
A GUI Simulation Model in Supporting Embedded Software Design

Wei-Chung Hu Ming-Lun Lee Tzung-Shian Tsai Hewijin Christine Jiau

Institute of Computer and Communication Engineering,
National Cheng Kung University, Taiwan, R.O.C.
{selain,living,apfols}@nature.ee.ncku.edu.tw,

jiauhjc@mail.ncku.edu.tw

Abstract

The goal of embedded systems is to embed services into
our daily life in a convenient and comfortable manner
without intrusions. The graphical user interfaces (GUIs)
of embedded softwares play an important role in reaching
this goal. However, the rapid growth of various types
of embedded devices and platforms, especially mobile
devices, brings more challenges and constraints for GUI
design in embedded software. Current approaches in
building conventional software GUI result in iterative
refinement after it was built, which is not acceptable for
embedded software. In this study, a GUI simulation model
is proposed to assist embedded software developers to
generate GUI prototypes in early phase. The generated
prototype can be used to confirm the usability requirement
of customers and eliminate the further need of iterative
GUI refinement. The simulation is based on evolutionary
simulation rules which evolve according to the training
data and design experience from existing popular GUI
designs, which implies high adaptability and flexibility to
the changing world with newly released embedded devices.

Keywords: GUI Simulation, Reflexion Model, GUI
Design, Embedded Software Design, Prototype Genera-
tion.

1 Introduction

Graphical User Interfaces (GUIs) have become an im-
portant and must-have way for user to interact with today’s
softwares. The purpose of providing GUI is to bridge the
gap between user’s conceptual model and developer’s pro-
gramming model [1, 2]. The optimal goal of GUI is to
provide the user an intuitive operating interface without a
long learning process. Considering the goal of embedded

systems is to embed services into human life in a comfort-
able manner without intrusion [3], the issues of GUI design
in embedded software are especially important.

There were already tools [4, 5] and environment [6] pro-
posed to help GUI design. However, even with the help
of GUI development theories, guidelines and tools, there
still exist mismatch parts between resulting GUI, which
developers build, and the expecting GUI, that customers
and developers desire. The design and implementation of
GUI will be effected by many constraints from different
sources, such as current developers, developers of simi-
lar software, developers’ knowledge on GUI design, hard-
ware constraints, materials and tools used to implement the
GUI [7, 8]. In some cases the mismatch is not acceptable
for developers or customers, and the developers need to
refine or redesign the GUI iteratively. However, according
to the specific goal of embedded systems, the redesign of
GUI in embedded software is usually not acceptable be-
cause customers are required to pay extra effort to adapt
themselves to the redesigned GUI. Further more, under the
global vision of ubiquitous computing environment, more
and more interactive embedded devices and mobile devices
are newly built and released. A single software applica-
tion will have several GUIs on variety of devices [9–11].
Each devices may also contributes his own hardware oper-
ating constraints to the GUI design of embedded software.
Therefore, how to understand the usability requirement of
customers in early phase in order to eliminate the need of
refinement iteration, and how to avoid the redesign the GUI
under the consideration of variety of devices, are critical
issues for GUI design in embedded software.

In order to solve these issues, a GUI simulation model
is proposed in this study to support embedded software
GUI design. The proposed simulation model equips with
two capabilities. The first one is to generate GUI proto-
types for gathering usability requirement from customers
in early phase, and the other one is to utilize the experience

1



of how other developers deal with constraints as guidelines
for designing new embedded softwares. For embedded
software GUI design, the proposed simulation model plays
the role as an “adviser”. An adviser is who not only an
expert of a specific domain, but with fully experience to
provide advice. The simulation model accumulates GUI
design knowledge from well-designed embedded software,
and keep these knowledge as simulation rules. While de-
veloping a new embedded software, the simulation model
apply these knowledge to guide and complement the de-
sign of embedded software GUI, just as an adviser will
do. The proposed simulation model encapsulates the de-
cision making processes as simulation rules. The decision
making process starts from considering the constraints, and
finalizes in the design of GUI. With the simulation rules,
this work can simulate the process of how developers con-
sider the constraints and how they design GUI under these
constraints.

Puerta [12] defines four attributes as being nature to
user interface tools: process orientation, interoperability,
localized functionality, and designer impact. The proposed
simulation model fulfills three of them :

1. Process Orientation: Because the simulation model
takes scenarios as input, and the GUI prototype as
output, it can easily conform to popular software de-
velopment process.

