
2×n Minesweeper Consistency Problem is in P
Shu-Chiung Hu

Department of Computer Science,
National Chiao Tung University

linear.hu@gmail.com

Shun-Shii Lin
Graduate Institute of Computer Science and

Information Engineering,
National Taiwan Normal University

linss@csie.ntnu.edu.tw
Abstract

Minesweeper is a popular single-player game

included with Windows operating systems. Since

Richard Kaye [12] proved that “Minesweeper is

NP-complete” in 2000, it has been recently studied

by many researchers. Meredith Kadlac [7] had

showed that one-dimensional Minesweeper

consistency problem is regular and can be recognized

by a deterministic finite automaton. We extend the

consistency problem to 2×n Minesweeper, which is

two-dimensional but with its one dimension restricted

to 2. We find that this problem is also tractable and

design a finite automaton which can solve 2×n

Minesweeper consistency problem in linear time.

Hence, we are able to show that 2×n Minesweeper

consistency problem is also in P.

Keywords: Minesweeper, Minesweeper consistency

problem, finite automata, P

1 Introduction
Minesweeper [10] is a single-player computer

game which was invented by Robert Donner and Curt

Johnson in 1989. The game has been rewritten for

many computer platforms and is most famous for the

version that comes with Microsoft Windows.

The game consists of a rectangular field of

squares much like a chess or checker board, and all

squares are covered initially. Some mines are

randomly and secretly distributed throughout the

board.

A player can uncover or mark any square by

left- or right-clicking on it. If a covered square with a

mine is left-clicked upon by a player, the mine would

expose and the game is over. At the time, what a

player should do is to try his/her best to guess where

the mines are. If a player is sure that a mine is hidden

under a square, he/she can mark (right-clicked once)

that square. However, if he/she is not sure that a mine

is hidden under a square or not, he can mark a

question mark(‘?’) by right-clicking twice on that

square instead. A player just uses the question mark

to remind himself/herself that those squares are

probably mines, but actually those squares are still

covered squares.

So we treat the ‘?’-marked squares and the

covered squares as the same. If a covered square

without a mine is left-clicked upon by a player, two

possible results could happen. A number between 0

and 8, indicating the amount of adjacent (including

diagonally-adjacent) squares containing mines, would

appear on this square. If the number 0 appears on the

square, then all the squares reachable from this

square will be uncovered and their amounts of

adjacent squares containing mines will be appeared

on these uncovered squares. The game is won when

all squares without mines are uncovered. The goal of

Minesweeper is to locate all mines (or “bombs”)

without touching any square with a mine as quickly

as possible.

1

The complexity class P is the set of languages

accepted by deterministic Turing machines in

polynomial time. And the class NP is the set of

languages accepted by nondeterministic Turing

machines in polynomial time. One famous open

problem is "P=NP?" question: to determine whether

there exists an efficient algorithm which can solve an

NP-complete problem or alternatively to prove no

efficient algorithm exists for these NP-complete

problems. This is one of the biggest and most

important open problems at this moment, and is the

subject of a $1,000,000 prize offered by the Clay

Math institute in the USA. Richard Kaye’s [12] result

states that a decision problem called "Minesweeper

Consistency Problem" (abbreviated as MCP) is

equivalent to the problem of playing the

Minesweeper game which is another NP-complete

problems. That is, the problem of simply determining

which squares are mines or not is equivalent to MCP.

Meredith Kadlac [7] had showed that

one-dimensional MCP is easy. One-dimensional MCP

is the original problem with one dimension restricted

to one. One-dimensional MCP Problem is regular and

can be recognized by a deterministic finite

automaton.

In this paper, we will extend his work to 2×n

MCP which is more complicated and difficult to be

dealt with.

This paper is organized as follows. In Section

2, we describe some properties and definitions of

MCP. Section 3 introduces a nondeterministic finite

autom automaton (NFA) to solve 2×n MCP. In

Section 4, we simplify the original NFA and discuss

the corresponding DFA. In Section 5, we analyze

the time to find consistent configurations. Section 6

exhibits our conclusions.

