
Testing Whether a Set of Code Words Satisfies a

Given Set of Constraints

Hsin-Wen Wei∗, Wan-Chen Lu∗, Pei-Chi Huang∗, Wei-Kuan Shih∗,

Ming-Yang Kao†, and Tsan-sheng Hsu‡

∗Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan

{bertha, wanchen, peggy, wshih}@rtlab.cs.nthu.edu.tw

†Department of EECS, Northwestern University, U.S.A.

kao@northwestern.edu

‡Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan

tshsu@iis.sinica.edu.tw

Abstract

This paper investigates the problem
of testing whether a set of code words
satisfies certain biologically motivated
Hamming distance constraints. The paper
provides three general techniques to speed
up the testing of the constraints, namely,
the Enumeration, Table Lookup, and
Encoding methods, with applications to
the design of DNA words.

keywords: DNA verification, Hamming
distance constraints, code word verification

1 Introduction

The scalable design of code words has been
investigated by many researchers. Huff-
man [6] presented the well-known two-pass
algorithm to encode variable-length source
codes. A new one-pass algorithm for con-
structing dynamic Huffman codes is then
proposed in [13]. The shortest common su-
perstring problem, which is one of the sim-
plest models for assembling the long string
representing the whole molecule, is proved
to be NP-hard [4]; an efficient code word
design method for the shortest common

superstring problem is introduced in [14].
In recent years, many code word design
methods are applied to solve DNA-related
problems [5, 9, 10, 11]. For instance, one
is for detecting protein-DNA-binding sites
[9, 10]. A number of different proteins
bind into a genome. Some of these DNA-
binding proteins only bind to specific lo-
cations where they have to execute certain
functions. Another is for designing error-
preventing DNA sequence [5, 11]. The po-
tential errors in DNA sequence should be
minimized for reliable DNA computing.

In this paper, we study the verifica-
tion algorithm for designing DNA words.
For the DNA word design problem, many
algorithms have been developed. Marathe
et al. [8] used a dynamic programming
approach to design DNA sequences based
on Hamming distance and free energy.
Deaton et al. [3] used genetic search to
find good encodings. Arita et al. [1]
developed a DNA sequence design sys-
tem using genetic algorithms and random
generate-and-test algorithms. Tanaka et
al. [12] listed sequence fitness criteria and
sequences are generated using simulated
annealing method. Recently, Kao et al. [7]
considered more fitness criteria for DNA

1

sequence design.
Since some DNA word design algo-

rithms are randomized, we need a fast
verification algorithm to verify whether
the output indeed satisfy the given set
of constraints. Therefore, we focus on
the development of a fast verification al-
gorithm that can determine whether a set
of words satisfy a given set of constraints.
There are five constraints C1, . . . , C5 con-
sidered in this paper and these con-
straints can be classified as basic Ham-
ming distance constraint, reverse comple-
ment Hamming distance constraint, self-
complementary Hamming distance con-
straint, and shifting Hamming distance
constraint which are proposed in [2, 7, 8]
for DNA word designs.

To verify these constraints for a set
of DNA words designed, we propose the
three following techniques: (1) Enumera-
tion. It enumerates all possible combina-
tions of selected ℓ − k + 1 positions in a
word, where ℓ is the length of a word and
k is the given parameter of a constraint.
This method determines whether the set
of words satisfies the given constraints by
checking whether any two sub-words se-
lected from all possible combinations of
ℓ − k + 1 positions in any two words of
the set are the same. (2) Table Lookup.
It first enumerates all possible combina-
tions of sub-words with a fixed length and
then computes the Hamming distance be-
tween any two sub-words for constructing
a data table. By dividing each word into
some sub-words and looking up the con-
structed data table, the Hamming distance
between two words can be obtained. (3)
Encoding. It utilizes a table and a linked
list for storing some necessary information.
It first divides each word into some sub-
words with a fixed length and puts them
into different groups. If the sub-words of
different words start at the same position
in the words, then the sub-words are put
into the same group. Each group of sub-
words are assigned an unique group ID. By

sorting the sub-words in a group, it de-
termines whether any two sub-words are
the same. If a group contains two dif-
ferent sub-words, then update the corre-
sponding value in the table and store the
group ID into the corresponding location
of the linked list. After that, this method
determines whether a set of words satisfies
the given constraints by checking the ta-
ble and linked list. The time complexities
of these methods for given constraints are
summarized as Table 1.

