-dist(X, Y) is even and dist(X, Y) is 
the distance between X and Y. The residual vertex 
that is not contained in the bipanconnected path 
joining X and Y is denoted by RV(X, Y). A bipartite 
graph G is residual bipanconnected if G is 
bipanconnected; and for arbitrary two vertices X and 
Y reside in the same partite set of G, there exists a 
residual vertex RV(X, Y) adjacent to Y. That is, for 
arbitrary two vertices X and Y in the same bipartite 
set, there exists a path of each odd length s+1, (X=V0, 
V1, …, Vs = Y, Vs+1 = RV(X, Y)), for each dist(X, Y) ≤ 
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s ≤ N-1. 

Likewise, to execute a parallel program 
efficiently, the size of the allocated cycle must also 
accord with the problem size of the program. Thus, 
many researchers study the problem of how to embed 
cycles of different sizes into an interconnection 
network. A graph is pancyclic if it embeds a cycle of 
every length ranging from 3 to N [2]. A graph is 
m-pancyclic if it embeds a cycle of every length 
ranging from m to N, where 3 ≤ m ≤ N. Obviously, 
every m1-pancyclic graph must be m2-pancyclic, 
where N ≥ m2 ≥ m1. A graph is strictly m-pancyclic if 
it is not (m-1)-pancyclic but m-pancyclic; that is, m 
has reached the lower bound of the problem. The 
bipancyclicity is a restriction of the concept of 
pancyclicity to bipartite graphs. A bipartite graph is 
bipancyclic if it embeds a cycle of every even length 
ranging from 4 to N. 

In a heterogeneous computing system, each 
vertex and each edge may be assigned with distinct 
computing power and distinct bandwidth, 
respectively [13]. Thus, it is meaningful to extend the 
pancyclicity to the vertex-pancyclicity and the 
edge-pancyclicity [6]. A graph is vertex-pancyclic 
(edge-pancyclic) if each vertex(edge) lies on a cycle 
of every length ranging from 3 to N. Informally, a 
vertex(edge) transitive graph looks the same when 
viewed from each vertex(edge). Clearly, an 
m-pancyclic graph must be m-vertex-pancyclic 
(m-edge-pancyclic) if it is vertex(edge) transitive. 
Similarly, that a bipancyclic graph possesses vertex 
transitivity(edge transitivity) implies that it is a 
vertex-bipancyclic (edge-bipancyclic) graph. 

The interconnection network considered in this 
paper is the k-ary n-cube which is denoted by an H(k, 
n). Many interconnection networks, including the 
ring, the torus and the hypercube, can be viewed as 
the subclasses of the k-ary n-cubes [7]. These 
interconnection networks are attractive in both 
theoretical interests and practical systems [8]. In fact, 
they are widely applied as the interconnection 
networks of some practical systems. For example, 
Kendall square machines have ring structure [7], the 
Tera Parallel Computer [14] and CRAY T3D [12] use 
the 2D torus and the 3D torus as their interconnection 
networks, respectively. The Symult S-series [1] and 
NCUBE family [11] employ the hypercube as their 
interconnection networks. 

On the other hand, the H(k, n) has been proved 
to possess many attractive properties such as 
regularity, vertex transitivity and edge transitivity [3]. 
For example, Bose et al. shown that it is Hamiltonian; 
and they proposed a single-vertex routing algorithm 
and a broadcasting algorithm [4]. Ashir et al. devised 
several communication algorithms including 
multi-vertex broadcasting, single-vertex scattering 
and total exchange [3]. Yang et al. investigated the 
fault tolerant Hamiltonicity [16]. Wang et al. studied 
some Hamiltonian-like properties, such as 

bipancyclicity, laceability and bipanconnectivity, of 
the H(k, n) [15]. They have shown that the H(k, 2) is 
bipancyclic and Hamiltonian laceable for k is even. 

In this paper, We do a further investigation 
about the bipanconnectivity and m-panconnectivity of 
the H(k, n). We refer to the H(k, n) for k is even(odd) 
as the even(odd) H(k, n). We prove that the even H(k, 
n) is residual bipanconnected for n ≥ 2. The odd H(k, 
n) is shown to be strictly m-panconnectic where m = 
n(k-1)/2, for k ≥ 3 and n ≥ 2. That is, there exist a 
path of each length ranging from n(k-1)/2 to N-1 and 
n(k-1)/2 has reached the lower bound of this problem. 
We also show that the k-ary n-cube is bipancyclic for 
k is even and n ≥ 2. That is, it embeds all cycles of 
even lengths ranging from 4 to N, where N is the 
order of the network. The k-ary n-cube is shown to be 
strictly m-pancyclic where m = k-1, for k is odd, k ≥ 5 
and n ≥ 2. That is, it embeds all cycles of lengths 
ranging from k-1 to N and the value k-1 has reached 
the lower bound of this problem. 

2. Notations and Background 

A path of length l1 is denoted by a P(l1); and a 
cycle of length l2 is denoted by a C(l2) where l2 ≥ 3. A 
ladder of length s, denoted by an L(s), is a P(s)×K(2) 
where K(2) is a two-vertex complete graph that is an 
edge. Each vertex of an L(s) is labeled by (b1, b0), 
where b0 = 0 or b0 = 1, and 0 ≤ b1 ≤ s. Each edge ((b1, 
0), (b1, 1)) is called a rung of the L(s), where 0 ≤ b1 ≤ 
s. Specifically, it is called the b1th rung. The 0th rung 
is called the bottom rung of the ladder. As shown in 
Figure 1, an L(6) is illustrated. In this paper, we use 
{(0, 0), (1, 0), …, (s, 0), (s, 1), …, (1, 1), (0, 1)} to 
denote the L(s). Clearly, a path of length 2l+1, ((0, 0), 
(1, 0), …, (l, 0), (l, 1), …, (1, 1), (0, 1)), can be 
embedded in an L(s), where 0 ≤ l ≤ s. 

Definition 1. A torus with r rows and c columns, 
denoted by a Tor(R, F), is defined as C(R)× C(F). 

A vertex of a Tor(R, F) is labeled by (v2, v1), 
where 0 ≤ v2 ≤ R-1, 0 ≤ v1 ≤ F-1. 

Proposition 1. There exists a path of each odd length 
ranging from 1 to 2s+1 joining (0, 0) and (0, 1) in an 
L(s). Thus, there exists a cycle of each even length 
ranging from 4 to 2s+2 containing ((0, 0), (0, 1)). 

Definition 2. The k-ary n-cube, denoted by the H(k, 
n), is defined recursively [4]: 

1. An H(k, 1) is a C(k). 

2. An H(k, n) is H(k, n-1) × C(k) for n ≥ 2. 

That is, an H(k, n) is a C(k)n. An H(k, n) 
comprises kn vertices, each vertex X labeled by an 
n-digit number in radix k arithmetic vn vn-1…v2 v1. The 
vertex X = vn vn-1…vi+1 vi vi-1…v2 v1 is adjacent to 
another vertex Y = vn vn-1…vi+1 wi vi-1…v2 v1 if and 
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only if they differ by exactly one digit position i and 
|vi - wi| = 1, where 1 ≤ i ≤ n. A digit vi is an even(odd) 
digit if it is even(odd). A vertex X = vn vn-1…vi+1 vi 
vi-1…v2 v1 is an even(odd) vertex if the sum of its all 
digits is even(odd). The H(k, n) is a bipartite graph 
for k is even because the odd(even) vertices are just 
adjacent to even(odd) vertices. The H(k, n) possesses 
many attractive properties: 

Proposition 2. The H(k, n) is Hamiltonian. [4] 

Proposition 3. The H(k, n) is vertex transitive and 
edge transitive. [3] 

Definition 3. Let A = an an-1…a2 a1 be an n-digit radix 
k number. The Lee weight of A, denoted by WL(A), is 
defined as 

 WL(A) =∑
=

n

i
ia

1
, where |ai| = min(ai, k-ai) [4] 

Definition 4. The Lee distance between two n-digit 
radix k numbers A and B is defined as WL(A-B). [4] 

Proposition 4. The distance of two vertices X and Y, 
denoted by Dist(X, Y), is WL(X-Y). [4] 

Since an even H(k, n) is bipartite, all of the 
lengths of the paths joining two vertices X and Y of 
the even H(k, n) are even or odd; whereas, the paths 
joining two vertices X and Y of an odd H(k, n) have 
even lengths or odd lengths. The odd(even) distance 
of two vertices X and Y in the odd H(k, n), denoted by 
ODist(X, Y)(EDist(X, Y)), is the length of the path 
with the shortest odd(even) length joining X and Y. If 
WL(X-Y) is an odd number; clearly, the ODist(X, Y) = 
Dist(X, Y); otherwise, EDist(X, Y) = Dist(X, Y). 