2. Interoperability: The simulation model lets the devel-
opers be able to compare the simulated GUI model
with GUI model designed by using other tools, and to
complement each other.

3. Designer Impact: Since the simulation model accumu-
lates other designers’ knowledge on considering fac-
tors and designing GUI, the simulation process itself
is extremely helpful for developer who lack the knowl-
edge, skills, or experience required for optimal GUI
design.

The impact of applying proposed simulation model in em-
bedded software development project can be viewed from
three aspects. First, this simulation model reduces design
complexity from possible design variations. By considering
the design constraints from scenarios, and understanding
customer’s usability requirements in early phase, the poten-
tial design complexity from design variations can be greatly
reduced. By reduction of design complexity, the possible
design variations can be well-planned, and the chance of
redesign can be lowered down. Second, the model-based
approach provides suitable abstraction for GUI develop-
ment. The result of simulated GUI model is an abstract
model for final implementation. An abstract model can
help developers focus on relevant aspects and avoid deal-
ing with low-level details [9]. The abstraction makes it

Figure 1. GUI Simulation Concept Diagram

easier to adapt the simulated model into various types of
embedded devices. Third, the proposed simulation model
promotes software reuse crossing projects. The reusable
artifacts as simulation rules are the knowledge of how de-
velopers considering their GUI design. With the utilization
of proposed simulation model, the newly developed em-
bedded software’s quality is also improved in usability and
maintainability.

2 Simulation Model

The overall concept of proposed simulation model is
shown in Figure 1. Before simulation, the modeling ap-
proach of input and simulation result needs to be defined
first. The Design Space [13, 14] concept is applied to build
the simulation model.

2.1 Scenario Space and Factor Modeling

The requirement scenario is chosen as a modeling unit.
The reason of choosing requirement scenario is because
scenario-driven approach [15] is a popular software re-
quirement analysis approach. Also, the scenario-driven
approach is used in supporting software GUI design [1]. A
scenario is modeled as aScenario Space. TheGUI Design
Factors are defined as dimensions of scenario spaces. A
GUI design factor is a factor that GUI designer will take
into consideration when he builds the GUI from scenarios.
The GUI design factors form the dimensions of the scenario
spaces. According to [14], the GUI design factors are cat-
egorized into two groups including external requirements
and basic interactive behavior.

2



External Requirements Group:

• User interaction type is a dimension indicating the
user’s attitude toward the task.

• Frequency of taskis a dimension indicating the fre-
quency of the task the user performs during the lifetime
of the application.

• Importance of task is a dimension indicating the im-
portance of the task in the application.

• User type is a dimension indicating the kind of user
will perform the task.

• Number of decision making to complete the taskis
a dimension indicating how many times of decisions
the user has to make to complete the work.

Basic Interactive Behavior Group:

• User action typeis a dimension indicating the kind of
action the user might perform.

• Input data volume is the dimension indicating the
total input data volume when performing the task.

• Output information type is the dimension indicating
the type of information the system reports.

• Output data volume is the dimension which indicates
output data volume when performing the task.

• Time to complete a single taskis the dimension which
indicates how long does it take for the system to com-
plete the task.

• Number of entities involved in a scenariois a di-
mension indicating total number of nouns mentioned
in the scenario description, but the repetitive ones are
excluded.

2.2 GUI Space and Characteristic Modeling

As for software GUI modeling, part of the GUI elements,
such as buttons, selection menu, text areas or images, which
realize one of the scenarios, are chosen to form theGUI
Space. The GUI Characteristics are defined as dimen-
sions of GUI space. The GUI characteristics of GUI shows
the features from user perspective, such as what GUI looks
like, what entities on it and GUI usability. Previous re-
searches have been done a lot in GUI modeling [5, 14, 16].
Referring to these researches, the characteristics are classi-
fied into two groups: control flow and representation issues,
and corresponding dimensions are listed. The control flow
group considers the dynamic behavior of GUI expression.
The representation issue group considers the user interface
layout of GUI entities and data.

Control Flow Group :

• Action Type: This states the interaction type of tasks
in GUI space, such as function selected or button
pressed by user to enforce task isSingle Selection.
Input and Trigger are the type that user enters some
data and presses button to execute. The type will pop
on new windows for other sequence of actions is kind
of Sequence External Handle.

• Scenario Start Point: Scenario start point is the exact
GUI element where the task scenario starts. Generally,
theMenu Bar will contain all functional tasks.

• Sub-Space Size: The number of sub-spaces which the
task scenario has.