2 Preliminaries

In this paper we deal a set of words W with
two alphabets, namely, the binary alpha-
bet {0, 1} and the DNA alphabet {A, C,
G, T}. A given set of words W is assumed
to each has length ℓ and let |W | = n. Let
X = x1x2 . . . xℓ denote a word where xi

denotes the ith position in X, and |X| de-
note the length of X, i.e., |X| = ℓ. Let
X[i..j] = xixi+1 . . . xj denote a sub-word
of X, 1 ≤ i ≤ j ≤ ℓ. If i = j, then
X[i..i] = X[i] = xi. The reverse of X, de-
noted by XR, is the word xℓxℓ−1 . . . x1, and
the sub-word of the reverse of X is denoted
by XR[i..j], e.g., XR[1..3]= xℓxℓ−1xℓ−2.
The complement of X, denoted by XC , is
the word xC

1 xC
2 . . . xC

ℓ , and the sub-word of
complement of X is denoted by XC [i..j],
where xC

i is defined as 0C = 1 and 1C = 0,
if xi is over the binary alphabet; AC = T ,
CC = G, GC = C, TC = A, if xi is over
the DNA alphabet.

The reverse complement of X is the
complement of XR, XRC = xC

ℓ xC
ℓ−1 . . . xC

1 ,
and the sub-word of complement of X is
denoted by XRC [i..j], e.g., XRC [1..2] =
xC

ℓ xC
ℓ−1. Note that, X[i..j]RC , denotes the

reverse complement of the sub-word of X,
e.g., X[1..2]RC = xC

2 xC
1 . Let ”+” be

the operation that concatenates any two
words X = x1x2 . . . xℓ and Z = z1z2 . . . zi,
such that X + Z = x1x2 . . . xℓz1z2 . . . zi,
where i > 0, and |X + Z| = ℓ + i. The
Hamming distance between two words X

2

Enumeration Table Lookup Encoding

C1, C2 O(n ∗ (ℓ − k) ∗ ℓmin{k−1,ℓ−k+1}) O(22∗
√

ℓ ∗
√

ℓ + n2 ∗
√

ℓ) O(n2 ∗
√

ℓ ∗
√

k)

C3, C4 O(n ∗ (ℓ − k) ∗ ℓmin{k−1,ℓ−k+1} ∗ k) O(22∗ℓ ∗ ℓ + n2 ∗ ℓ) O(n2 ∗
√

ℓ ∗ k ∗ k)

C5 N.A. O(ℓ ∗ log ℓ + n∗ℓ∗k
log ℓ

) N.A.

Table 1: Time complexities of each method for different constraints.

and Y = y1y2 . . . yℓ, which is defined as
d(X, Y) = |{i|xi 6= yi, 1 ≤ i ≤ ℓ}|, is the
number of positions where X differs from
Y . We are interested in verifying a given
set of words W satisfies the following con-
straints [7], which is denoted as a function
Cf(kf) with a given parameter kf :

1. Basic Hamming Distance Constraint
(k1): C1(k1) = {d(Y, X) ≥
k1|∀X, Y ∈ W, X 6= Y }.

2. Reverse Complementary Constraint
(k2): C2(k2) = {d(Y, XRC) ≥
k2|∀X, Y ∈ W, X 6= Y }.

3. Shifting Hamming Constraint (k3):
C3(k3) = {d(Y [1..i], X[(ℓ−i+1)..ℓ]) ≥
k3−(ℓ− i)|1 ≤ i ≤ ℓ, ∀X, Y ∈ W, X 6=
Y }.

4. Shifting Reverse Complemen-
tary Constraint (k4): C4(k4) =
{d(Y [1..i], X[1..i]RC) ≥ k4 − (ℓ − i);
and d(Y [(ℓ − i + 1)..ℓ], X[(ℓ − i +
1)..ℓ]RC) ≥ k4 − (ℓ − i)|1 ≤ i ≤
ℓ, ∀X, Y ∈ W, X 6= Y }

5. Shifting Self Complementary
Constraint (k5): C5(k5) =
{d(Y [1..i], Y [1..i]RC) ≥ k5 − (ℓ − i);
and d(Y [(ℓ − i + 1)..ℓ], Y [(ℓ − i +
1)..ℓ]RC) ≥ k5 − (ℓ − i)|1 ≤ i ≤
ℓ, ∀Y ∈ W}.