A path of an H(k, n) can be represented by its 
transition sequence which is the ordered list of each 
digit position associated with the direction(i.e., + or -) 
that change as it proceeds from one vertex to the next 
one. For example, the path of the H(5, 4), (2314, 
2324, 2224, 3224, 3223, 3213), can be represented by 
(2+, 3-, 4+, 1-, 2-). Clearly, that the transition 
sequence of a path contains both of i+ transition and 
i- transition implies that it is not shortest; because it 
can be shortened by reducing a pair of i+ transition 
and i- transition. We have 

Proposition 5. The transition sequence of an ODist(X, 
Y) or an EDist(X, Y) contains only i+ transition or i- 
transition for each 1 ≤ i ≤ n. 

By Proposition 4, we know that the transition 
sequence of a shortest path joining X and Y contains 
the shorter transition hops generated by either i+ 
transitions or i-transitions for each 1 ≤ i ≤ n. Consider 
two vertices in a C(l). Let the length of the shortest 
path joining the two vertices be f; then, the length of 
the converse path is l-f. That is, the converse path 
takes l-2f more hops than the shortest path. Given two 
vertices X = vn vn-1… v2 v1 and Y = un un-1… u2 u1 of an 
H(k, n), if we choose the transition direction(i.e., i+ 
transition or i- transition) which generates the longer 

transition hops for some dimension i, and we choose 
the transition direction which generates the shorter 
transition hops except dimension i, there exists Dist(X, 
Y)+k-2Min(k-vi+ui, vi-ui) hops in the path joining X 
and Y. If k is odd and Dist(X, Y) is even(odd), Dist(X, 
Y)+k-2Min(k-vi+ui, vi-ui) is odd(even); whereas if k is 
even and Dist(X, Y) is even(odd), Dist(X, 
Y)+k-2Min(k-vi+ui, vi-ui) is even(odd). To minimize 
k-2Min(k-vi+ui, vi-ui) for each 1 ≤ i ≤ n, clearly, the 
maximum of Min(k-vi+ui, vi-ui) should be chosen. 
Thus, we have 

Proposition 6. Given two vertices X = vn vn-1… v2 v1 
and Y = un un-1… u2 u1 of an odd H(k, n) and let Dist(X, 
Y) = ODist(X, Y) (Respectively, EDist(X, Y)), the 
EDist(X, Y) (Respectively, ODist(X, Y)) is Dist(X, 
Y)+k-2Max(Min(k-vi+ui, vi-ui)) for each 1 ≤ i ≤ n. 

In this paper, the outline graph of an H(k, n), 
denoted by an OG(H(k, n)), is to take each vn 
vn-1…v2* subnetwork as a supervertex, where * is a 
don’t care symbol; and a pair of supervertices V* and 
U* in the OG(H(k, n)) is connected if and only if 
there exists an edge (X1, X2) in the H(k, n) such that 
X1 is in the V* and X2 is in the U*. Clearly, a pair of 
supervertices V* = vn vn-1…v2* and U* = un un-1…u2* 
is connected if and only if they differ by exactly one 
digit position, the ith digit where 2 ≤ i ≤ n, and |vi - ui| 
= 1. That is, if each vn vn-1…v2* subnetwork of an H(k, 
n) is taken as a supervertex, the H(k, n) will be 
transformed to an H(k, n-1). We have the following 
proposition. 

Proposition 7. The OG(H(k, n)) is an H(k, n-1). 

The vertex X = vn vn-1…v2 d is called the vertex 
d of the V* = vn vn-1…v2*. By the structure of the H(k, 
n), the vertex d of V* and vertex d of U* are adjacent 
if and only if V* and U* are adjacent in the OG(H(k, 
n)) for each 0 ≤ d ≤ k-1. Clearly, if the OG(H(k, n)) 
embeds a C(l), (V0*, V1*, V2*, …, Vl-1*), the H(k, n) 
embeds the structure of C(l)×C(k). Likewise, if the 
OG(H(k, n)) embeds a P(l), (V0*, V1*, V2*, …, Vl-1*, 
Vl*), the H(k, n) embeds the structure of P(l)×C(k). 
As illustrated in Figure 2, the structure of C(l) ×C(k) 
is embedded in H(k, n) if C(l) is embedded in 
OG(H(k, n)). 

Definition 5. A path-of-ladders POL(BP, sl, LD(0), 
LD(1), …, LD(sl-1)) is a graph unified by a bone path 
BP and sl ladders LD(0), LD(1), …, LD(sl-1) with 
BR(0), BR(1), …, BR(sl-1) as the bottom rungs, 
respectively, such that each BR(i) is contained in the 
BP where 0 ≤ i ≤ sl-1. 

As illustrated in Figure 3, the structure of a 
path-of-ladders graph is shown, where (x0, x1, x2, x3, 
x4, x5) is the bone path; and (x0, x1), (x1, x2), (x2, x3), 
(x4, x5) are BR(0), BR(1), BR(2) and BR(3), 
respectively. From Proposition 1, we have 

Proposition 8. A path-of-ladders POL(BP, sl, LD(0), 
LD(1), …, LD(sl-1)) contains a path of each length l 
joining two ends of BP, where lbp ≤ l ≤ N-1 and l-lbp 
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is even, lbp is the length of BP. 

Definition 6. A cycle-of-ladders COL(BC, sl, LD(0), 
LD(1), …, LD(sl-1)) is unified by a bone cycle BC 
and sl ladders LD(0), LD(1), …, LD(sl-1) with BR(0), 
BR(1), …, BR(sl-1) as the bottom rungs, respectively, 
such that each BR(i) is contained in the BC where 0 ≤ 
i ≤ sl-1 and BR(0), BR(1), …, BR(sl-1) disjoint each 
other. 

As illustrated in Figure 3, the structure of a 
cycle-of-ladders graph is shown, where (x0, x1, x2, x3, 
x4, x5) is the bone cycle; and (x0, x1), (x2, x3) are the 
BR(0), BR(1), respectively. By Proposition 1, we 
have 

Proposition 9. A cycle-of-ladders COL(BC, sl, LD(0), 
LD(1), …, LD(sl-1)) contains a cycle of each length l, 
where lbc ≤ l ≤ N and l-lbc is an even number, lbc is 
the length of BC and N is the number of vertices of 
the cycle-of-ladders. 

3. Panconnected Properties of the 
H(k, 2) 

In this section, we study how to embed paths 
into the k-ary n-cubes. Firstly, we study the path 
embedding properties of the H(k, 2). Since the H(k, 2) 
is a Tor(k, k), to clarify the labeling of each vertex, 
we will discuss these properties on the Tor(k, k). 