2 Properties and definitions of
Minesweeper consistency problem

What is Minesweeper Consistency Problem? Richard

Kaye defined this problem. On the FAQ in his

Minesweeper site [6] he said:

“This is a question one can ask about any particular

rectangular grid with the squares decorated by

numbers 0-8, mines, or left blank. It asks: is there a

configuration of mines in the grid that would result in

the pattern of symbols one sees (according to the

usual Minesweeper rules)? ”

For the example of Figure 1(a), there is
only one legal configuration of mines as
shown in Figure 1(b). So we know this
Minesweeper board is consistent, where “B”
means a mine, “?” means an unknown
square which could

0 ? ? ? 0 0 2 B
? 1 4 ? 0 1 4 B
1 2 ? B 1 2 B B
B 2 2 2

(a)

2

B 2 2 2
(b)

2 3 3

? B ?

2 2 2
(c)

Figure 1. (a) a given 4×4 Minesweeper board (b) one legal configuration of mines for (a) (c) an inconsistent

Minesweeper board

be a mine or a safe square, and a number
between 0 and 8 means how many mines are
in its surrounding squares. In Figure 1(c),
there is an inconsistent square on the
upper-right corner, for lacking one mine
adjacent to it.

In Richard Kaye’s article [12], “Minesweeper is

NP-Complete”, he proved that MCP is NP-complete

by reducing the circuit satisfiability problem to

Minesweeper. Since the general two-dimensional

MCP is NP-complete, and Meredith Kadlac [7] had

proved one-dimensional MCP is tractable, we make

an effort to extend the one-dimensional MCP to two

dimensions but with one dimension restricted to two

in this paper. Here we call this kind of problem as

2×n MCP. 2×n Minesweeper game is a simplification

version of the general Minesweeper game. However,

it is more complex and difficult to prove the

tractability than the one-dimensional one’s. There are

lots of possible input patterns to be dealt with.

Fortunately, we find a way to simplify the finite

automaton to avoid the explosive growth of the

possible configurations. As a result, we are able to

show that 2×n MCP is also tractable.

3 The 2×n Minesweeper
Consistency problem

On a 2×n Minesweeper board, there are squares

decorated by numbers 0 to 5, mine-marked, or

‘?’-marked squares (equivalent to covered squares). A

configuration of a 2×10 Minesweeper board is shown

in Figure 2(a).

(a)

(b)

Figure 2. (a) and (b) are the same for the circled

square “2” in the fifth column contributes the

same unit to its surrounding squares.

Of course, we can treat the 2×n and the n×2

Minesweeper boards as the same, for just rotating the

n×2 Minesweeper board.

Definition 1: Given a 2×n Minesweeper grid with

numbers and mines, some squares being covered,

the 2×n Minesweeper consistency problem is to

determine if there is a configuration of mines in

those covered squares that give rise to the number

seen.

That means a 2×n Minesweeper puzzle is

consistent if there exists at least one correspondence

between the information in each square and mines or

covered squares. Note that a Minesweeper puzzle is

solved correctly if each square numbered with m is

surrounded by exactly m mines.

In this section, we will show that the 2×n MCP

is tractable by exhibiting a nondeterministic finite

automaton (abbreviated as NFA) which determines

the consistency of any 2×n Minesweeper puzzle.

We describe how the NFA be created to solve

this problem first. A 2×n Minesweeper board can be

B B
B

B B

B
B B

B B

2

represented by a sequence of n symbols. Each symbol

represents a column of the board and is a pair over

the alphabets β={0, 1, 2, 3, 4, 5, B, ?}. For example,

the board in Figure 2(a) can be represented by <”B1”,

“11”, “??”, “??”, “B2”, “??”, “B2”, “3B”, “B2”,

“11”>. A symbol may be “00”, “11”, “B?”, “??”, …,

etc. There are 64 possible pairs as shown in Table 1.

But with some interesting properties of 2×n

Minesweeper, most pairs could be eliminated, and

only 19 pairs left as shown in Table 2. One property

is if both alphabets of the pair are numbers, they

should be the same (such as ‘00’, ‘11’, ‘22’, ‘33’,

‘44’) for each mine will contribute a same unit of

count to both of its upper and lower squares in

adjacent columns. That is, these two alphabets have

the same impact on a 2×n Minesweeper board.

Furthermore, some pairs like ‘0B’, ‘B0’, ’55’ are

always inconsistent, so we can also eliminate these

kinds of pairs.