• Action Depth: This describes the “length” of action
to complete a task scenario. For example, the menu
item is pressed to open a file chooser. After the target
file is selected, the file is opened in viewer window.
The total depth is 2, from menu to file chooser.

• Input Device: This describes the input device of the
task, such as mouse or keyboard.

Representation Group:

• Number of Entities: The number of GUI entities
related to the task scenario.

• Area Size: The summation of GUI entities areas re-
lating to current task scenario.

• Action Start Position: The position in the top GUI
panel that can tiger the action.

• User Help Guide: This characters the help or guide
statements of task scenario process.

• Entities Customizable: This characteristic states if
the GUI entities are customizable. Different cus-
tomization styles may occur, such as size customiza-
tion, location customization.

• Output Information Visualization : The visualiza-
tion style of output information.

2.3 Simulation Rule and Its Training

The simulation model defined in Section 2 is used to
simulate the GUI model. The input of the simulator will be
the scenario spaces with GUI design factors, and the output
will be GUI spaces with GUI characteristics. Simulation
Rules are defined as a pair constituted with a set of GUI
design factors and a set of GUI characteristics, as shown in
Figure 1.

The simulation rules may be predefined in two ways.
The first one is directly predefined.Domain Trainer (Fig-
ure 2) can set the predefined simulation rules as hypothesis.

3



Figure 2. Training Phase Process

In the second way, the domain trainer can extract factor-
characteristics datasets from training materials, and usethe
data mining technique, such as association rules technique,
to gain the predefined rules. The predefined rules gained
from both ways are needed to be trained in trained phase,
and well predefined rules save the total training time.

The contents of GUI design factors, GUI characteristics
and the simulation rules are domain-relevant, which means
the simulation rules may vary in different application do-
mains even the constitution factors and characteristics are
the same. Thus the construction of simulation rules de-
pends on training with data collected from one or multiple
softwares from specific domains.

In the training phase, domain trainer collects popular
softwares as materials. The popular softwares are usually
with great GUI design principles. Thedomain trainer
models the factors of popular softwares to generate simu-
lated GUI model, and refine simulation rules iteratively to
make the simulated model close to the existing GUI model.
Some tools, such as genetic algorithm, neural network or
data mining methods, are utilized to help build up the sim-
ulation rules between the scenario space model and GUI
space model.

After the training complete, the simulation rules reflect
the thought of other GUI designers doing GUI design in
specified application domains. And the GUI simulation
itself is the process to re-apply these thoughts in building
new software in similar application domains.

3 Simulation Process

The simulation process is a two-phase process. The first
phase isTraining Phase, and the second one isSimulation

Phase. The detail steps of these two processes will be
described in following sections.

3.1 Training Phase Process

The purpose of training phase (Figure 2) is to construct
the simulation rules in current application domain. The
simulation rules are mostly domain-relevant rules, and they
need to be trained to be adapted to current domain. The
rules may be predefined by domain trainer, but in order to
gain better guidance in a specific domain, they need to be
trained with existing softwares from other similar domains.
The refinement of simulation rules depends on the mismatch
between simulation result and existing softwares. The con-
cept of Software Reflexion Model[17] is utilized in this
work to infer the difference between existing GUI model
and simulated GUI model, and then providing evidence and
guidance for domain trainer to refine the simulation rules
semi-automatically. The steps of training phase process are
described as following:

Step 1: The Domain Trainer needs to prepare some popular
softwares with GUI as training material.

Step 2: The domain trainer generates some speculated sce-
narios according to a specific existing software, then
assigning factors on each speculated scenario with the
help ofScenario Space Constructorto formSpecu-
lated Scenario Spaces with Factors.

Step 3: The speculated scenario spaces with factors will
be send intoSimulator and resultingSimulated GUI
Model.

4



Step 4: The specific existing software is input for extrac-
tion tools, and the extraction tool automatically gener-
atesExisting GUI Model .

Step 5: The simulated GUI model and the existing GUI
model will be compared byGUI Reflexion Model
tools (GRM tools), and result inGUI Reflexion
Model (GRM) .

Step 6: Domain trainer observes the GRM, and then de-
cides how to tune the simulation rules with the help of
Simulation Rule Tuner.

The process may repeat more than once until domain
trainer has confidence with the simulation result, which
means the mismatch between two models is acceptable and
the simulation rules are close to the original developer’s
thought on the GUI design of the specific software.