Lemma 1. Let X = (0, 0) and Y = (v2, v1) be two 
vertices of a Tor(R, F). There exist the paths of all 
lengths l where l-v2 -v1 is even, v2 +v1 ≤ l ≤ v2R+v1 for 
even v2, and v2 +v1 ≤ l ≤ v2R+R-v1-1 for odd v2. 

Proof. 

Case 1. v2 is odd.  Firstly, Unify the bone path BP = 
((0, 0), (0, 1), …, (0, v1-1), (0, v1), (1, v1), (2, v1), …, 
(v2-1, v1), (v2, v1)) with the v2 ladders, LD(0) = ((0, v1), 
(0, v1+1), …, (0, R-2), (0, R-1), (1, R-1), (1, R-2), …, 
(1, v1+1), (1, v1)), LD(1) = ((1, v1), (1, v1-1), …, (1, 1), 
(1, 0), (2, 0), (2, 1),  …, (2, v1-1), (2, v1)), …, LD(v2-2) 
= ((v2-2, v1), (v2-2, v1-1), …, (v2-2, 1), (v2-2, 0), (v2-1, 
0), (v2-1, 1),  …, (v2-1, v1-1), (v2-1, v1)), LD(v2-1) = 
((v2-1, v1), (v2-1, v1+1), …, (v2-1, R-2), (v2-1, R-1), (v2, 
R-1), (v2, R-2), …, (v2, v1+1), (v2, v1)) the POL(BP, v2, 
LD(0), LD(1), …, LD(v2-1)) can be generated. By 
Proposition 8, the paths joining X and Y of all lengths 
ranging from v2+v1 to v2R+R-v1-1 can be derived, 
where l-v2-v1 is even. As illustrated in Figure 4, we 
show the pol2 for the case that (v2, v1) = (3, 2) of the 
Tor(8, 8). 

Case 2. v2 is odd. Similar to Case 1, we can prove 
that that the paths joining X and Y of all lengths 
ranging from v2+v1 to v2R+v1, where l-v2-v1 is even, 
can be derived.                        Q. E. D. 

The snake path joining (0, 0) and (v2, v1) is the 
path with the maximal length (i.e., v2R+v1 for odd v2, 
and v2R+R-v1-1 for even v2) in the above lemma. 

Lemma 2. The even H(k, 2) is residual 
bipanconnected. 

Proof. By the symmetric properties of the H(k, 2), 
without loss of generality, let X = (0, 0) and Y = (v2, v1) 
where k/2 > v2, v1 ≥ 0. 

Case 1. X and Y are in the distinct partite sets. That is, 
v2 +v1 is odd. One of v2 and v1 is an odd number and 
the other one is an even number. Without loss of 
generality, let v1 and v2 be an even number and an 
odd number, respectively. By Lemma 1, there exist 
the paths of all odd lengths ranging from v2+v1 to 
v2k+k-v1-1 joining X and Y. Unify the bone path BP 
which is the snake path joining (0, 0) and (v2, v1) with 
the k/2 ladders, LD(0) = ((v2-1, 0), (v2, 0), …, (k-1, 0), 
(k-1, 1), …, (v2, 1), (v2-1, 1)), …, LD(i) = ((v2-1, v1-2), 
(v2, v1-2), …, (k-1, v1-2), (k-1, v1-1), …, (v2, v1-1), 
(v2-1, v1-1)), LD(i+1) = ((v2, v1), (v2+1, v1), …, (k-1, 
v1), (k-1, v1+1), …, (v2+1, v1+1), (v2, v1+1)), …, and 
LD(k/2-1) = ((v2, k-2), (v2+1, k-2), …, (k-1, k-2), (k-1, 
k-1), …, (v2+1, k-1), (v2, k-1)), a POL(BP, k/2, LD(0), 
LD(1), …, LD(k/2-1)) can be derived, where i = 
v1/2-1. As illustrated in Figure 5, the case that (v2, v1) 
= (3, 2) of the Tor(8, 8) is shown. By Proposition 8, 
there are paths of all odd lengths ranging from 
v2k+k-v1-1 to k2-1 joining X and Y. Combining the 
result of Lemma 1, we know that there exist the paths 
joining X and Y of all odd lengths ranging from v2+v1 
to k2-1. 

Case 2. X and Y are in the same partite set. That is, 
both of v2 and v1 are odd numbers or even numbers. 

Case 2.1. v2 and v1 are even numbers. By Lemma 1, 
we know that there exist paths joining X = (0, 0) and 
Y = (v2, v1) of all even lengths ranging from v2+v1 to 
v2k+v1. In the first stage, let BP1 be the snake path 
joining X and Y, and let LD1(0) = ((v2-1, k-1), (v2, 
k-1), …, (k-1, k-1), (k-1, k-2), …, (v2, k-2), (v2-1, k-2)), 
LD1(1) = ((v2-1, k-3), (v2, k-3), …, (k-1, k-3), (k-1, 
k-4), …, (v2, k-4), (v2-1, k-4)), …, LD1(i) = ((v2-1, 
v1+3), (v2, v1+3), …, (k-1, v1+3), (k-1, v1+2), …, (v2, 
v1+2), (v2-1, v1+2)), where i = (k-1-(v1+3))/2 = 
(k-v1)/2-2; and let LD1(i+1) = ((v2, 0), (v2+1, 0), …, 
(k-1, 0), (k-1, 1), …, (v2+1, 1), (v2, 1)), LD1(i+2) = ((v2, 
2), (v2+1, 2), …, (k-1, 2), (k-1, 3), …, (v2+1, 3), (v2, 
3)), …, LD1(k/2-2) = ((v2, v1-2), (v2+1, v1-2), …, (k-1, 
v1-2), (k-1, v1-1), …, (v2+1, v1-1), (v2, v1-1)). Unify 
BP1 with the above ladders, a pol1 = POL(BP1, k/2-1, 
LD1(0), LD1(1), …, LD1(k/2-2)) can be derived. As 
illustrated in Figure 6, the case that (v2, v1) = (2, 4) of 
the Tor(8, 8) is shown. By Proposition 8, we can 
obtain the paths joining X and Y of all even lengths 
ranging from v2k+v1 to 
v2k+v1+2(i+1)(k-v2)+2(k/2-2-i)(k-v2-1), where i = 
(k-v1)/2-2. In the second stage, let BP2 be the path 
containing all vertices in the pol1; and let LD2(0) = 
((k-1, v1+2), (k-1, v1+1), (k-1, v1), (k-2, v1), (k-2, v1+1), 
(k-2, v1+2)), LD2(1) = ((k-3, v1+2), (k-3, v1+1), (k-3, 
v1), (k-4, v1), (k-4, v1+1), (k-4, v1+2)), …, LD2(j-1) = 
((v2+3, v1+2), (v2+3, v1+1), (v2+3, v1), (v2+2, v1), 
(v2+2, v1+1), (v2+2, v1+2)), LD2(j) = ((v2+1, v1+2), 
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(v2+1, v1+1), (v2, v1+1), (v2, v1+2)), where j = 
(k-v2)/2-1. Unify BP2 with the above ladders, a pl2 = 
POL(BP2, j+1, LD2(0), LD2(1), …, LD2(j)) can be 
derived; and there exists a residual vertex (v2+1, v1) 
adjacent to Y. As illustrated in Figure 7, the case that 
(v2, v1) = (2, 4) of the Tor(8, 8) is shown where the 
residual vertex is (3, 4). By Proposition 8, there are 
paths joining X and Y of all even lengths ranging 
from v2R+v1+2(i+1)(k-v2)+2(k/2-2-i)(k-v2-1) to k2-2 
where i = (k-v1)/2-2. Combining the results of Lemma 
1 and the above two stages, we know that there exist 
paths joining X = (0, 0) and Y = (v2, v1) of all even 
lengths ranging from v2+v1 to k2-2 where v2 and v1 are 
both even numbers. 