Table 1. All possible symbols for 2×n Minesweeper

problem

00 01 02 03 04 05 0B 0?
10 11 12 13 14 15 1B 1?
20 21 22 23 24 25 2B 2?
30 31 32 33 34 35 3B 3?
40 41 42 43 44 45 4B 4?
50 51 52 53 54 55 5B 5?
B0 B1 B2 B3 B4 B5 B5 B?
?0 ?1 ?2 ?3 ?4 ?5 ?B ??

Table 2. All legal symbols for 2×n Minesweeper

problem

00 0? 11 1B 1? 22 2B 2?
33 3B 3? 44 4B 4? 5B 5?
BB ?B ??

In addition, alphabets of a pair can be

exchanged with each other and will not affect the

consistency result, so we just take account of one of

the pairs. For example, if we exchange the two

alphabets in the fifth column of Figure 2(a), we can

get the other board as shown in Figure 2(b). A mine

has already appeared above the circled square in

Figure 2(a) and under the circled square in Figure

2(b), so the circled squares of both boards contribute

the same unit of count to their surrounding

squares—only one mine in these unknown

surrounding squares of both boards. Hence, we can

treat Figure 2(a) and Figure 2(b) as the same board.

Definition 2: A 2×n Minesweeper sequence of

length n is a sequence of n symbols over the

alphabet ∑={00, 11, 22, 33, 44, 1B, 2B, 3B, 4B, 5B,

BB, ?B, 0?, 1?, 2?, 3?, 4?, 5?, ??}.

Definition 3: A Minesweeper sequence is globally

consistent if no local inconsistency is found in the

Minesweeper sequence.

The NFA takes a Minesweeper sequence of

length n as input. The NFA is a 5-tuple (Q, Σ, δ, s0, F),

where Q is a finite set of 43 states, i.e.,

Q={s0, ?0?0, ?B?B, ?BBB, BBBB, ?0?B, ?0BB, 0000, 00?0,

1111, 11?0, 2222, 22?0, 1010, 10?0, 2121, 21?0, 3232, 32?0,

21?B, 21BB, 32?B, 32BB, 43?B, 43BB, 11?B, 11BB, 22?B,

22BB, 33?B, 33BB, 2020, 20?0, 3131, 31?0, 31?B, 31BB,

4242, 42?0, 42?B, 42BB, 53?B, 53BB}. The set of input

alphabet is Σ={00, 11, 22, 33, 44, 1B, 2B, 3B, 4B, 5B,

BB, ?B, 0?, 1?, 2?, 3?, 4?, 5?, ??}. δ: Q × Σ → Q is

the state transition relation. δ defines the rules for

state moving. s0∈Q is the start state. F∈Q is the set of

accepting states, F={s0, ?0?0, ?B?B, ?BBB’, ‘BBBB’,

‘?0?B’, ‘?0BB’, ‘0000’, ‘00?0’, ‘1111’, ‘11?0’, ‘2222’,

‘22?0’, ‘11?B’, ‘11BB’, ‘22?B’, ‘22BB’, ‘33?B’, ‘33BB’}.

2

The states of the NFA have the form (XxYy),

where “XY” means the input symbol, and the

subscripts “x” and “y” indicate the information of

mines for input alphabets X and Y. Table 3 explains

the meaning of Xx (or Yy). Take a state ‘10?0’ for

example, “1?” is the input symbol which causes the

machine to go to this state. Looking into Table 3, we

can know that for the input ‘1’, the subscript ‘0’

means that no mine appeared in this and the left

columns, and the next column should have only one

mine. Then for the input ‘?’, the subscript ‘0’ means

that this ‘?’ is not a mine. Since no mine appeared in

this column, so the next column must have one mine

in order to keep consistency. The subscripts for those

numbered squares reveal mine information—numbers

of mines, and the subscripts “B” and “0” for

‘?’-marked squares reveal whether the ‘?’ is a mine

or not.