3.2 Simulation Phase Process

In the simulation phase (Figure 3) , the trained simula-
tion rules are used to simulate GUI design from software
scenarios. The simulation rules are applied to perform sim-
ulation. The developer can provide the expecting model
based on his own desires, experience and knowledge, and
again, use the GRM tools to compare the expecting model
and the simulated model. Detail steps are described as
folowing:

Step 1: Developer constructs scenario spaces with the help
of Scenario Space Constructor.

Step 2: The scenario spaces with factors are input into
simulator, and the simulator requires simulation rules
from database based on factors input. TheSimulator
then simulated the GUI model.

Step 3: The developer may want to construct expecting
GUI design model with his won wishes.

Step 4: The GUI reflexion tool compares the simulated
GUI model and expecting GUI model, and generates
GRM for the developer.

Step 5: With the help of Guideline Producer,developer can
easily refine his design by referencing the GRM and
guidelines.

Step 6: The simulated GUI model can be used to generate
GUI prototype.

The simulation phase may go more than one iteration,
until the developer has confidence in the simulation result
and the GRM.

4 Related Work

4.1 GUI Design for Embedded Software and Mo-
bile Devices

The importance of GUI design for embedded soft-
ware and mobile devices has been noticed by researchers.
Bishop [11] addressed the issue of how the user interface
can be successfully engineered for portability across mul-
tiple platforms and on multiple devices. The discussed
solutions are all around the use of XML-based technolo-
gies and methodologies. Subramanya et al. [8] discussed
several limitation and constraints of designing user inter-
faces for mobile content. Also they list several goals for
user interface design. Yang et al. [18] introduced a new
mini visual IDE, called VY, which supports rapid develop-
ment utilizing control library, and simulation of GUI. Their
simulation focus on running embedded GUI software on
simulated hardware, which is different form simulation in
our study. Braun et al. [19] explored building interfaces
for federations of personal mobile and stationary embed-
ded devices. Their approach is mainly a fission process
which takes context information from both user and ap-
plication to produce a suitable concrete user interface. In
the work of Butter et al. [20], an XUL-based user interface
framework was developed to ease the development burden
caused by heterogenous mobile devices and context of the
user. The adoption of XUL benefits in separating the user
interface adaption from the application logic. The user
context awareness is also an important issue in Repo et
al’s work [21]. In the review of these works, three impor-
tant issues are found. First, the context awareness issue is
critical for GUI in mobile devices, which means designed
embedded software GUI must has the adaptability and flex-
ibility to deal with the changing context. Second, suitable
abstraction and model-based approach is the key for adapt-
ing GUI on multiple embedded devices. For the last one,
currently XML-based technologies are widely used to sep-
arate the implementation details from design. Even more,
middleware-based approaches can be the powerful solution
for design/implementation separation.

4.2 GUI Prototyping

GUI prototypes offer designers and customers a form of
representation for specification and an exploration approach
for visual design ideas. In proposed simulation model for
GUI design, the developer needs to specify a expecting GUI
model and simulate a simulated GUI model, and then gen-
erate GUI prototype after being satisfied with the result of
simulation. An abstract prototype is used in content mod-
eling [22], which represents the contents of user interfaces
and their various constituent sections independent from de-
tails of appearance and behavior. They use predefined key

5



Figure 3. Simulation Phase Process

notation elements to describe the contents and action types
of a GUI layout. Some researches try to model GUI with
UML description and develop an GUI layout tool for ex-
pressing the meaning of UML by symbolic element [23],
which is very interesting to show the prototypes of GUI in
a friendly way.

Recently, the scenarios in software development have
gain attention in human computer interaction analysis [24].
As the popularity of employing use cases to formally rep-
resent scenarios in object-oriented software development,
recent researches have focused on the use case based ap-
proaches for GUI prototype generation [25–29]. An use
case usually contains step by step interactions and message
exchange between the user and the application. The or-
dering and complexity of interactions, and the exchanged
messages are critical information for GUI design. More-
over, several models, such as object and association model,
sequence model, activity model, collaborative model, or
Petri-Net model, can be derived semi-automatically from
use cases. These models can provide further information
for GUI prototype generation.

4.3 GUI Design Modeling

The proposed simulation model involves the concept of
design space to simulate the GUI model for developer at
early phase. Design space can be used in feature model-
ing [30] that expresses the dimensions of features in the
domain. The correlations can be specified between fea-
tures which are highly relevant. This is similar to what is
observed in this study, but it only describes the relation-
ships at the same domain. In this study, the relationships
between the factors of requirement domain and characteris-
tics of GUI expression domain are discovered. In [14, 31],
they use design space for modeling user interface archi-
tecture. What their concerns are functional dimensions of

GUI, structural dimensions of GUI, and the rules from func-
tional space to structure space. Although utilizing the same
design space concept, this study focuses the requirements
from use case scenarios and GUI prototype expression.