Case 2.2. v2 and v1 are odd numbers. By Lemma 1, 
we know that there exist paths joining X = (0, 0) and 
Y = (v2, v1) of all even lengths ranging from v2+v1 to 
v2k+k-v1-1. Similar to Case 2.1, we can also prove 
that there exist paths joining X = (0, 0) and Y = (v2, v1) 
of all even lengths ranging from v2+v1 to k2-2 where 
v2 and v1 are both odd numbers. Moreover, there 
exists a residual vertex (v2, v1-1) adjacent to Y in this 
case.                                Q. E. D. 

Similar to the proof of Lemma 2, we can derive the 
following lemmas: 

Lemma 3. For X = (0, 0) and Y = (v2, v1) of a Tor(k, k) 
where k is odd and both of v2 and v1 are odd, there 
exist paths joining X and Y of all even lengths ranging 
from v2+v1 to k2-1. 

Lemma 4. For X = (0, 0) and Y = (v2, v1) of a Tor(k, k) 
where k is odd and both of v2 and v1 are even, there 
exist paths joining X and Y of all even lengths ranging 
from v2+v1 to k2-1. 

Lemma 5. For X = (0, 0) and Y = (v2, v1) of a Tor(k, k) 
where k is odd, one of v1 and v2 is odd, and the other 
is even, there exist paths joining X and Y of all odd 
lengths ranging from v2+v1 to k2-2,. Moreover, there 
exists a residual vertex adjacent to Y. 

By the symmetry of the Tor(k, k), without loss 
of generality, we assume that v1 is even and v2 is odd. 
As illustrated in Figure 8 and Figure 9, the first stage 
and the second stage of the case that Y = (3, 2) of the 
Tor(9, 9) are shown, respectively. Moreover, there 
exists a residual vertex (v2+1, v1) adjacent to Y in this 
case. 

Now, we study the paths joining two vertices in 
an odd H(k, 2). Since the H(k, 2) is a Tor(k, k), 
without loss of generality, we assume that X = (0, 0) 
and Y = (v2, v1) of the Tor(k, k) where (k-1)/2 ≥ v2 ≥ v1 
≥ 0. 

Lemma 6. There exist paths joining X = (0, 0) and Y 
= (v2, v1) of all lengths ranging from k-v2+v1-1 to k2-1 
in the odd H(k, 2) where (k-1)/2 ≥ v2 ≥ v1 ≥ 0. 

Proof. 

Case 1: Both of v2 and v1 are odd. By Lemma 3, we 
know that there exist paths joining X = (0, 0) and Y = 

(v2, v1) of all even lengths ranging from v2+v1 to k2-1 
in the odd H(k, 2). By the symmetry of the odd H(k, 
2), there exists an automorphism to map each vertex 
(w2, w1) to the vertex (k-w2, w1). Thus, Y can also be 
regarded as the vertex (k-v2, v1). By Lemma 5, there 
exist paths of all odd lengths joining X = (0, 0) and Y 
= (v2, v1) ranging from k-v2+v1 to k2-2 in the odd H(k, 
2). By definition, (k-1)/2 ≥ v2 ≥ v1 ≥ 0; thus we know 
that k-v2+v1 > v2+v1. Consequently, there exist paths 
joining X = (0, 0) and Y = (v2, v1) of all lengths 
ranging from k-v2+v1-1 to k2-1 in the odd H(k, 2). 

Case 2: Both of v2 and v1 are even. By Lemma 4, we 
know that there exist paths joining X = (0, 0) and Y = 
(v2, v1) of all even lengths ranging from v2+v1 to k2-1 
in the odd H(k, 2). The remainder of the proof is 
similar to Case 1. 

Case 3: v2 is odd and v1 is even. By Lemma 5, we 
know that there exist paths joining X = (0, 0) and Y = 
(v2, v1) of all odd lengths ranging from v2+v1 to k2-2 in 
the odd H(k, 2). By the symmetry of the odd H(k, 2), 
there exists an automorphism to map each vertex (w2, 
w1) to the vertex (k-w2, w1). Thus, Y can also be 
regarded as the vertex (k-v2, v1). By Lemma 4, there 
exist paths joining X = (0, 0) and Y = (v2, v1) of all 
even lengths ranging from k-v2+v1 to k2-1 in the odd 
H(k, 2). By definition, (k-1)/2 ≥ v2 ≥ v1 ≥ 0; thus we 
know that k-v2+v1 > v2+v1. Consequently, we know 
that there exist paths joining X = (0, 0) and Y = (v2, v1) 
of all lengths ranging from k-v2+v1-1 to k2-1 in the 
odd H(k, 2). 

Case 4: v2 is even and v1 is odd. Similar to Case 3, we 
can prove that there exist paths joining X = (0, 0) and 
Y = (v2, v1) of all lengths ranging from k-v2+v1-1 to 
k2-1 in the odd H(k, 2).                  Q. E. D. 

 From the above lemma, clearly, the maximum 
value of k-v2+v1-1 is k-1 when v2 = v1. Thus, we have 
the following lemma. 

Lemma 7. The odd H(k, 2) is m-panconnected, where 
m = k-1. 

 Then, based on the above study on the H(k, 2), 
we will investigate the path embedding properties of 
the H(k, n). For that purpose, the following lemmas 
about K(2)×C(k) are required. As illustrated in Figure 
10, the structure of K(2)×C(k) is shown. 

Lemma 8. K(2)×C(k) is residual bipanconnected for 
k is even. 

Proof. For the symmetry of the K(2)×C(k), without 
loss of generality, we assume that X = (0, 0) and Y = 
(v2, v1), where 0 ≤ v2 ≤ 1, 0 ≤ v1 ≤ k/2. 

Case 1: X and Y are in distinct partite sets. That is, 
v2+v1 is odd. 

Subcase 1.1: v2 = 0. Clearly, v1 is an odd digit. In the 
first stage, let BP1 be the shortest path joining X and 
Y, (X =(0, 0), (0, 1), …, (0, v1-1), (0, v1) = Y); and let 
LD1(0) = ((0, 0), (1, 0), (1, 1), (0, 1)), LD1(1) = ((0, 2), 
(1, 2), (1, 3), (0, 3)), …, LD1((v1-1)/2) = ((0, v1-1), (1, 
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v1-1), (1, v1), (0, v1)). Unify BP1 with the above 
ladders, a pol1 = POL(BP1, (v1+1)/2, LD(0), 
LD(1), …, LD(v1-1)/2)) can be derived. Thus, there 
exists a path joining X and Y of each odd length 
ranging from v1 to 2v1+1. In the second stage, let BP2 
be the path containing all vertices in the pol1; and let 
LD2(0) = ((1, v1), (1, v1+1), …, (1, k-1), (0, k-1), …, 
(0, v1+1), (0, v1)). Unify BP2 with LD2(0), a pol2 = 
POL(BP1, 1, LD2(0)) can be derived. Thus, there 
exists a path of each odd length ranging from 2v1+1 
to 2k-1. Combining results of the two stages, we 
know that there exist a path joining X = (0, 0) and Y = 
(v2, v1) of each odd length ranging from v1 to 2k-1. 

Subcase 1.2: v2 = 1. Clearly, v1 is an even digit. For v1 
= 0, by Proposition 1, there exists a path joining (0, 0) 
and (1, 0) of each odd length ranging from 1 to 2k-1. 
Then, we consider the case that v1 ≠ 0. Similar to 
Subcase 1.1, we can prove that there exists a path 
joining X and Y of each odd length ranging from v1+1 
to 2k-1, where v1+1 = Dist(X, Y). 