Table 3. Meaning of Xx (or Yy), where the subscript x for X

Xx (or Yy) Meaning
00 There is no mine adjacent to this column.
10 There is no mine in this and the left columns, and the next

column should have only one mine.
11 There is totally a mine in this and the left columns, and

the next column should not have any mine.
20 There is no mine in this and the left columns, and the next

column should have 2 mines.
21 There is totally a mine in this and the left columns, and

the next column should have only one mine.
22 There are totally 2 mines in this and the left columns, and

the next column should not have any mine.
31 There is totally a mine in this and the left columns, and

the next column should have 2 mines.
32 There are totally 2 mines in this and the left columns, and

the next column should have only one mine.
33 There are totally 3 mines in this and the left columns, and

the next column should not have any mine.
42 There are totally 2 mines in this and the left columns, and

the next column should have 2 mines.
43 There are totally 3 mines in this and the left columns, and

the next column should have only one mine.
53 There are totally 3 mines in this and the left columns, and

the next column should have 2 mines.
?0 For the input alphabet ‘?’, the subscript ‘0’ means that

this ‘?’ is not a mine.

3

?B For the input alphabet ‘?’, the subscript ‘B’ means that
this ‘?’ is a mine.

BB Input alphabet ‘B’ with the subscript ‘B’ means it is a
mine.

We consider all cases which are possibly

happened in

any 2×n Minesweeper board. Some state

combinations are inconsistent such as ‘10BB’, ‘20BB’,

‘101B’, ‘3242’, ‘4252’, …,etc. For the example of

‘10BB’, “10” means that no mine has appeared in this

and the left column, but “BB” means the square is a

mine in this column, a contradiction. The cases ‘3242’

and ‘4252’ are inconsistent for the illegal input

symbols, and ‘10BB’, ‘20BB’, ‘101B’ are inconsistent

for their impossible occurrences. As we described

before, if both alphabets of the input symbol are

numbers, they should be the same. For the states, this

property still holds. So we can not get states like

‘101B’, ‘3242’, ‘4252’, ‘1B2B’, ‘4110’…, etc. In this way,

we have totally 43 possible states in Q.

Now we construct the 2×n MCP state transition

relations as shown in Table 4, where state ‘s0’, ‘?0?0’,

‘?B?B’, ‘?BBB’, ‘BBBB’, ‘?0?B’, ‘?0BB’, ‘0000’, ‘00?0’,

‘1111’, ‘11?0’, ‘2222’, ‘22?0’, ‘11?B’, ‘11BB’, ‘22?B’,

‘22BB’, ‘33?B’, and ‘33BB’ are accepting states. We use

double circle to represent them in Table 4. If the NFA

ends at any one (say, ‘kk?0’) of these accepting states,

then there are totally k mines in the last two columns.

We do not need extra mines to equalize the quantity

k.

2 ? 2 ?
2 B 2 ?

Figure 3. A 2×4 Minesweeper board

Let us see how this NFA works. A 2×n

Minesweeper board is given in Figure 3, and the 2×n

Minesweeper sequence is represented as <“22”, “?B”,

“22”, “??”>. Initially, the machine is in the start state

s0 (in the state set q0) and the first input symbol is

“22”, it goes to only one state ‘2020’ (in the state set

q8). From the state ‘2020’, there is only one state

‘?BBB’ (in the state set q2) to go on the next input

symbol “?B”. The third input symbol is “22”, and the

machine goes to the state ‘2222’ (in the state set q4).

Then the machine will go to the state ‘?0?0’ (in the

state set q1) for the fourth input symbol is “??”. The

state ‘?0?0’ is an accepting state, so we know that this

2×n Minesweeper board is consistent.

Now let us see an easy 2×n Minesweeper board

shown in Figure 4. The 2×n Minesweeper sequence is

represented as <“22”>. Initially the machine is in the

start state s0 (in the state set q0) and the first input

symbol is “22”, and it will go to the state ‘2020’ (in

the state set q8) which is a rejecting state. So we can

know this board is not consistent.

Figure 4. A 2×1 Minesweeper board

Take another example, a 2×n Minesweeper

board is shown in Figure 5. The 2×n Minesweeper

sequence is represented as <“?B”, “2?”>. The

machine is initially in the start state s0 (in the state set

q0) and the first input symbol is “?B”, and then the

machine will have two states ‘?0B

2
2

B’ and ‘?BBB’ to go.