Note a naive algorithm for testing
C1 and C2 constraints takes O(n2ℓ) time
; for testing C3 and C4 constraints takes
O(n2 ∗ ℓ ∗ k) time; and for testing C5 takes
O(n ∗ ℓ ∗ k) time, where k is the parame-
ter of the given constraint. In this paper,
we propose three techniques for solving the

verification of a given set of words. The
proposed approaches determine whether a
set of words satisfies a set of combinato-
rial constraints faster than the naive al-
gorithms on several practical cases such
as ℓ = O(log n). The first is Enumer-
ation method which can be applied to
C1 − C4 constraints. While ℓ = O(log n)
and the parameters of given constraints
are no greater than O(log n

log log n
), the time

complexity of the Enumeration method is
lower than a naive algorithm and the other
methods which proposed in here. The sec-
ond is Table Lookup method which can be
applied to C1 − C5 constraints. The Ta-
ble Lookup method is an efficient approach
while ℓ = O(log n) and its time complex-
ity is lower than that of a naive algorithm
for any constraint if ℓ is no greater than
O(log n). Finally, the Encoding method
can be applied to C1 − C4 and its time
complexity is lower than that of naive al-
gorithm while the order of k is less than
ℓ. This method is better than the other
methods while ℓ = Ω(log n).

The comparison of time complexities
between naive algorithms and our tech-
niques with assumption that ℓ = O(log n)
is summarized in Table 2.

3 Enumeration

Our discussion is based on C1 constraint
and using the binary alphabet. This
method can be easily extend to C2 − C4

constraints on any fixed alphabet. For any
two words X and Y in W , our problem
is to test whether d(X, Y) ≥ k , where k

is the given parameter of the correspond-
ing constraint. Our basic idea is that if

3

k

O(log n) O(log n

log log n
) O(log log n) O(1)

C1, C2 naive O(n2 ∗ log n) O(n2 ∗ log n) O(n2 ∗ log n) O(n2 ∗ log n)
ours O(n2 ∗ √log n);#2 O(n2);#1 O(n1+ǫ);#1 O(n ∗ log n);#1

C3, C4 naive O(n2 ∗ log2 n) O(n2 ∗ log2
n

log log n
) O(n2 ∗ log n ∗ log log n) O(n2 ∗ log n)

ours O(n2 ∗ log n);#2 O(n2 ∗ log n

log log n
);#1 O(n1+ǫ ∗ log log n);#1 O(n ∗ log n);#1

C5 naive O(n ∗ log2 n) O(n ∗ log2
n

log log n
) O(n ∗ log n ∗ log log n) O(n ∗ log n)

ours O(n∗log2
n

log log n
);#2 O(n∗log2

n

(log log n)2);#2 O(n ∗ log n);#2 O(n∗log n

log log n
);#2

Table 2: The comparison of time complexities between naive algorithms and our algo-
rithms assuming ℓ = O(logn) and ǫ is any constant less than 1. #1: Using Enumeration
method, #2: Using Table Lookup method.

Algorithm 1 Enumeration Algorithm
1: procedure Enumeration(W) {∗ Output “Fail”, if the constraint is not satisfied; “Suc-

cess”, if the constraint is satisfied ∗}
2: for p from 1 to (ℓℓ−k+1) do

3: Let Wp = {X1,p,X2,p, . . . ,Xn,p} contains n sub-words with length ℓ − k + 1 in W
which are selected according to the p-th combination, where k = k1, Xi,p is the
sub-word of p-th combination of Xi, i = 1, 2, . . . , n

4: Perform radix sort on Wp;
5: if there are any two sub-words Xi,p and Xj,p, i 6= j in Wp are the same in the sorted

result then

6: return “Fail”;
7: end if

8: end for

9: return “Success”;
10: end procedure

d(X, Y) < k, it means there are at least
ℓ− k +1 positions that the same in X and
Y . Hence, we select any two sub-words
with length ℓ − k + 1 from X and Y re-
spectively, and then check if they are the
same. If any two sub-words with length
ℓ − k + 1 of X and Y are not the same,
then d(X, Y) ≥ k; otherwise, d(X, Y) < k.
There are totally (ℓ

ℓ−k+1) combinations to
select a sub-word with length ℓ − k + 1
from a word with length ℓ. Without loss
of generality, we assume that any sub-
word with length ℓ − k + 1 of a word
with length ℓ is corresponding to an unique
combination of ℓ − k + 1 positions in a
word. Each combination of ℓ − k + 1 po-
sitions in a word is assigned an unique la-
bel “p”, which is called p-th combination,
where p = 1, 2, . . . , (ℓ

ℓ−k+1), e.g., 1-st com-

bination is 1st, 2nd, . . . , (ℓ − k + 1)th posi-
tions in a word and 2-nd combination is
1st, 3rd, . . . , (ℓ−k+1)th positions in a word.
The detail of the Enumeration method for
C1 constraint is shown in Algorithm 1.