Case 2: X and Y are in the same partite set. That is, 
v2+v1 is even. 

Subcase 2.1: v2 = 0. Clearly, v1 is an even digit. In the 
first stage, let BP1 be the shortest path joining X and 
Y, (X = (0, 0), (0, 1), …, (0, v1-1), (0, v1) = Y); and let 
LD1(0) = ((0, 0), (1, 0), (1, 1), (0, 1)), LD1(1) = ((0, 2), 
(1, 2), (1, 3), (0, 3)), …, LD1((v1-2)/2) = ((0, v1-2), (1, 
v1-2), (1, v1-1), (0, v1-1)). Unify BP1 with the above 
ladders, a pol1 = POL(BP1, v1/2, LD(0), LD(1), …, 
LD(v1-2)/2)) can be derived. Thus, there exists a path 
joining X and Y of each even length ranging from v1 
to 2v1; moreover, there exists a residual vertex (0, 
v1+1) adjacent to Y for theses paths. In the second 
stage, let BP2 be the path of length 2v1, ( X = (0, 0), (1, 
0), (1, 1), (0, 1), …, (0, v1-2), (1, v1-2), (1, v1-1), (1, 
v1), (0, v1) = Y); and let LD2(0) be ((1, v1), (1, 
v1+1), …, (1, k-1), (0, k-1), …, (0, v1+1), (0, v1)). 
Unify BP2 with LD2(0), a pol2 = POL(BP2, 1, LD2(0)) 
can be derived. Thus, there exists a path joining X 
and Y of each even length ranging from 2v1 to 2k-2; 
moreover, there exists a residual vertex (0, v1-1) 
adjacent to Y for these paths. Combining results of 
the two stages, we know that there exist a path 
joining X and Y of each even length ranging from v1 
to 2k-2; moreover, there exists a residual vertex 
adjacent to Y. 

Subcase 2.2: v2 = 1. Clearly, v1 is an odd digit. 
Similar to Subcase 2.1, we can prove that there exists 
a path joining X and Y of each even length ranging 
from v1+1 to 2k-2; moreover, there exists a residual 
vertex (1, v1-1) adjacent to Y for these paths.                                         
Q. E. D. 

4. Panconnected Properties of the 
H(k, n) 

Then, we consider the paths joining arbitrary 

two vertices of the K(2)×C(k) structure where k is 
odd. To simplify the proof, without loss of generality, 
we assume that X = (0, 0) and Y = (v2, v1), where 0 ≤ 
v2 ≤ 1, 0 ≤ v1 ≤ (k-1)/2. 

Lemma 9. For two vertices X = (0, 0) and Y = (v2, v1) 
of K(2)×C(k) where k is odd, 

(1) if Dist(X, Y) is odd, there exists a path of each 
odd length ranging from Dist(X, Y) to 2k-1 
joining X and Y; and there exists a path of each 
even length ranging from Dist(X, Y)+k-2Min(k-v1, 
v1) to 2k-2 joining X and Y that is adjacent to a 
residual vertex; 

(2) if Dist(X, Y) is even, there exists a path of each 
even length ranging from Dist(X, Y) to 2k-2 
joining X and Y that is adjacent to a residual 
vertex; and there exists a path of each odd length 
ranging from Dist(X, Y)+k-2Min(k-v1, v1) to 2k-1 
joining X and Y. 

Proof. Case 1: Dist(X, Y) is odd. 

Subcase 1.1: v2 = 0 and v1 is odd. (1) Similar to 
Subcase 1.1 of Lemma 8, there exists a path joining X 
and Y of each odd length ranging from Dist(X, Y) = v1 
to 2k-1. (2) By the symmetry of the K(2)×C(k) 
structure, there exists an automorphism to map each 
vertex (w2, w1) to the vertex (w2, k-w1). Thus, Y can 
also be regarded as the vertex (v2, k-v1). Similar to 
Subcase 2.1 of Lemma 8, there exists a path joining X 
and Y of each even length ranging from k-v1 to 2k-2, 
where k-v1 = Dist(X, Y)+k-2Min(k-v1, v1) since k-v1 > 
v1 by the hypothesis that v1 ≤ (k-1)/2; moreover, there 
exists a residual vertex adjacent to Y. 

Subcase 1.2: v2 = 1 and v1 is even. (1) Similar to 
Subcase 1.2 of Lemma 8, there exists a path joining X 
and Y of each odd length ranging from Dist(X, Y) = 
1+v1 to 2k-1. (2) Similar to Subcase 2.2 of Lemma 8, 
there exists a path joining X and Y of each even 
length ranging from k-v1+1 to 2k-2, where k-v1+1 = 
Dist(X, Y)+k-2Min(k-v1, v1); moreover, there exists a 
residual vertex adjacent to Y. 

Case 2: Dist(X, Y) is even. 

Subcase 2.1: v2 = 0 and v1 is even. (1) Similar to 
Subcase 2.1 of Lemma 8, there exists a path joining X 
and Y of each even length ranging from Dist(X, Y) = 
v1 to 2k-2; moreover, there exists a residual vertex 
adjacent to Y. (2) Similar to Subcase 1.1 of Lemma 8, 
there exists a path joining X and Y of each odd length 
ranging from k-v1 to 2k-1, where k-v1 = Dist(X, 
Y)+k-2Min(k-v1, v1). 

Subcase 2.2: v2 = 1 and v1 is odd. (1) Similar to 
Subcase 2.2 of Lemma 8, there exists a path joining X 
and Y of each even length ranging from Dist(X, Y) = 
1+v1 to 2k-2; moreover, there exists a residual vertex 
adjacent to Y. (2) Similar to Subcase 1.2 of Lemma 8, 
there exists a path joining X and Y of each odd length 
ranging from k-v1+1 to 2k-1, where k-v1+1 = Dist(X, 
Y)+k-2Min(k-v1, v1).                    Q. E. D. 
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Theorem 10. That is, even H(k, n) is residual 
bipanconnected. 

Proof. We will prove the lemma by induction on n. 

For n = 2, By Lemma 2, the lemma holds. 

Hypothesis: The lemma is true for n = J ≥ 2. 

Induction Step: By the symmetric properties of the 
H(k, n), without loss of generality, let X = uJ+1 uJ …u2 
u1 = 00…00; and let Y = vJ+1 vJ …v2 v1 be a vertex in 
an H(k, J+1), where 0 ≤ vi ≤ k/2 for each 1 ≤ i ≤ J+1; 
and vJ+1 ≤ vJ ≤…≤ v2 ≤ v1. 

Case 1: X and Y are in the distinct bipartite sets. That 
is, Y is an odd vertex. 

