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Abstract 

Gene regulatory network modeling is a 
difficult inverse problem. Given limited 
amount of experimental data about gene 
expressions, a dynamic model is sought to 
fit the data to infer interesting biological 
processes. In this study, a well-known 
ecological system, the Lotka-Volterra system 
of differential equations, is used to model 
the dynamics of genes regulations. After 
replacing derivatives by estimated slopes, 
this system is decoupled into several 
independent systems of linear equations. 
Coefficients of the original Lotka-Volterra 
system are inferred from these linear 
systems by using multiple linear regressions. 
Two function approximation techniques, 
namely the cubic spline and the artificial 
neural network, are used to help estimate the 
stated slopes. It is found that the cubic spline 
interpolation and multiple linear regressions 
have provided useful solutions to the gene 
regulatory network problem. 

Keywords ： Gene regulatory network, 
multiple linear regressions, cubic spline 
interpolation, artificial neural network 

1. Introduction 

As more high quality time dense 
profiles of metabolites or proteins are 

available due to the rapid technological 
development in mass spectrometry and 
nuclear magnetic resonance, biochemical 
pathway analysis is becoming an important 
tool in system biology. Using microarray 
technology, the expression levels of 
thousands of genes may be monitored 
together. Labs can collect these data 
repeatedly during an interesting biological 
process. These time courses become 
important profiles to understand how genes 
regulate each other in a biological process.  

Gene regulatory network (GRN) is a 
pathway analysis that studies the activation 
or repression of genes expressions through 
the nucleotide or protein products of other 
genes. In addition to the wet land approach 
and literature summarization, GRN can be 
developed by using mathematical modeling. 
A successful modeling of GRN will give 
biologists insights to design more effective 
and efficient experiments in validating a 
pathway hypothesis.  

A mathematical modeling of GRN 
starts with a model to describe the dynamics 
involved in a GRN. Then, the model is fit 
with the observed profile data to find model 
parameters. Finally, these parameters are 
interpreted and used to discover interesting 
biological findings.  

Researchers in bioinformatics have 
proposed many interesting models to 
describe the dynamics of a gene regulatory 
network [2]. Several time-based models are 
based on systems of differential equations. 
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Kikuchi et al. used cluster computing and 
genetic algorithm to find the network 
structure of a GRN [6]; Noman and Iba used 
differential evolution to solve the GRN 
problem [9]. These researchers basically 
solve the differential equations directly to 
compute the fitness of a set of network 
coefficients, which are evolved heuristically 
by using evolutionary computation. On the 
other extreme, Almeida and Voit [1] and 
Veflingstad et al. [14] avoided the tedious 
steps of solving differential equations by 
converting them into nonlinear regression 
problems. Dynamic Bayesian network [10] 
and Petri net [7] have also been proposed to 
study GRN in previous research. 

Though many modeling tools are 
available for GRN analysis, this study 
adopts the most popular one by using 
systems of ordinary differential equation 
(ODE). Previous studies have focused on the 
S-system, which is a canonical system that 
can represent many types of biochemical 
processes [13]. In this study, we focus on 
another canonical system that has been used 
primarily in ecology [8]. The Lotka-Volterra 
system (LVS) of differential equations is an 
extension to the well-known predator-prey 
system that governs the population of 
predators and preys in an ecological 
environment. This LVS is easier to solve 
than an S-system, and it is also easy to 
interpret outputs from this model in terms of 
genes regulation (activation or repression). It 
has also been shown that these two types of 
canonical systems are mathematically 
equivalent [15]. 

Finding the model parameters of an 
LVS, given the expression profiles of genes 
participating in a regulatory network, is an 
inverse problem. We follow the approach in 
[1,14] to avoid the time consuming process 
of solving differential equations directly. 
Each time trace of the expression level of a 
gene is approximated by using cubic spline 
interpolation or artificial neural network. 
These expanded traces are used to estimate 
derivatives in the LVS. Using a special 
structural feature of the system, the LVS is 
decoupled into several independent systems 

of linear equations. We propose to use 
multiple linear regressions to find significant 
factors in these linear systems, and thus 
solve the GRN problem. 