Here is an example to show how to
verify a set of words W satisfies C1(k1)
by Algorithm 1. Assume there are three
words X1 = 10101010, X2 = 11110000,
and X3 = 00110010 in W . For C1(5),
i.e., k1 = 5, there are (8

8−5+1)=70 com-
binations to select 3 sub-words with 4,
ℓ − k + 1 = 8 − 5 + 1 = 4, bits from
W . When the combination of positions in
a word are 1st, 3rd, 6th and 8th positions, the
corresponding sub-words of the 3 words in
W are 1100, 1100, 0100 (from X1, X2, and
X3, respectively). After using radix sort
at step 4, we find that two sub-words are

4

equal (i.e., 1100), and therefore W does not
satisfy constraint C1(5).

Theorem 1 Algorithm 1 is correct and

its time complexity is O(n ∗ (ℓ − k) ∗
ℓmin{k−1,ℓ−k+1}), where k is the given pa-

rameter of the corresponding constraint.

Proof. For any two words X and Y , the
sub-words of X and Y with length ℓ−k+1
are compared in steps 2−8. If there exists
two sub-words with length ℓ−k+1 that are
equal, there must be at most k−1 different
positions between the two words. There-
fore, it does not satisfy the Hamming dis-
tance constraint; otherwise, it does. Hence
the algorithm is correct.

In Algorithm 1, there are (ℓ
ℓ−k+1)

combinations to enumerate all possible
combinations of sub-words with length
ℓ − k + 1 in W . Note that, (ℓ

ℓ−k+1) ≤
ℓmin{k−1,ℓ−k+1}. The sub-words of a given
p-th combination with length ℓ − k + 1 in
W are using radix sort at step 4 in O(n ∗
(ℓ − k)) time for each p from 1 to (ℓ

ℓ−k+1).
Hence, the total time complexity of Algo-
rithm 1 is O(n ∗ (ℓ − k) ∗ ℓmin{k−1,ℓ−k+1}).

2

The Enumeration method can be
used to verify C3 and C4 constraints. Note
that, if the length i of any two sub-words is
less than ℓ−k, where k = k3 or k4, then any
two sub-words with length i must satisfy
the Hamming distance constraint, since,
k− (ℓ− i) < 0. Therefore, it only needs to
deal with the case that the length of a sub-
word is greater than ℓ−k and its time com-
plexity is O(n∗ (ℓ−k)∗ ℓmin{k−1,ℓ−k+1} ∗k).

4 Table Lookup

This method, which determines Hamming
distance between any two words by look-
ing up a precomputed table, is called the
Table Lookup method. There are two data
structures needed in this method: (1) In-
formation table, which records the Ham-
ming distance between any two words in

W , is called INF table. There are n2 en-
tries in the table, let (i, j) denote an entry
in row i and column j in the INF table.
Let ti,j denote the value of the entry i, j
in the INF table which is the Hamming
distance between the two words Xi and
Xj. Note that, the initial value of ti,j is
zero, for all 1 ≤ i, j ≤ n. (2) Comparison
table, which enumerates all possible com-
binations of sub-words of a given length,
and provides the Hamming distance of any
two sub-words in the enumeration, is called
CMP table. For example, Figure 1 shows
Hamming distance of any two sub-words
with length 3 over the binary alphabet.
It is obvious to see that there are 23 sub-
words in the enumeration and 23 ∗ 23 en-
tries in the CMP table, since the length of
a sub-word is 3 and the size of the binary
alphabet is 2.

The first step of Table Lookup
method is to enumerate all possible combi-
nations of sub-words over the given alpha-
bet to construct the CMP table. With-
out loss of generality, we assume that the
given alphabet is binary. Note that each
entry in the CMP table records the Ham-
ming distance between any two sub-words
exhaustively enumerated. Second, divide
each word Xi ∈ W into

√
ℓ sub-words

Xi[a..b] with fixed length
√

ℓ, where a =
(g−1)∗

√
ℓ+1, b = g∗

√
ℓ, 1 ≤ g ≤

√
ℓ. Note

that, G = {X1[a..b], X2[a..b], . . . , Xn[a..b]}
denotes a group of sub-words of W , Xi ∈
W , 1 ≤ i ≤ n.

Next, compute Hamming distance
between any two sub-words Xi[a..b] and
Xj[a..b], i 6= j, in the same group by
looking up the CMP table, then update
the corresponding entry in the INF table.
Finally, after all comparison processes are
finished, check the value of each entry
in the INF table. If there exists a value
lower than the parameter of the given
constraint, then report that the given set
of words does not satisfy the constraint.
The detail of the Table Lookup method
for verifying whether a given set of words

5

Figure 1: Example of CMP table

W satisfies C1 constraint is described in
Algorithm 2. Note Algorithm 2 can be
easily extended to verifying C2 constraint
on any fixed alphabet.