Subcase 1.1: vJ+1 vJ …v2 is an odd vertex of the 
OG(H(k, J+1)). Clearly, v1 is an even digit. Recall 
that the OG(H(k, J+1)) is an H(k, J). By hypothesis, 
there exists a path of each odd length l ranging from 
Dist(0J, vJ+1 vJ …v2) to kJ-1 joining uJ+1 uJ …u2* = 0J* 
and vJ+1 vJ …v2*, (uJ+1 uJ …u2* = 0J* = V0*, V1*, 
V2*, …, Vl* = vJ+1 vJ …v2*) in the OG(H(k, J+1)). 
Clearly, the path of odd length Dist(0J, vJ+1 vJ …v2)+ 
v1, (V0 0, V1 0, V2 0, …, Vl-1 0, Vl 0, Vl 1, …, Vl (v1-1), 
Vl v1 = Y), is the shortest path joining X and Y. Let BP 
be (V0 0, V1 0, V2 0, …, Vl-3 0, Vl-2 0); and let LD(0) = 
(V0 0, V0 1, …, V0 k-1, V1 k-1, …, V1 1, V1 0), LD(1) = 
(V2 0, V2 1, …, V2 k-1, V3 k-1, …, V3 1, V3 0), …, 
LD((l-3)/2) = (Vl-3 0, Vl-3 1, …, Vl-3 k-1, Vl-2 k-1, …, 
Vl-2 1, Vl-2 0). Unify BP with the above ladders, a pol 
= POL(BP, (l-1)/2, LD(0), LD(1), …, LD((l-3)/2)) 
can be derived. Thus, there exists a path joining X = 
V0 0 = 0J and Vl-2 0 of each odd length ranging from 
l-2 to (l-1)k-1. From Lemma 8, we know that there 
exists a path joining Vl-1 0 and Vl v1 = Y of each odd 
length ranging from v1+1 to 2k-1. Since Vl-2 0 is 
adjacent to Vl-1 0, there exists a path of each odd 
length ranging from l+v1 to ((l-1)k-1)+(2k-1)+1 = 
(l+1)k-1. As illustrated in Figure 11, the case that v1 = 
2 and k = 6 is shown. Since there exists a path of each 
odd length l ranging from Dist(0J, vJ+1 vJ …v2) to kJ-1 
joining uJ+1 uJ …u2* = 0J* and vJ+1 vJ …v2* in the 
OG(H(k, J+1)), there exists a path joining X and Y of 
each odd length ranging from Dist(0J, vJ+1 vJ …v2)+v1 
= Dist(0J+1, vJ+1 vJ …v2 v1) to (kJ-1+1)k-1 = kJ+1-1. 

Subcase 1.2: vJ+1 vJ …v2 is an even vertex of the 
OG(H(k, J+1)) and vJ+1 vJ …v2 ≠ uJ+1 uJ …u2. Similar 
to Subcase 1.1, it is not difficult to find that there 
exists a path joining X and Y of each odd length 
ranging from Dist(0J, vJ+1 vJ …v2)+v1 = Dist(0J+1, vJ+1 
vJ …v2 v1) to kJ+1-1. 

Subcase 1.3: vJ+1 vJ …v2 = 00…0 = uJ+1 uJ …u2. Since 
vJ+1 vJ …v2 v1 is an odd vertex, v1 must be an odd digit. 
By Proposition 2, there exists a Hamiltonian path, 
(uJ+1 uJ …u2* = vJ+1 vJ …v2* = V0*, V1*, …, VN-2*, 
VN-1*) of the OG(H(k, J+1), where N = kJ. By Lemma 
8, there exists a path joining X and Y of each odd 
length ranging from v1 = Dist(X, Y) to 2k-1 in the 
K(2)×C(k) network, (V0*, V1*). Then, let BP be the 
path (V0 0, V1 0, V1 1, V0 1, V0 2, V1 2, …, V0 (v1-1), V1 

(v1-1), V1 v1, V1 (v1+1), …, V1 (k-1), V0 (k-1), …, V0 
(v1+1), V0 v1); and let LD(0) = (V1 0, V2 0, …, VN –1 0, 
VN –1 1, …, V2 1, V1 1), LD(1) = (V1 2, V2 2, …, VN-1 2, 
V N-1 3, …, V2 3, V1 3), …, LD(k/2-1) = (V1 (k-2), V2 
(k-2), …, VN-1 (k-1), VN-1 (k-1), …, V2 (k-1), V1(k-1)). 
Unify BP with LD(0), LD(1), …, LD(k/2-1), a pol = 
POL(BP, k/2, LD(0), LD(1), …, LD(k/2-1)) can be 
derived. As illustrated in Figure 12, we show the pol 
for the case that v1 = 3 of the H(8, 2). Thus, there 
exists a path joining X and Y of each odd length 
ranging from 2k-1 to 2k-1+(kJ-2)k = kJ+1-1. 
Combining the above results, we know that there 
exists a path joining X and Y of each odd length 
ranging from v1 = Dist(X, Y) to kJ+1-1. 

Case 2: X and Y are in the same bipartite set. That is, 
Y is an even vertex. 

Subcase 2.1: vJ+1 vJ …v2 is an odd vertex of the 
OG(H(k, J+1)). Clearly, v1 is an odd digit. By Lemma 
8, similar to Subcase 1.1, we can prove that there 
exists a path joining X and Y of each even length 
ranging from Dist(0J, vJ+1 vJ …v2)+v1 = Dist(0J+1, vJ+1 
vJ …v2 v1) to kJ+1-2. Moreover, there exists a residual 
vertex adjacent to Y. 

Subcase 2.2: vJ+1 vJ …v2 is an even vertex of the 
OG(H(k, J+1)) and vJ+1 vJ …v2 ≠ uJ+1 uJ …u2. Similar 
to Subcase 1.2, there exists a path joining X and Y of 
each even length ranging from Dist(0J, vJ+1 
vJ …v2)+v1 = Dist(0J+1, vJ+1 vJ …v2 v1) to kJ+1-2. 
Moreover, there exists a residual vertex adjacent to Y. 

Subcase 2.3: vJ+1 vJ …v2 = 00…0 = uJ+1 uJ …u2. By 
Lemma 8, similar to Subcase 1.3, we can prove that 
there exists a path joining X and Y of each even 
length ranging from v1 = Dist(X, Y) to kJ+1-2. 
Moreover, there exists a residual vertex adjacent to Y. 
This extends the induction and completes the proof. 
Q. E. D. 

Lemma 11. For arbitrary two vertices X and Y of an 
odd H(k, n), 

(1) there exists a path of each odd length ranging 
from ODist(X, Y) to kn-2 joining X and Y that is 
adjacent to a residual vertex; 

(2) there exists a path of each even length ranging 
from EDist(X, Y) to kn-1 joining X and Y. 

Proof. We will prove the lemma by induction on n. 

For n = 2, the lemma holds by Lemma 3, 4 and 5. 

Hypothesis: The lemma is true for n = J ≥ 2. 

Induction Step: By the symmetric properties of the 
H(k, n), without loss of generality, let X = uJ+1 uJ …u2 
u1 = 00…00; and let Y = vJ+1 vJ …v2 v1 be a vertex in 
an H(k, J+1), where 0 ≤ vi ≤ (k-1)/2 for each 1 ≤ i ≤ 
J+1; and vJ+1 ≤ vJ ≤…≤ v2 ≤ v1. 

Case 1: v1 is an odd digit. 