 

2. Methods 

2.1 Lotka-Volterra system 

The Lokta-Voltera system is a system 
of first order second degree ODE. In 
equation (1), function Xj(t) describes the 
expression level of the jth gene. The rate of 
change of this expression level is affected by 
the second degree slope function on the right 
hand side. The effect of the term is 
primarily due to the time changes since 
solving yields ; 
thus we focus on the summation term to 
look for gene regulatory effects. Because 
gene expression levels must be nonnegative, 
the effect of the k

jw

jjj XwX =' )( twExpX jj =

th gene on the rate of 
change of the jth gene is determined by the 
sign and magnitude of bjk. When bjk is 
positive (negative), we say that the kth gene 
activates (represses) the jth gene. The kth 
gene has no effect on the jth gene if bjk = 0.  

 njXbwX
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kjkjj
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 (1)  

The LVS is an extension to the 
predator-prey system in an ecological 
environment, where limited resources have 
governed the population of the predator 
species and the prey species. When bjj. = 0 
in equation (1), the LVS reduces to the 
predator-prey system [3]. 

2.2 Runge-Kutta algorithm 
The LVS can be uniquely solved once 

an initial condition (expression level) is 
given: ))(,),(()( 1111 tXtXtX nL

r
= . This is 

based on a numerical integration procedure 
that consumes moderate CPU cycles when 
the coefficients (wj, bjk) in equation (1) are 
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known. A fourth order Runge-Kutta (RK4) 
algorithm is usually used to furnish such a 
procedure [11]. Let F

r
denote the velocity 

vector on the right hand side of (1), with a 
mesh size of h, the RK4 algorithm advances 
the expression profile from the time event t 
to the time event (t + h) as follows: 
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The running time of RK4 is moderate. 

However, when the system coefficients (wj, 
bjk), also termed network coefficients in a 
GRN, are unknown and need to be 
discovered, the repetitive running of RK4 
consumes almost 95% of the total operation 
time for solving a GRN problem [14]. 

2.3 Multiple linear regressions 
A multiple linear regression (MLR) 

expresses a dependent variable Y as a linear 
combination of multiple independent 
variables xj and a random noise as follows: 

 
εβββ ++++= kk xxY K110    (3) 

 
Kennedy has a good discussion on 

MLR from the viewpoint of an 
econometrician [5]. The regression 
coefficients kββ ,,0 K  are fixed but 
unknown, and they can be estimated using 
several estimators, given a set of observed 
data . r  is 
the input vector for the i

niyx ii ,,1),,( K=
r

= ),,( 1 kiii xxx L
th sample and  is 

the corresponding output value. Many 
well-known formulae have been developed 
to estimate the regression coefficients. For 

example, the ordinary least square (OLS) 
estimator can be used to compute 
coefficients so that the sum of squared errors 

is minimized. Here 

iy

∑
=
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n

i
ii yySSE

1

2)( )

kikii xxy βββ ˆˆˆ
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)  is computed 

with coefficients  [5]. kβββ ˆ,,ˆ,ˆ
10 L

In the frequentist approach to MLR, it 
is assumed that the random noise ε in 
equation (3) can be realized repeatedly so 
that we have many realizations of the data. 
Across all realizations, the input vector ixr  is 
unchanged and the output yi is corrupted by 
a realized noise. With an estimator like the 
OLS estimator, each of these realizations 
yields an estimated value for the unknown 
coefficients. With all these estimates of the 
coefficients, interesting results about the 
coefficients can be inferred by hypothesis 
testing procedures in statistics [4]. A 
particularly interesting test for these 
coefficients is about the significant level of 
deviation from zero. In social sciences, this 
is called a significance test: how significant 
is the estimated coefficient differently 
from zero? Most statistical packages (SPSS 
and Excel data analysis package) give not 
only an estimated coefficient but also a 
p-value to indicate the significance level. 
The p-value is a number between 0 and 1, 
and the smaller it is, the more significant of 
deviation from 0 a coefficient is. In general, 
a cut-off value of .05 is used in social 
science studies. So, when a coefficient is 
estimated with a value of 1000 with a 
p-value of .85, it generally causes less 
attraction to a researcher than another 
coefficient estimated as 10 with a p-value 
of .01. 