Theorem 2 Algorithm 2 is correct and its

time complexity is O(22∗
√

ℓ ∗
√

ℓ + n2 ∗
√

ℓ)
while W is over binary alphabet.

Proof. Correctness: The CMP table
records Hamming distance between any
two possible enumerations of sub-words
with a fixed length. Thus we can compare
any two sub-words by examing the CMP
table. Note that, at step 4, each word
is divided into

√
ℓ sub-words. From steps

3 − 11, it is obvious to see that the algo-
rithm compares any two sub-words in the
same group. For each group, the algorithm
adds corresponding values to update INF
table. After comparing all positions of the
word, the cumulative values in INF table
correspond to the Hamming distances of
any two words. Therefore, Algorithm 2 is
correct.

Time complexity: Step 2 costs
O(22∗

√
ℓ∗
√

ℓ) time to construct CMP table,

since (1) it takes O(2
√

ℓ) time to enumer-
ate all possible combinations of two sub-
words ; (2) to record any two pairs of all

possible sub-words needs 2
√

ℓ ∗ 2
√

ℓ entries;
(3) to determine Hamming distance be-
tween two sub-words needs O(

√
ℓ) time.

In steps 3 − 11, it is easy to see that it
takes O(n2 ∗

√
ℓ) time to update INF ta-

ble, and in steps 12 − 18 it takes O(n2)
time to check whether the value of each

entry in INF table is less than the param-
eter of the given constraint. Therefore, it
takes O(22∗

√
ℓ ∗

√
ℓ+n2 ∗

√
ℓ) time in total.

2

Corollary 3 The time complexity of Algo-

rithm 2 is O(α2∗
√

ℓ ∗
√

ℓ + n2 ∗
√

ℓ), where

α is the size of alphabet.

Proof. Similarly to the proof of Theo-
rem 2, the corollary is true. 2

Here, we give an example for illus-
trating the steps in Algorithm 2. Assume
that there nine words X1, . . . , X9 in W

with ℓ = 9. The CMP table constructed
at step 2 of Algorithm 2 is shown in Fig-
ure 1, and the first iteration of steps 3−11
is depicted in Figure 2.

Next, we apply Table Lookup
method to deal with the verification of
C3, C4, and C5 constraints. We first con-
sider the cases of verifying C3 and C4 con-
straints. Unlike the cases of verifying C1

and C2 constraints, the algorithm proposed
here does not divide a word Xp into sub-
words, and then to compare them with
sub-words of Xq. Therefore, INF table is
not needed here. However, it needs to enu-
merate all possible combinations of words
with length ℓ to construct the CMP table.
In addition, the algorithm extracts two
sub-words Xp[1..i] and Xq[(ℓ−i+1)..ℓ] from
Xp and Xq, respectively, and concatenates
a word Y with the sub-words such that
P = Xp[1..i]+Y , Q = Xq(ℓ− i+1)..ℓ]+Y ,
and |P | = |Q| = ℓ. By doing so, the Ham-
ming distance between two extracted sub-
words of Xp and Xq can be obtained from
the CMP table. Then the algorithm deter-
mines whether the constraint is satisfied or
not. The detail of the algorithm which is
called TablewithShift is shown in Algo-
rithm 3. Algorithm 3 focuses on verifying
C3 constraint and can be easily extended
to verifying C4 constraint.

Theorem 4 Algorithm 3 is correct and its

time complexity is O(22∗ℓ ∗ ℓ + n2 ∗ ℓ).

6

Algorithm 2 Table Lookup Algorithm
1: procedure Table Lookup(W) {∗ Output “Fail”, if the constraint is not satisfied; “Suc-

cess”, if the constraint is satisfied ∗}
2: Enumerate all possible combinations of sub-words with length

√
ℓ over the binary al-

phabet to construct the CMP table;
3: for g from 1 to

√
ℓ do

4: Let Xi,g = Xi[((g − 1) ∗
√

ℓ + 1)..g ∗
√

ℓ], i = 1, 2, . . . , n;
5: for i from 1 to n do

6: for j from 1 to n do

7: Lookup the value of d(Xi,g,Xj,g) from the CMP table;
8: Let ti,j = ti,j + d(Xi,g,Xj,g);
9: end for

10: end for

11: end for

12: for i from 1 to n do

13: for j from 1 to n do

14: if ti,j < k1, where i 6= j then

15: return “Fail”;
16: end if

17: end for

18: end for

19: return “Success”;
20: end procedure

Proof. Similar to the proof of Theorem 2,
this algorithm is correct. Time complexity
of step 2 in Algorithm 3 is O(22∗ℓ ∗ ℓ) and
it takes O(n2 ∗ ℓ) in steps 3 − 14. There-
fore, the time complexity of Algorithm 3 is
O(22∗ℓ ∗ ℓ + n2 ∗ ℓ). 2