And the next input symbol is “2?”, so the machine

will have 2 states ‘21?B’ and ‘22?B’ to go if it is from

state ’?0BB’. The state ‘22?B’ is an accepting state. But

4

the state ‘21?B’ is a rejecting state because it needs an

extra mine in the third column which is not present.

On the other hand, if it is from the state ‘?BBB’, then

the machine will go to an accepting state ‘22?0’.

When the machine gets an input symbol consisting of

one or two ‘?’s, it will have two or more paths to go.

If the machine takes more and more inputs like these,

it may have lots of possible paths to follow. Hence if

we get a 2×n Minesweeper board with many inputs

like “??”, “?B”, “BB”, “2?”, and etc., would the

machine go to lots of states with explosive growth?

In the follows, we will deal with this problem.

Figure 5. A 2×2 Minesweeper board

Table 4. The state transition relations for 2×n MCP NFA

 0? 1? 2? 3? 4? 5? ?B ?? 00 11 1B 22 2B 33 3B 44 4B 5B BB

 s0

00?0 10?0

11?B

20?0

21?B

31?B ?0BB

?BBB

?0?0

?0?B

?B?B

0000 1010 11BB 2020 21BB 31BB BBBB

?0?0

00?0 10?0

11?B

20?0

21?B

31?B ?0BB

?BBB

?0?0

?0?B

?B?B

0000 1010 11BB 2020 21BB 31BB BBBB

?B?B 22?0 32?0

33?B

42?0

43?B

53?B

?0BB

?BBB

?0?0

?0?B

?B?B

 2222 3232 33BB 4242 43BB 53BB BBBB

?BBB 22?0 32?0

33?B

42?0

43?B

53?B

?0BB

?BBB

?0?0

?0?B

?B?B

 2222 3232 33BB 4242 43BB 53BB BBBB

BBBB 22?0 32?0

33?B

42?0

43?B

53?B

?0BB

?BBB

?0?0

?0?B

?B?B

 2222 3232 33BB 4242 43BB 53BB BBBB

?0?B 11?0 21?0

22?B

31?0

32?B

42?B

 ?0BB

?BBB

?0?0

?0?B

?B?B

 1111 2121 22BB 3131 32BB 42BB BBBB

?0BB 11?0 21?0

22?B

31?0

32?B

42?B

 ?0BB

?BBB

?0?0

?0?B

?B?B

 1111 2121 22BB 3131 32BB 42BB BBBB

0000 00?0 10?0 20?0 ?0?0 0000 1010 2020

00?0 00?0 10?0 20?0 ?0?0 0000 1010 2020

1111 00?0 10?0 20?0 ?0?0 0000 1010 2020

11?0 00?0 10?0 20?0 ?0?0 0000 1010 2020

2222 00?0 10?0 20?0 ?0?0 0000 1010 2020

? 2
B ?