jβ̂

2.4 The proposed method 
2.4.1 Decoupling the system 

The LVS is a system of ODE, thus each 
individual ODE must hold as well: 
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Particularly, equation (4) must hold for 
the discrete time events where 
the expression levels are taken in a lab. If we 
only need to evaluate the ODE at these 
discrete events, there is no problem at all. 
Unfortunately, using RK4 to solve a single 
ODE like equation (4) often needs values of 
X

Tttt ,, ,21 L

j at events other than the lab experimental 
events. This is due to the fact that effective 
mesh size in RK4 is normally smaller than 
the gap between two successive 
experimental events. Thus, if we want to 
solve equation (4), other methods should be 
developed to fill in values for Xk, jk ≠ , at 
time different from experimental events. 

Two methods are considered to fulfill 
this requirement. The first one is the cubic 
spline interpolation [11]. For a time trace 

of the kTk ttttX ,,),( 1 L= th gene, a cubic 
spline is a piecewise polynomial function of 
the third degree that matches the given time 
trace and is continuous at these discrete time 
events up to the second derivatives. A cubic 
spline interpolates the given time trace by 
keeping the degree of polynomial low in 
each segment. This has effectively ruled out 
the rapid jumping phenomenon of the 
common interpolation formula. 

The second method used to achieve the 
goal of interpolation is artificial neural 
network (ANN). ANN has been successfully 
used in many science and engineering 
problems to approximate a function, given 
samples of the function outputs [12]. In our 
case, the sample function outputs consist of 
the time trace, and a neural network is 
trained based on these sample outputs. The 
trained ANN is used to compute the gene 
expression level at any other time. 

 
2.4.2 Converting the system 

We do not intend to solve the ODE in 
(4) by RK4. Instead, we follow the 
conversion approach in [1,14] to find the 

network coefficients. As explained before, 
equation (4) must hold at discrete time 
events , thus we have:  Tttt ,, ,21 L

∑

∑

+=

+=

))()(()('

))()(()(' 111
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M   (5) 

 Equation (5) is a system of T linear 
equations in wj and bjk once we can estimate 
the derivatives at the left hand side. An 
obvious way to estimate these values is to 
use the given time trace as follows: 

∑+=
−+

)(
)(

)()(
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lj

ljlj tXbw
thX

tXhtX
 (6) 

 However, the mesh size ll tth −= +1  
given by the time trace may be too coarse, 
and finer estimate is needed. By considering 
the fact that  

dt
jXd

tX
tX j

j

j ))(ln(
)(
)('
= , 

equation (5) can also be estimated as  

∑+=
+

)(
))(/)(ln(

lkjkj
ljlj tXbw

h
tXhtX

 

            (7) 

We will call equation (6) a naïve conversion 
of (4) and (7) a log conversion of (4). It can 
be verified that the log conversion is more 
precise than the naïve conversion, since 
setting 1)(/)( −+= ljlj tXhtXu in the 
Taylor series expansion 

11,3/2/)1ln( 32 ≤<−++−=+ uuuuu K , 

we immediately recognize that the left hand 
side of equation (6) is simply a first order 
estimate of the left hand side of (7). 
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2.4.3 Solving MLR 
After converting an ODE of (4) into a 

system of linear equations in (5) with the 
help of naïve conversion (6) or log 
conversion (7), the system can be solved by 
using MLR. Unlike [14], where network 
coefficients are extracted by examining the 
magnitude patterns of all coefficients, we 
will use patterns of p-values to select 
significant network coefficients. 