For the C5 constraint, the sub-words
Xa[1..i] and Xa[(ℓ− i + 1)..ℓ] of a word Xa

for i from ℓ−k5+1 to ℓ have to be compared
with their reverse complement Xa[1..i]

RC

and Xa[(ℓ−i+1)..ℓ]RC , respectively, where
a = 1, 2, . . . , n. As step 2 in Algorithm 2,
it enumerates all possible combinations of
sub-words with length log ℓ

2
over the binary

alphabet to construct a 2
log ℓ

2 by 2
log ℓ

2 CMP
table. Then it divides each word in W into
2ℓ

log ℓ
sub-words with length log ℓ

2
and looks

up CMP table to verify each word in W .
The detail of algorithm is described in Al-
gorithm 4.

Theorem 5 Algorithm 4 is correct and its

time complexity is O(ℓ ∗ log ℓ + n∗ℓ∗k
log ℓ

).

Proof. Similar to the proof of Theorem 2,
this algorithm is correct. Time complex-

ity of step 2 in Algorithm 4 is O(ℓ ∗ log ℓ)
and it takes O(n ∗ k ∗ ℓ

log ℓ
) for other steps,

where k is the parameter of the given con-
straint. Therefore, the time complexity of
this algorithm is O(ℓ ∗ log ℓ + n∗ℓ∗k

log ℓ
). 2

5 Encoding

In this section, we propose the Encoding
method to verify whether or not a set of
words satisfies C1 and C2 constraints. We
apply two data structures to speed up the
checking. (1) INF table (Information ta-
ble): the table records the Hamming dis-
tance between any two words in the given
set of words as described in Sec 4. (2)
NZO linked list: the main function of NZO
linked-list is to store the group number
of two compared sub-words while the two
sub-words are different. NZO linked list
consists of two kinds of nodes: Head nodes
and Data nodes. Head node stores the la-
bel (i, j) of any two words Xi and Xj in
data field and a pointer points to Data

7

Figure 2: Illustration of the steps in Table lookup Algorithm and results in INF table

Algorithm 3 TablewithShift Algorithm
1: procedure TablewithShift(W) {∗ Output “Fail”, if the constraint is not satisfied;

“Success”, if the constraint is satisfied ∗}
2: Enumerate all possible combinations of words with length ℓ over the binary alphabet to

construct the CMP table;
3: for i from 1 to ℓ do

4: Let Y = 11 . . . 1, where |Y | = ℓ − i;
5: for p from 1 to n do

6: for q from 1 to n do

7: Let P = Xp[1..i] + Y and Q = Xq[(ℓ − i + 1)..ℓ] + Y ;
8: Lookup the value of d(P,Q) from the CMP table;
9: if d(P,Q) < k3 then

10: return “Fail”;
11: end if

12: end for

13: end for

14: end for

15: return “Success”;
16: end procedure

nodes, where Xi, Xj ∈ W . Therefore,
there are n2 Head nodes in the list. Note
that, the initial value in link the field of
Head node is “NULL”. Data node stores
the group ID, which is defined later, of two
compared sub-words if the sub-word of Xi

and the sub-word of Xj are different. The
NZO linked list is illustrated in Figure 3.

In this method, first, each word
Xi ∈ W is divided into

√
ℓ ∗ k sub-words

each with length
√

ℓ
k
. These sub-words

are denoted as Xi,1, Xi,2, . . . , Xi,
√

ℓ∗k, where

Xi,g = Xi[a..b], a = (g − 1) ∗
√

ℓ
k

+ 1,

b = g ∗
√

ℓ
k
, 1 ≤ g ≤

√
ℓ ∗ k, and k is

the parameter of the given constraint. Let

Gg = {X1,g, X2,g, . . . , Xn,g} denote a set of
n sub-words, where g is the group ID of
Gg. Note that, 1 ≤ g ≤

√
ℓ ∗ k. and the

total number of groups is
√

ℓ ∗ k. Second,
using radix sort to sort the sub-words of
each group, and then check if any two sub-
words in same group are different. If Xi,g

and Xj,g are different, then update the INF
table, i.e., ti,j = ti,j + 1, and insert a new
Data node with group ID g into the corre-
sponding location of the NZO linked list.
Note that the initial value of each entry in
the INF table is 0. Finally, for each entry
in the INF table, check if ti,j < k. If the
value ti,j of the entry in the INF table is
less than k, then scan the corresponding