Recall that the OG(H(k, J+1)) is an H(k, J). By 
hypothesis, there exists a path of each odd length l 
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ranging from ODist(0J, vJ+1 vJ …v2) to kJ-2 joining 
uJ+1 uJ …u2* = 0J* and vJ+1 vJ …v2*, (uJ+1 uJ …u2* = 
0J* = V0*, V1*, V2*, …, Vl* = vJ+1 vJ …v2*) in the 
OG(H(k, J+1)). Since l ranges from ODist(0J, vJ+1 
vJ …v2) to kJ-2, similar to Subcase 2.1 of Theorem 10, 
by Lemma 9, we can prove that there exists a path of 
each even length ranging from ODist(0J, vJ+1 
vJ …v2)+v1 to (kJ-2)k-1 = kJ+1-2k-1 joining X = V0 0 
and Y = Vl v1. By hypothesis, there exists a residual 
vertex Vl+1* for the path of odd length l joining V0* = 
0J* and Vl* = vJ+1 vJ …v2* in the OG(H(k, n)) for k is 
odd. Consider the path (0J* = V0*, V1*, V2*, …, VN-2* 
= vJ+1 vJ …v2*, VN-1*) where N = kJ. Let P0 be (V0 0, 
V0 1, …, V0 k-2, V0 k-1, V1 k-1, V1 k-2, …, V1 1, V1 
0, …., VN-5 0, VN-5 1, …, VN-3 0, VN-3 1, …, VN-3 k-2, 
VN-3 k-1). By Lemma 9, there exists a path P1 of each 
odd length ranging from k-1-v1 to 2k-1 joining VN-2 
k-1 and VN-2 v1 = Y. Concatenating P0 and P1, a path 
of each even length ranging from 
((kJ-2)k-1)+1+(k-1-v1) = kJ+1-k-1-v1 to kJ+1-1 joining X 
and Y can be derived. Combining the above results, 
we know that there exists a path of each even length 
ranging from ODist(0J, vJ+1 vJ …v2)+v1 to kJ+1-1 
joining X and Y. Likewise, we can derive that there 
exists a path of each odd length ranging from 
EDist(0J, vJ+1 vJ …v2)+v1 to kJ+1-2 joining X and Y; 
moreover, Y is adjacent to a residual vertex. By the 
symmetric properties, vJ+1 vJ …v2 v1 can be regarded 
as vJ+1 vJ …v2 (k-v1). Clearly, k-v1 is an even digit. 
Likewise, we can prove that there exists a path of 
each odd length ranging from ODist(0J, vJ+1 
vJ …v2)+(k-v1) to kJ+1-2 joining X and Y that is 
adjacent to a residual vertex; and there exists a path 
of each even length ranging from EDist(0J, vJ+1 
vJ …v2)+(k-v1) to kJ+1-1 joining X and Y. Clearly, 
EDist(0J+1, vJ+1 vJ …v2 v1) = Min(ODist(0J, vJ+1 
vJ …v2)+v1, EDist(0J, vJ+1 vJ …v2)+(k-v1)); thus, there 
exists a path of each even length ranging from 
EDist(0J+1, vJ+1 vJ …v2 v1) to kJ+1-1 joining X and Y. 
Likewise, ODist(0J+1, vJ+1 vJ …v2 v1) = Min(EDist(0J, 
vJ+1 vJ …v2)+v1, ODist(0J, vJ+1 vJ …v2)+(k-v1)), thus, 
there exists a path of each odd length ranging from 
ODist(0J+1, vJ+1 vJ …v2 v1) to kJ+1-2 joining X and Y; 
moreover, Y is adjacent to a residual vertex. 

Case 2: v1 is an even digit. The proof is similar to 
Case 1.                              Q. E. D. 

By the above lemma, we have 

Corollary 12. For two vertices of the H(k, n), there 
exists a path joining X and Y of each length ranging 
from ODist(X, Y)-1(Respectively, EDist(X, Y)-1) for 
ODist(X, Y) > EDist(X, Y)( Respectively, EDist(X, Y) 
> ODist(X, Y)) to kn-1. 

Theorem 13. The odd H(k, n) is strictly 
m-panconnected, where m = n(k-1)/2. 

Proof. Without loss of generality, let X = un un-1 …u2 
u1 = 00…00; and let Y = vn vn-1 …v2 v1 be a vertex in 
the H(k, n), where 0 ≤ vi ≤ (k-1)/2 for each 1 ≤ i ≤ n; 
and vn ≤ vn-1 ≤…≤ v2 ≤ v1. Clearly, Dist(X, Y) ≤ nv1; 

thus, by Proposition 6, for Dist(X, Y) = ODist(X, Y) 
(Respectively, Dist(X, Y) = EDist(X, Y)), the EDist(X, 
Y) (Respectively, ODist(X, Y)) ≤ nv1+k-2v1 ≤ 
n(k-1)/2+k-2(k-1)/2 = n(k-1)/2+1. By Corollary 12, 
we know that there exists a path joining X and Y of 
each length ranging from n(k-1)/2 to kn-1. Moreover, 
n(k-1)/2 is the diameter of the odd H(k, n), it has 
reached the lower bound of this problem.   Q. E. D. 

5. The Pancyclic Properties 

Theorem 14. The even H(k, n) is bipancyclic for n ≥ 
2. 

Proof. In the first stage, owing to that the OG(H(k, n)) 
is a H(k, n-1) and that the H(k, n-1) is Hamiltonian, 
there exists a P(N-1)×C(k), (V0*, V1*, …, VN-3*, VN-2*, 
VN-1*), where N = kn-1. Clearly, P(N-1)×K(2) that is 
an L(N-1) is a subgraph of the P(N-1)×C(k). From 
Proposition 1, the H(k, n) contains cycles of each 
even length ranging from 4 to 2N. In the second stage, 
we show that the H(k, n) can embed a 
cycle-of-ladders as a subgraph. Let BC be (V0 0, V0 
1, …, V0 k-1), and let LD(0) = {V0 0, V1 0, …, VN-2 0, 
VN-1 0, VN-1 1, VN-2 1, …, V1 1, V0 1}, LD(1) = {V0 2, V1 
2, …, VN-2 2, VN-1 2, VN-1 3, VN-2 3, …, V1 3, V0 3}, …, 
LD((k-1)/2-1) = {V0 k-3, V1 k-3, …, VN-2 k-3, VN-1 k-3, 
VN-1 k-2, VN-2 k-2, …, V1 k-2, V0 k-2}. Unify BC with 
the above ladders, a COL(BC, k/2, LD(0), LD(1), …, 
LD(k/2-1)) can be derived. As illustrated in Figure 13, 
the structure of the cycle-of-ladders embedded in the 
H(5, 2) is shown. By Proposition 9, we know that the 
even H(k, n) contains a cycle of each even length 
ranging from k to k+(2N-2)k/2 = Nk = nk. Combining 
the above results, we know that the even H(k, n) 
contains a cycle of each even length ranging from 4 
to kn for n ≥ 2.                         Q. E. D. 

Lemma 15. The odd H(k, n) embeds a cycle of each 
even length ranging from 4 to kn-1 for n ≥ 2. 

Proof. In the first stage, owing to that the OG(H(k, n)) 
is a H(k, n-1) and that the H(k, n-1) is Hamiltonian, 
there exists a P(N-1)×C(k), (V0*, V1*, …, VN-3*, VN-2*, 
VN-1*), where N = kn-1. Clearly, P(N-1)×K(2) that is 
an L(N-1) is a subgraph of the P(N-1)×C(k). From 
Proposition 1, the H(k, n) contains cycles of each 
even length ranging from 4 to 2N. In the second stage, 
we show that the H(k, n) can embed a 
cycle-of-ladders as a subgraph. Let the bone cycle 
BC1 be (V0 1, V1 1, …, VN-2 1, VN-1 1, VN-1 0, VN-2 0, …, 
V1 0, V0 0). And let the ith ladder LD1(i) be {V2i 1, V2i 
2, …, V2i k-2, V2i k-1, V2i+1 k-1, V2i+1 k-2,…, V2i+1 2, 
V2i+1 1} with the edge (V2i 1, V2i+1 1) as the bottom 
rung for each i where 0 ≤ i ≤ (N-1)/2-1. Unify BC1 
with the above ladders, a col1 = COL(BC1, (N-1)/2, 
LD1(0), LD1(1), …, LD1((N-1)/2-1)) can be derived. 
By Proposition 9, we know that the odd H(k, n) 
contains a cycle of each even length ranging from 2N 
to 2N+(2k-4)×(N-1)/2 = kN-k+2 for n ≥ 2. In the third 
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stage, let BC2 be the path containing all vertices in 
the col1, and let LD2(0) = {VN-2 2, VN-1 2, VN-1 3, VN-2 
3}, LD2(1) = {VN-2 4, VN-1 4, VN-1 5, VN-2 5}, …, 
LD2((k-3)/2-1) = {VN-2 k-3, VN-1 k-3, VN-1 k-2, VN-2 k-2}. 
Unify BC2 with the above ladders, a col2 = COL(BC2, 
(k-3)/2, LD1(0), LD1(1), …, LD1((k-3)/2-1)) can be 
derived. As illustrated in Figure 14, the structure of 
the col2 embedded in the H(9, 2) is shown. Thus, we 
know that the odd H(k, n) contains a cycle of each 
even length ranging from kN-k+2 to kN-k+2+(k-3) = 
kN-1 = kn-1. Combining the above results, we know 
that the odd H(k, n) contains a cycle of each even 
length ranging from 4 to kn-1.            Q. E. D. 