3. Experiments and Results 

To illustrate the proposed method, a 
synthetic LVS is generated and listed in 
equation (8). Five genes participate in this 
hypothetical genetic network. A time course 
with the initial data )0(X

r
= (0.7, 0.12, 0.14, 

0.16, 0.18) is developed by using the RK4 
algorithm with a mesh size of 0.01. Every 
five mesh spaces constitute a hypothetic 
microarray experiment. Thus, there are 41 
experiments occurring at the time events 0, 
0.05, 0.10, …, 1.95 and 2.0. This time 
profile serves as the given expression data. 
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3.1 Using the basic time profile 

The chart of the basic time profile for 
the five genes can be depicted in Figure 1. 
First, we use equation (6) to estimate the 
derivatives at 40 time events: 

 

39,,1,0,
05.

)05(.))1(05(.
L=

−+
l

lXlX jj   

 
Thus, each ODE in (8) is converted into 

a linear system of 40 equations. Each linear 
system is solved with the MLR package in 

Excel with the estimated coefficients and 
p-values (in parentheses) reported in Table 2. 
Each row in the table represents the 
regression results of a linear system. The 
p-values of X3 and X5 on the first row are 
several orders smaller than the p-values of 
other coefficients. Therefore, their 
corresponding coefficients are deemed 
significantly different from 0, compared to 
the other coefficients. According to the sign 
of the coefficients, we conclude that X3 
activates X1 and X5 represses X1. The other 
genes (X1, X2 and X4) have no regulatory 
effects on the expression of X1. On the other 
hand, if we choose the network coefficients 
based on the magnitude patterns as in [14], 
X4 would have a positive effect on X1. But, 
this contradicts the network effects shown in 
Table 1, which lists the true coefficients 
corresponding to the LVS in (8). Following 
the same reasoning to track patterns of 
p-values for the other variables, we have 
bold-faced significant factors in the table. 
One can see that the p-value method has 
misrecognized the positive effect of X2 on 
X2. However, since this coefficient (.0361) 
is very small compared to the other 
coefficients, we may discard this network 
connection. The same method does not 
detect any significant pattern of p-values on 
the fourth row, though the regulating genes 
(X3 and X5) have the smallest p-values on 
this row. Thus, the naïve conversion for this 
basic time profile has failed to detect the full 
network structure. 
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Figure 1. Basic time profile of five genes 
 
 When the log conversion in (7) is used 

                                                                             5



to convert LVS to linear systems, the 
regression results are reported in Table 3. 
One can see that, using the pattern detection 
of p-values, the network connections have 
been recognized correctly with signs 
according to the true values in Table 1. This 
shows the merits of the log conversion. 
 
3.2 Using an expanded time profile  

Since the default time gap of .05 
provided by the basic time profile is too 
coarse to estimate the derivates, we expand 
the time profile by adding the RK4 outputs 
for every .01 change in the time domain. 
This has created an expanded profile of 201 
events at 0, .01, .02, …, 1.99 and 2. The 
MLR results for the naïve and log 
conversions are respectively reported in 
Tables 4 and 5. One can observe two facts: 
first, the patterns of p-values can be more 
easily recognized; second, again the log 
conversion has provided more significant 
level with smaller p-value, and its estimated 
coefficients of significant genes are closer to 
the true values. This shows the merits of a 
finer time profile. 

3.3 Expanded profile with cubic spline 
Unfortunately, it is not always possible 

to expand the time profile by using RK4. 
Finding network coefficients is part of the 
job in a GRN problem.  
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Figure 2. Expanded time profile with spline.  
 
 We use a cubic spline method to extend 
the basic time profile to an expanded profile 

with the same fine resolution (.01) as above. 
This cubic spline matches a time trace at 41 
time events: , l = 0, …, 40. Values 
of the spline at the step of .01 are plotted in 
Figure 2. The mean square errors between 
RK4 derived values and spline interpolated 
values of all five time traces are in the order 
of 1.0E-15. Using the spline expanded 
profile, we conduct the same experiments 
with the results reported in Table 6 (naïve 
conversion) and Table 7 (log conversion). 
These results are a little inferior to the 
results from the RK4 expanded profile. But, 
the pattern of p-values can still be easily 
recognized. Again, the log conversion 
provides better results than the naïve 
conversion. 