8

Algorithm 4 TablewithSelfShift Algorithm
1: procedure TablewithSelfShift(W) {∗ Output “Fail”, if C5 constraint is not satisfied;

“Success”, if C5 constraint is satisfied ∗}
2: Enumerate all possible combinations of words with length log ℓ/2 over the binary alpha-

bet to construct the CMP table;
3: for a from 1 to n do

4: for i from ℓ − k5 + 1 to ℓ do

5: Let Y = 11 . . . 1, such that |Y | = ℓ − i;
6: Let X ′

p = Xa[1..i] + Y ;

7: Let X ′
q = Xa[1..i]

RC + Y ;
8: Let Yp = Xa[(ℓ − i + 1)..ℓ] + Y ;
9: Let Yq = Xa[(ℓ − i + 1)..ℓ]RC + Y ;

10: Let d′ = 0 and d = 0;
11: for g from 1 to 2ℓ

log ℓ
do

12: Let P ′ = X ′
p[((g − 1) ∗ log ℓ

2
+ 1)..(g ∗ log ℓ

2
)];

13: Let Q′ = X ′
q[((g − 1) ∗ log ℓ

2
+ 1)..(g ∗ log ℓ

2
)];

14: Let P = Yp[((g − 1) ∗ log ℓ
2

+ 1)..(g ∗ log ℓ
2

)];

15: Let Q = Yq[((g − 1) ∗ log ℓ
2

+ 1)..(g ∗ log ℓ
2

)];
16: Lookup the value of d(P ′, Q′) and d(P,Q) in the CMP table;
17: Let d′ = d′ + d(P ′, Q′);
18: Let d = d + d(P,Q);
19: end for

20: if d′ < k5 or d < k5 then

21: return “Fail”;
22: end if

23: end for

24: end for

25: return “Success”;
26: end procedure

nodes in the NZO linked list to find the
sub-words of Xi and Xj, such that these
sub-words are compared again to deter-
mine whether d(i, j) ≥ k. To simplify the
discussion, let Head(i, j) denote a Head
node in which the value of data field is (i, j)
and let Data(i, j)[g] denote a Data node,
which is linked to Head(i, j) and stores a
group ID g in its data field. The detail
of the Encoding method is shown in Algo-
rithm 5.

We give an example to illustrate the
steps of Encoding method for verifying C1

constraint. First, we assume that there
are eight words, each word has eight bits,
and the given parameter k = 2. In steps
3−4, each word is divided into

√
8 ∗ 2 = 4

groups, i.e., G1, . . . , G4, as shown in Fig-
ure 4(a) and Figure 4(b) shows the steps

Figure 3: An illustration of the NZO linked
list.

9

Algorithm 5 Encoding Algorithm
1: procedure Encoding(W) {∗ Output “Fail”, if the constraint is not satisfied; “Success”,

if the constraint is satisfied ∗}
2: for g from 1 to

√
ℓ ∗ k1 do

3: Let Xi,g = Xi[((g − 1) ∗
√

ℓ
k1

+ 1)..g ∗
√

ℓ
k1

], i = 1, 2, . . . , n;

4: Let Gg = {X1,g,X2,g, . . . ,Xn,g};
5: Perform radix sort on Gg;
6: for i from 1 to n do

7: for j from 1 to n do

8: if Xi,g 6= Xj,g, where i 6= j then

9: ti,j = ti,j + 1; {∗ Update INF table ∗}
10: Create a new Data node: Data(i, j)[g] and insert the node into the loca-

tion after Head(i, j) in the NZO linked list
11: end if

12: end for

13: end for

14: end for

15: for i from 1 to n do

16: for j from 1 to n do

17: if ti,j < k1 then

18: Find the Head node Head(i, j) and let d = 0;
19: while The link field of Head(i, j) 6= NULL do

20: Let g′ be the value that stored in the data field of a Data node, which is
linked after Head(i, j), i.e., Data(i, j)[g′], then remove this Data node;

21: Compute Hamming distance between Xi,g′ and Xj,g′ ;
22: Let d = d + d(Xi,g′ ,Xj,g′);
23: end while

24: if d < k1 then

25: return “Fail”
26: end if

27: end if

28: end for

29: end for

30: return “Success”
31: end procedure

5 − 13 in the Encoding method.

Theorem 6 Algorithm 5 is correct and its

time complexity is O(n2 ∗
√

ℓ ∗ k).