The detail of the GUI is not the issues which are needed
to be concerned at the beginning of the GUI design. For this
reason, most GUI modeling methodologies would show the
abstract view rather than detail of GUI. In [16], the author
proposes a content model in terms of a collection of mate-
rials, tool, and working space to bridge the conceptual gap
between a task model and a representational paper proto-
type for a user interface design. Materials are the stuff that
users are interested in. Tools enable users to do things with
materials, and working spaces are the various parts of the
user interface that combine the tools and materials together
into useful collections. Some researchers [32, 33] observe
the nesting structure of GUI can be modeled by extending
the UML diagrams and elements, especially in the web ap-
plication. These approaches are derived for the utilization
of some task models, such as use case, as the concern to
starting the GUI design.

User interface design within the Rational Unified Pro-
cess(RUP) involves user interface modeling and user inter-
face prototyping [34]. Theextended tabular use caseand
UI element clustersare used to provide a bridge between
user interface modeling and user interface prototyping ac-
tivities. Howeverthe extended tabular use casecan only
express the GUI clustering of functions without design con-
sideration dimensions. The simulation model proposed in
this study starts from the use case specification and maps the
design considerations from requirements to the simulation
model of GUI, and then generate the GUI prototypes.

6



5 Conclusion

This study provides a GUI simulation model to sup-
port embedded software design in understanding usability
requirements from customers and adapting to multiple de-
vices. The simulation model takes scenarios as inputs, and
results GUI design guidelines or GUI prototype. With the
training process and simulation process, the GUI prototype
can be refined rapidly and better reach the ideal interface of
customers. Also, with the extraction and inclusion of de-
sign knowledge from well-designed embedded softwares,
the generated prototype can be a useful evolutionary model
for adapting built GUI into variety of devices. Such a model
is process-oriented, with interoperability, and be able to
help designer who lacks the GUI design knowledge. The
proposed simulation model is also easy to be integrated into
current popular development process, such as RUP.

References

[1] D. Collins, Designing Object-Oriented User Inter-
faces. Addison-Wesley, 1995.

[2] T. Mandel, The Elements of User Interface Design.
John Wiley & Sons, 1997.

[3] N. Streitz and P. Nixon, “The Disappearing Com-
puter,” Communications of the ACM, vol. 48, no. 3,
pp. 32–35, March 2005.

[4] D. Bäumer, W. R. Bischofberger, H. Lichter, and
H. Züllighoven, “User Interface Prototyping - Con-
cepts, Tools, and Experience,”Proceedings of the 18th
International Conference on Software Engineering,
pp. 532–541, March 1996.

[5] J. Shirogane and Y. Fukazawa, “Method of User-
Customizable GUI Generation and Its Evaluation,”
Proceedings of the 5th Asia Pacific Software Engi-
neering Conference, pp. 377–384, 1998.

[6] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S.
Ferrency, A. Faulring, B. D. Kyle, A. Mickish,
A. Klimovitski, and P. Doane, “The Amulet Envi-
ronment: New Models for Effective User Interface
Software Development,”IEEE Transactions on Soft-
ware Engineering, vol. 23, no. 6, pp. 347–365, June
1997.

[7] J. T. Hackos and J. C. Redish,User and Task Analysis
for Interface Design. John Wiley & Sons, 1998.

[8] S. Subramanya and B. K. Yi, “User Interfaces for Mo-
bile Content,”IEEE Computer, vol. 39, no. 4, pp. 85–
87, May 2006.

[9] G. Mori, F. Paterńo, and C. Santoro, “Design and
Development of Multidevice User Interfaces through
Multiple Logical Descriptions,”IEEE Transactions
on Software Engineering, vol. 30, no. 8, pp. 507–520,
August 2004.

[10] S. Berti, F. Paterńo, and C. Santoro, “Natural Devel-
opment of Ubiquitous Interfaces,”Communications of
the ACM, vol. 47, no. 9, pp. 63–64, September 2004.

[11] J. Bishop, “Multi-Platform User Interface Construc-
tion: A Challenge for Software Engineering-In-The-
Small,” Proceeding of the 28th International Confer-
ence on Software Engineering, pp. 751–760, 2006.