)05(. lX j

 
3.4 Using ANN 

The basic profile is expanded with an 
ANN using the NeuroSolutions package 
from NeuroDimension, Inc. The network 
structure is 1 x 4 x 1, where 4 is the number 
of hidden nodes. A hyperbolic tangent (tanh) 
is selected as the activation function, and 
50000 epochs of network training are 
conducted. The mean square errors between 
RK4 derived values and ANN predicted 
values for all five traces are in the order of 
1.0E-6. The expanded time profile is plotted 
in Figure 3, which is again similar to Figure 
1. However, the results for the log 
conversion, listed in Table 8, show several 
misidentified network connections.  
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Figure 3. Expanded time profile with ANN. 
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4. Conclusions 

In this study, we model gene regulatory 
network by using a Lokta-Voltera system. A 
synthetic time profile of gene expressions is 
developed by solving the LVS with a RK4 
algorithm. This time profile is used in a 
reverse engineering sense to derive the 
network coefficients of the LVS. We first 
convert the LVS into several independent 
systems of linear equations, which are 
solved with the MLR technique in statistics. 
Two conversions are used to estimate the 
derivatives in LVS: the naïve conversion 
and the log conversion. We use the pattern 
of p-values, which indicate the significant 
level of deviation from 0 for regression 
coefficients, to infer network coefficients. 
From the experiments, we conclude the 
following facts:  

(1) Pattern detection of p-values 
can be used to infer network 
coefficients in LVS; 

(2) The log conversion provides 
better results than the naïve 
conversion; 

(3) When finer time profile is 
available, the results also 
improve; and 

(4) The cubic spline method is 
better than the ANN method to 
expand a time profile in our 
case. 

 
In the future, it pays to investigate why 

the ANN does not provide efficient and 
effective function approximation for the 
time profile. Are there other methods that 
can be used to better approximate the time 
profile? How is the p-value method affected 
by the noise commonly encountered in real 
gene expression profiles? 
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Table 1. True network coefficients. 
 Constant X1 X2 X3 X4 X5

X1 0 0 0 1 0 -1 
X2  0 2 0 0 0 0 
X3 0 0 -1 0 0 0 
X4 0 0 0 2 0 -1 
X5 0 0 0 0 2 0 

 
Table 2. MLR estimated coefficients and p-values (in parentheses) with the basic time 
profile and naïve conversion.  
 Constant X1 X2 X3 X4 X5

X1 .6342 
(9.13E-6)

-1.0647 
(8.68E-6) 

.0434 
(1.43E-7)

.5938 
(1.3E-9) 

2.7399 
(4.41E-6) 

-2.5416 
(1.21E-10)

X2 .3608 
(3.44E-5) 

1.4533 
(3.06E-13)

.0361 
(2.51E-10)

-.2463 
(3.92E-6)

1.8344 
(1.26E-6) 

-1.0710 
(5.17E-7)

X3 -3.1158 
(5.34E-4)

4.8433 
(1.14E-3) 

-1.0470 
(8.9E-23)

3.2912 
(7.59E-8)

-12.1861 
(9.39E-4) 

6.7569 
(9.57E-4)

X4 1.3910 
(8.16E-6)

-2.3366 
(7.67E-6) 

.0935 
(1.75E-7)

1.1183 
(3.11E-8) 

6.0143 
(3.87E-6) 

-4.3751 
(2.5E-8) 

X5 .1443 
(6.96E-6)

-.2519 
(3.5E-6) 

.0104 
(3.62E-8)

-.0676 
(1.86E-4)

2.6835 
(7.86E-23) 

-.3652 
(1.34E-6)
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Table 3. MLR estimated coefficients and p-values (in parentheses) with the basic time 
profile and log conversion.  
 Constant X1 X2 X3 X4 X5

X1 .4813 
(1.37E-5)