Proof. First, we prove the correctness
of the algorithm. The value in the INF
table corresponding to two words Xi and
Xj only be added when the sub-words of
Xi and Xj are different. Therefore, if this
value is greater or equal to k, it means
d(Xi, Xj) must be greater than or equal
to k, where k is the parameter of the given
constraint. Our algorithm checks each en-
try of the INF table to make sure that any

two words satisfy the constraint. However,
there may be some entries with value less
than k, and the sub-words of these entries
need to be compared again. To compare
those sub-words, the algorithm utilizes the
NZO linked list to keep the information of
those sub-words as step 10, such that the
sub-words can be easily extracted from the
words. Therefore, our algorithm is cor-
rect. Second, we analyze the time com-
plexity of the algorithm. Each word in
the set is partitioned into

√
ℓ ∗ k sub-words

each with length
√

ℓ
k
. After radix sort, it

10

Figure 4: (a) Each word is divided into
√

ℓ ∗ k sub-words each with length
√

ℓ
k
. (b) An

illustration of steps for updating the INF table.

compares any two sub-words, and then up-
dates the INF table and adds new node
into the NZO linked list. Thus it takes
O(n2 ∗

√
ℓ ∗ k) in steps 2 − 14. If there is

any entry in the INF table with value less
than k, then the number of groups which
is stored in corresponding location of the
NZO linked list must be less than k. There-
fore, using information stored in the en-
tries of the NZO linked list, the algorithm
in steps 15 − 29 compares the sub-words
again to determine whether the d(i, j) ≥ k

in O(n2 ∗
√

ℓ
k
∗ k) time. Hence, it takes

O(n2 ∗
√

ℓ ∗ k) time in total. 2

Note that, the Encoding method can
also be used to verify constraints C3, C4

and its time complexity is O(n2∗
√

ℓ ∗ k∗k).

References

[1] M. Arita, A. Nishikawa, M. Hagiya, K.
Komiya, H. Gouzu, and K. Sakamoto.
Improving Sequence Design for DNA
Computing. Proceedings of the Genetic

and Evolutionary Computation Confer-

ence, 875–882, 2000.

[2] A. Brenneman and A. E. Condon. Strand
Design for Bio-Molecular Computation.
Theoretical Computer Science, 287:39–
58, 2001.

[3] R. Deaton, R. C. Murphy, M. Garzon,
D. R. Franceschetti, and S. E. Stevens
Jr. Reliability and Efficiency of a DNA-
based Computation. Physical Review

Letters, 8(2):417–420, 1998.

[4] J. K. Galllant. String Compression
Algorithms. Ph.D. dissertation, Dept.

Elec. Eng. Comput. Sci, Princeton Univ.,

Princeton, NJ, 1982.

[5] M. Garzon, R. Deaton, P. Neathery,
R. C. Murphy, S. E. Stevens Jr., and
D. R. Franceschetti. A New Metric for
DNA Computing. Proceedings of Genetic

Programming, 472–478, 1997.

[6] D. A. Huffman. A Method for the
Construction of Minimum Redundancy
Codes. Proceedings of IRE, 40:1098–
1101, 1951.

[7] M. Y. Kao, M. Sanghi, and R. Schweller.
Randomized Fast Design of Short DNA
Words. Lecture Notes Computer Science,
3580:1275–1286, 2005.

[8] A. Marathe, A. Condon, and R. M.
Corn. On Combinatorial DNA Word De-
sign Journal of Computational Biology,
8:201–219, 2001.

[9] T. Martinetz, J. E. Gewehr and J. T.
Kim. Statistical Learning for Detecting
Protein-DNA-Binding Sites. Proceedings

11

of the International Joint Conference on

Neural Networks, 2003.

[10] W. Shi and W. Zhou. Identifying Tran-
scription Factor Binding Sites in Promot-
ers of Human Genes. International Multi-

Conference on Computing in the Global

Information Technology, 2006.

[11] S. Y. Shin, D. Kim, I. H. Lee, and B. T.
Zhang Evolutionary sequence generation
for reliable DNA computing. Proceedings

of Congress on Evolutionary Computa-

tion, 79–84, 2002.

[12] F. Tanaka, M. Nakatsugawa, M. Ya-
mamoto, T. Shiba, and A. Ohuchi. De-
veloping support system for sequence de-
sign in DNA computing. Proceedings of

The 7th International Workshop on DNA

Based Computers, 340–349, 2002.

[13] J. Vitter. Design and Analysis of Dy-
namic Huffman Codes. Journal of the

Association for Computing Machinery,
34(4): 825–845, 1987.

[14] E. H. Yang and Z. Zhang The Shortest
Common Superstring Problem: Average
Case Analysis for Both Exact and Ap-
proximate Matching. IEEE Transactions

on Information Theory, 45(6), 1999.

12