Lemma 16. The odd H(k, n) embeds a cycle of each 
odd length ranging from k to kn for n ≥ 2. 

Proof. In the first stage, owing to that the OG(H(k, n)) 
is a H(k, n-1) and that the H(k, n-1) is Hamiltonian, 
there exists a P(N-1)×C(k), (V0*, V1*, …, VN-3*, VN-2*, 
VN-1*), where N = kn-1. Let BC1 be (V0 0, V0 1, …, V0 
k-1), and let LD1(0) = {V0 0, V1 0, …, VN-2 0, VN-1 0, 
VN-1 1, VN-2 1, …, V1 1, V0 1}, LD1(1) = {V0 2, V1 2, …, 
VN-2 2, VN-1 2, VN-1 3, VN-2 3, …, V1 3, V0 3}, …, 
LD1((k-1)/2-1) = {V0 k-3, V1 k-3, …, VN-2 k-3, VN-1 k-3, 
VN-1 k-2, VN-2 k-2, …, V1 k-2, V0 k-2}. Unify BC1 with 
the above ladders, a col1 = COL(BC1, (k-1)/2, LD1(0), 
LD1(1), …, LD1((k-1)/2-1)) can be derived. By 
Proposition 9, we know that the odd H(k, n) contains 
a cycle of each odd length ranging from k to 
k+(2N-2)(k-1)/2 = Nk-N+1. In the second stage, let 
BC2 be the cycle containing all vertices in the col1; 
and let LD2(0) = {V1 k-2, V2 k-2, V2 k-1, V1 k-1}, 
LD2(1) = {V3 k-2, V4 k-2, V4 k-1, V3 k-1}, …, 
LD2((N-1)/2-1) = {VN-2 k-2, VN-1 k-2, VN-1 k-1, VN-2 
k-1}. Unify BC2 with the above ladders, a col2 = 
COL(BC2, (N-1)/2, LD2 (0), LD2 (1), …, LD2 
((N-1)/2-1) can be derived. As illustrated in Figure 15, 
the structure of the col2 embedded in the H(5, 2) is 
shown. By Proposition 9, we know that the odd H(k, 
n) contains a cycle of each odd length ranging from 
Nk-N+1 to (Nk-N+1)+(N-1) = Nk = kn for n ≥ 2. 
Combining the above results, we know that the odd 
H(k, n) contains a cycle of each odd length ranging 
from k to kn for n ≥ 2.                   Q. E. D. 

Combining Lemma 15 and Lemma 16, we have 

Lemma 17. For n ≥ 2, the odd H(k, n) is m-pancyclic; 
where m = k-1 for k ≥ 5, and m = 3 for k = 3. 

Lemma 18. The length of the smallest odd cycle in 
the odd H(k, n) is k. 

Proof. Suppose that there exists a cycle of odd length 
r, r < k, in the odd H(k, n). Let X = vn vn-1…v2 v1 be a 
vertex contained in the cycle. Along the cycle from X 
to X, a sequence of r transitions can be derived. Since 
r < k, it’s impossible that there exist k i+ transitions 
or k i- transitions for each 1 ≤ i ≤ n in the sequence. 
There are the same number of i+ transitions and i- 
transitions for each 1 ≤ i ≤ n in the sequence. Thus, 
the sequence has even transitions, a contradiction.  

Q. E. D. 

From Lemma 17 and Lemma 18, we have 

Lemma 19. The odd H(k, n) is pancyclic for k = 3. 

Theorem 20. The odd H(k, n) is strictly 
(k-1)-pancyclic for k ≥ 5. 

6. Conclusions 

In this paper, we study the panconnected 
properties and the pancyclic properties of the k-ary 
n-cubes. We show that the k-ary n-cube is residual 
bipanconnected for k is even and n ≥ 2. The k-ary 
n-cube is also shown to be strictly m-panconnected 
where m is (k-1)n/2 for k is odd and n ≥ 2. We show 
that the even k-ary n-cube is bipancyclic for n ≥ 2. 
The odd k-ary n-cube is shown to be strictly 
m-pancyclic where m = k-1, k ≥ 5 and n ≥ 2. That is, 
it embeds all cycles of lengths ranging from k-1 to N; 
and k-1 has reached the lower bound of this problem. 
Furthermore, owing to that the k-ary n-cube is vertex 
transitive and edge transitive, the even k-ary n-cube is 
vertex-bipancyclic and edge-bipancyclic for n ≥ 2; 
whereas, the odd k-ary n-cube is strictly 
m-vertex-pancyclic and m-edge-pancyclic where m = 
k-1, for k ≥ 5 and n ≥ 2. The work will help the 
engineers to develop corresponding application on 
the multiprocessor systems that employ the k-ary 
n-cubes as the interconnection networks. It will also 
help a further investigation on the k-ary n-cubes. For 
example, to find a fault tolerant algorithm to generate 
the bipanconnected paths and m-panconnected paths 
on the k-ary n-cubes appears interesting. 
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Figure 1. The structure of an L(6). 
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Figure 2. Embedding the structure of C(l) ×C(k) in H(k, n) if C(l) is 
embedded in OG(H(k, n)). 
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Figure 3. The structure of a path-of-ladders graph.  
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Figure 4. Embedding the paths of odd length ranging from 5 to 29 joining 
(0, 0) and (3, 2) of the Tor(8, 8), where the wraparound edges are omitted. 
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(0,0) 

Figure 5. Generating the path of ladders for (3, 2) of
the Tor(8, 8). 
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(2,4
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Figure 6. Generating the paths of ladders for 
(2, 4) of the Tor(8, 8) in the first stage. 

Figure 7. Generating the paths of ladders for (2, 4) 
of the Tor(8, 8) in the second stage. 

(2,4

(0,0) (0,0)
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Figure 8. Generating the paths of ladders for 
(3, 2) of the Tor(9, 9) in the first stage. 
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(3,2) 

Figure 9. Generating the paths of ladders for (3, 2) 
of the Tor(9, 9) in the second stage. 
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Figure 11. Finding the path joining V00 and Vl2 of each odd length ranging 
from l+2 to (l+1)k-1, where l is even. 

Vl 2 

(1,5)(0,5)

(0,4)

(0,3)

(0,2)

(0,1)

(0,0)

(0,6) (1,6)

(1,4)

(1,3)

(1,2)

(1,1)

(1,0)

Figure 10. The structure of the K(2)×C(8) structure.
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Figure 12. In the even H(k, n), finding the path joining V0 0 and V0 3 of each 
odd length ranging from 2k-1 to Nk-1, where N is kn-1. 
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Figure 13. Embedding the cycle-of-ladders to the H(6, 2).
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Figure 14. Embedding the cycle of ladders drawn by the bold lines into the H(9, 2). 
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Figure 15. Embedding the cycle of ladders drawn by the bold lines into the H(5, 2). 
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