-.8126 
(1.19E-5) 

.0328 
(2.55E-7)

.7078 
(2.28E-14)

2.0911 
(6.16E-6) 

-2.1773 
(1.12E-11)

X2 .1869 
(1.02E-5) 

1.6889 
(4.87E-25)

.0149 
(7.13E-9)

-.0981 
(5.92E-5)

.8145 
(4.29E-6) 

-.4943 
(9.46E-7)

X3 .1397 
(1.37E-20)

-.2872 
(1.94E-23)

-.9956 
(4.09E-92)

.0749 
(3.07E-19)

.7977 
(4.1E-25) 

-.4536 
(1.91E-25)

X4 .9355 
(1.44E-5)

-1.5813 
(1.23E-5) 

.0631 
(3.3E-7) 

1.4354 
(7.55E-15)

4.0656 
(6.47E-6) 

-3.2772 
(5.45E-9)

X5 .1184 
(1.46E-5)

-.2028 
(1.03E-5) 

.0088 
(4.57E-8)

-.0593 
(1.48E-4)

2.5379 
(3.78E-24) 

-.3027 
(2.58E-6)

 
Table 4. MLR estimated coefficients and p-values (in parentheses) with the expanded 
time profile and naïve conversion. Extra events come from RK4. 
 Constant X1 X2 X3 X4 X5

X1 .1210 
(9.03E-18)

-.2032 
(7.14E-18)

.0084 
(1.19E-25)

.9224 
(9.8E-186)

.5239 
(3.89E-19) 

-1.2948 
(2.0E-103)

X2 .0630 
(2.25E-15)

1.9058 
(7.1E-206)

.0065 
(5.36E-39)

-.0431 
(2.79E-19)

.3258 
(1.16E-21) 

-.1906 
(2.26E-23)

X3 -.7462 
(4.34E-11)

1.1725 
(4.7E-10) 

-1.0170 
(2.5E-216)

.7525 
(5.19E-25)

-2.9705 
(1.69E-10) 

1.6482 
(1.78E-10)

X4 .2642 
(5.67E-18)

-.4440 
(4.3E-18) 

.0179 
(2.94E-25)

1.8324 
(1.7E-178)

1.1451 
(2.24E-19) 

-1.6427 
(5.9E-65)

X5 .0259 
(1.65E-18)

-.0453 
(7.63E-20)

.0019 
(8.39E-29)

-.0117 
(2.26E-12)

2.1238 
(4.1E-224) 

-.0659 
(1.11E-21)

 
Table 5. MLR estimated coefficients and p-values (in parentheses) with the expanded 
time profile and log conversion. Extra events come from RK4. 
 Constant X1 X2 X3 X4 X5

X1 .0906 
(4.64E-17)

-.1530 
(2.58E-17)

.0062 
(1.42E-24)

.9450 
(1.1E-209)

.3946 
(1.5E-18) 

-1.2223 
(2.1E-119)

X2 .0345 
(8.79E-18)

1.9425 
(8.0E-266)

.0028 
(4.31E-32)

-.0179 
(1.64E-14)

.1510 
(2.06E-19) 

-.0921 
(2.55E-22)

X3 .0221 
(1.05E-59)

-.0474 
(2.39E-76)

-.9996 
(0) 

.0185 
(1.57E-83)

.1329 
(1.36E-85) 

-.0758 
(1.73E-87)

X4 .1757 
(5.47E-17)

-.2972 
(2.84E-17)

.0120 
(4.18E-24)

1.8940 
(3.6E-212)

.7657 
(1.76E-18) 

-1.4290 
(7.73E-81)

X5 .0216 
(4.14E-17)

-.0371 
(8.86E-18)

.0016 
(2.65E-28)

-.0106 
(6.99E-13)

2.0989 
(1.0E-233) 

-.0557 
(2.14E-20)
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Table 6. MLR estimated coefficients and p-values (in parentheses) with the expanded 
time profile and naïve conversion. Extra events come from spline interpolation. 
 Constant X1 X2 X3 X4 X5