[12] A. Puerta, “A Better Future for UI Tools through En-
gineering,”ACM CHI Workshop, April 2005.

[13] T. G. Lane,Guidance for User Interface Architecture,
in Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall, 1996.

[14] T. G. Lane,Studying Software Architecture Through
Design Spaces and Rules. Technical Report
CMU/SEI-90-TR-18, Carnegie Mellon Univ., 1990.

[15] I. Sommerville, Software Engineering. Addison-
Wesley, 2004.

[16] L. L. Constantine, “Rapid Abstract Prototyping,”Soft-
ware Development, vol. 6, no. 11, November 1998.

[17] G. C. Murphy, D. Notkin, and K. Sullivan, “Software
Reflexion Models: Bridging the Gap between Design
and Implementation,”IEEE Transactions on Software
Engineering, vol. 27, no. 4, pp. 364–380, April 2001.

[18] L. Yang, Y. Choi, C. Seo, T. Yang, and M. Kim, “De-
sign of VY: A Mini Visual IDE for the Development
of GUI in Embedded Devices,”Proceedings of 5th
ACIS International Conference on Software Engineer-
ing Research, Management & Applications, pp. 625–
632, 2007.

[19] E. Braun and M. Ḿ’uhlh’́auser, “Automatically Gen-
erating User Interfaces for Device Federations,”Sev-
enth IEEE International Symposium on Multimedia,
2005.

[20] T. Butter, M. Aleksy, P. Bostan, and M. Schader,
“Context-Aware User Interface Framework for Mo-
bile Applications,”27th International Conference on
Distributed Computing Systems Workshops, 2007.

[21] P. Repo and J. Riekki, “Middleware Support for Im-
plementing Context-Aware Multimodal User Inter-
faces,”Proceedings of the 3rd International Confer-
ence on Mobile and Ubiquitous Multimedia, pp. 221–
227, 2004.

7



[22] L. L. Constantine, “Canonical Abstract Prototypes for
Abstract Visual and Interaction Design,”10th Inter-
national Workshop on Design, Specification and Veri-
fication of Inter-active Systems, LNCS - Lecture Notes
in Computer Science, 2003.

[23] K. Blankenhorn,A UML Profile for GUI Layout. Mas-
ter Thesis, Department of Digital Media at University
of Applied Sciences Furtwangen, May 2004.

[24] B. A. Nardi, “The Use of Scenarios in Design,”ACM
SIGCHI Bulletin, vol. 24, no. 4, pp. 13–14, October
1992.

[25] L. L. Constantine, “Essential modeling: Use Cases
for User Interfaces,”ACM Interactions, vol. 2, no. 2,
pp. 34–46, April 1995.

[26] L. L. Constantine and L. A. D. Lockwood, “Structure
and Style in Use Cases for User Interface Design,”Ob-
ject Modeling and User Interface Design: Designing
Interactive Systems, pp. 245–279, 2001.

[27] S.-K. Kim and D. A. Carrington, “Integratinguse-case
analysis and task analysis for interactive systems,”
Proceedings of the Asia-Pacific Software Engineering
Conference, pp. 12–21, 2002.

[28] J. M. Almendros-Jiḿenez and L. Iribarne, “Designing
gui components for uml use cases,”Proceedings of the
IEEE International Conference and Workshops on the
Engineering of Computer-based Systems, pp. 210–
217, 2005.

[29] M. Elkoutbi, I. Khriss, and R. K. Keller, “Automated
Prototyping of User Interfaces based on UML Sce-
narios,”Journal of Automated Software Engineering,
vol. 13, no. 1, pp. 5–40, January 2006.

[30] L. Geyer, “Feature Modeling Using Design Spaces,”
1st German Workshop on Product Line Software En-
gineering, pp. 35–42, November 2000.

[31] T. G. Lane,A Design Space and Design Rules for User
Interface Software Architecture. Technical Report
CMU/SEI-90-TR-18, Carnegie Mellon Univ., 1990.

[32] K. Blankenhorn and W. Walter, “Extending UML to
GUI Modeling,” Mensch & Computer, pp. 307–308,
2004.

[33] R. Hennicker and N. Koch, “Modeling the User In-
terface of Web Applications with UML,”UML 2001,
LNI 7, pp. 158–172, 2001.

[34] C. Phillips and E. Kemp, “In Support of User Inter-
face Design in the Rational Unified Process,”Third
Australasian User Interface Conference, 2002.

8