X1 .1177 
(1.8E-13)

-.1976 
(1.49E-13)

.0082 
(6.84E-20)

.9243 
(2.9E-173)

.5103 
(1.44E-14) 

-1.2873 
(1.8E-91)

X2 .2253 
(7.59E-2) 

1.6341 
(5.48E-13)

.0152 
(2.67E-2)

-.1373 
(6.68E-2)

.9927 
(5.80E-2) 

-.5613 
(5.37E-2)

X3 -.7303 
(6.09E-9)

1.1459 
(4.27E-8) 

-1.0161 
(1.7E-206)

.7434 
(1.04E-20)

-2.9054 
(1.85E-8) 

1.6120 
(1.93E-8)

X4 .2547 
(7.03E-13)

-.4281 
(5.69E-13)

.0174 
(1.43E-18)

1.8378 
(7.7E-164)

1.1061 
(5.85E-14) 

-1.6211 
(6.91E-53)

X5 .0241 
(5.67E-11)

-.0423 
(7.43E-12)

.0018 
(4.38E-18)

-.0107 
(4.31E-7)

2.1164 
(1.7E-201) 

-.0618 
(4.29E-13)

 
Table 7. MLR estimated coefficients and p-values (in parentheses) with the expanded 
time profile and log conversion. Extra events come from spline interpolation. 
 Constant X1 X2 X3 X4 X5

X1 .0872 
(1.94E-11)

-.1475 
(1.28E-11)

.0061 
(6.06E-17)

.9469 
(2.2E-191)

.3810 
(1.65E-12) 

-1.2147 
(1.0E-101)

X2 .1947 
(1.20E-1) 

1.6745 
(8.9E-14) 

.0114 
(9.22E-2)

-.1108 
(1.33E-1)

.8090 
(1.17E-1) 

-.4579 
(1.1E-1) 

X3 .0378 
(4.03E-1)

-.0737 
(3.29E-1) 

-.9987 
(2.3E-287)

.0096 
(7.19E-1)

.1971 
(2.90E-1) 

-.1115 
(2.81E-1)

X4 .1662 
(8.0E-10)

-.2813 
(5.32E-10)

.0115 
(1.97E-14)

1.8993 
(1.6E-187)

.7269 
(9.12E-11) 

-1.4074 
(1.04E-59)

X5 .0199 
(4.52E-9)

-.0341 
(1.82E-9) 

.0015 
(4.3E-16)

-.0096 
(1.13E-6)

2.0916 
(2.3E-206) 

-.0516 
(4.79E-11)

 
Table 8. MLR estimated coefficients and p-values (in parentheses) with the expanded 
time profile and log conversion. Extra events come from ANN approximation. 
 Constant X1 X2 X3 X4 X5

X1 19.7198 
(1.22E-6)

-36.5105 
(1.63E-7) 

-.6664 
(2.37E-4)

38.5948 
(8.05E-19)

17.0428 
(1.26E-1) 

-12.4503 
(4.99E-2)

X2 -54.6666 
(6.48E-4) 

102.2523 
(1.94E-4) 

7.2519 
(9.32E-20)

-196.2190
(1.09E-26)

127.0465 
(4.69E-3) 

-52.0429 
(4.08E-2)

X3 104.4663 
(4.38E-9)

-193.0210
(2.81E-10)

-4.2156 
(1.26E-7)

191.701 
(3.55E-23)

101.1365 
(3.59E-2) 

-66.2539 
(1.59E-2)

X4 31.8514 
(1.55E-9)

-56.7898 
(3.32E-10)

.5310 
(2.04E-2)

22.4063 
(1.26E-5)

85.1122 
(8.7E-9) 

-48.9753 
(6.13E-9)

X5 2.2575 
(5.35E-1)

-1.5745 
(8.0E-1) 

3.9801 
(1.17E-60)

-82.1367 
(1.36E-56)

142.4317 
(5.05E-31) 

-70.3187 
(1.98E-25)
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