input
state

q0

q1

q2

q3

q4

7

22?0 00?0 10?0 20?0 ?0?0 0000 1010 2020

1010 11?B 21?B 31?B ?0BB ?0?B 11BB 21BB 31BB

10?0 11?B 21?B 31?B ?0BB ?0?B 11BB 21BB 31BB

2121 11?B 21?B 31?B ?0BB ?0?B 11BB 21BB 31BB

21?0 11?B 21?B 31?B ?0BB ?0?B 11BB 21BB 31BB

3232 11?B 21?B 31?B ?0BB ?0?B 11BB 21BB 31BB

q5

32?0 11?B 21?B 31?B ?0BB ?0?B 11BB 21BB 31BB

21?B 22?B 32?B 42?B ?0BB ?0?B 22BB 32BB 42BB
q6

21BB 22?B 32?B 42?B ?0BB ?0?B 22BB 32BB 42BB

 0? 1? 2? 3? 4? 5? ?B ?? 00 11 1B 22 2B 33 3B 44 4B 5B BB

32?B 2

state
input

2?B 32?B 42?B ?0BB ?0?B 22BB 32BB 42BB

32BB 22?B 32?B 42?B ?0BB ?0?B 22BB 32BB 42BB

43?B 22?B 32?B 42?B ?0BB ?0?B 22BB 32BB 42BB
q6

43BB 22?B 32?B 42?B ?0BB ?0?B 22BB 32BB 42BB

11?B 11?0 21?0 31?0 ?0?0 1111 2121 3131

11BB 11?0 21?0 31?0 ?0?0 1111 2121 3131

22?B 11?0 21?0 31?0 ?0?0 1111 2121 3131

22?B 11?0 21?0 31?0 ?0?0 1111 2121 3131

33?B 11?0 21?0 31?0 ?0?0 1111 2121 3131

33?B 1

q7

1?0 21?0 31?0 ?0?0 1111 2121 3131

2020 ?BBB ?B?B BBBB

20?0 ?BBB ?B?B BBBB

3131 ?BBB ?B?B BBBB

31?0 ?BBB ?B?B BBBB

31?B ?BBB ?B?B BBBB

31BB ?BBB ?B?B BBBB

4242 ?BBB ?B?B BBBB

42?0 ?BBB ?B?B BBBB

42?B ?BBB ?B?B BBBB

q8

42BB ?BBB ?B?B BBBB

8

53?B ?BBB ?B?B BBBB

53BB ?BBB ?B?B BBBB

As described before, we must care about the growth

of possible moving paths in the NFA. Here we give

another example. A 2×n Minesweeper board is given

in Figure 6.

2 ? 4 ? ?
? ? ? B 2

Figure 6. A 2×4 Minesweeper board

The 2×n Minesweeper sequence is represented

as <“2?”, “??”, “4?”, “?B”, “2?”>. In the NFA, the

machine will have 4 possible moving paths according

to the state transition relations of Table 4.

Initially the machine on the input symbol “2?” has

two possible states ‘20?0’ and ‘21?B’ to go. The

machine in the state ‘20?0’ will go to the state ‘?B?B’

while reading the input symbol “??”. The machine in

the state ‘21?B’ will go to the state ‘?0?B’ while

reading the input symbol “??”. If the machine goes to

the state ‘?B?B’ and reads the next input symbol ‘4?’,

then it splits again and gets two possible states ‘42?0’,

‘43?B’. On the other hand, if the machine goes to the

state ‘?0?B’ and reads the input symbol “4?”, then it

can only go to the state ‘42?B’. The next input symbol

is “?B”, the machine will go to the state ‘?BBB’ if it is

from states ‘42?0’ or ‘42?B’, or go to the state ‘?0?B’ if

it is from the state ‘43?B’. The machine in the state

‘?B?B’ reads the final input symbol “2?” will go to the

state ‘22?0’. On the other hand, the machine in the

state ‘?0?B’ will have 2 states ‘21?0’ or ‘22?B’ to go.

But the state ’21?0’ is a rejecting state because it

needs an extra mine in the next column which is not

present. So only 4 possible paths are consistent. See

below for a depiction.

 s0 20?0 ?B?B 42?0 ?B?B 22?0

(accepting state)

 s0 20?0 ?B?B 43?B ?0?B 21?0 (rejecting

state)

 s0 20?0 ?B?B 43?B ?0?B 22?B

(accepting state)

 s0 21?B ?0?B 42?B ?B?B 22?0

(accepting state)

Since the rules of transitions only depend on

the number information of mines between current and

the previous columns as well as the next input

symbol, the NFA can correctly reach an accepting

state or a rejecting state.

4 Simplified NFA and DFA for
2×n MCP

According to the state transition relations

shown in Table 4, we find that some states have the

same behavior in the table, so we can combine these

states to a new state set. Then we can get 8 equivalent

state sets.

 q0 = {s0}, q0 is the start state set.

 q1 = {?0?0}

q1 is the state set which means no mine is

present in this and the left columns.

 q2 = {?B?B, ?BBB, BBBB}

q2 is the state set which means 2 mines are

present in this and the left columns.

 q3 = {?0?B, ?0BB}

q3 is the state set which means only one mine is

present in this and the left columns.

 q4 = {0000, 00?0, 1111, 11?0, 2222, 22?0},

q4 is the state set which means 2 numbered

squares (the 2 numbers are the same) are

present in this column, and they do not need

extra mines to equalize them.

9

 q5 = {1010, 10?0, 2121, 21?0, 3232, 32?0},

q5 is the state set which means 2 numbered

squares (the 2 numbers are the same) are

present in this column, and they need one extra

mine to equalize them.

 q6 = {21?B, 21BB, 32?B, 32BB, 43?B, 43BB},

q6 is the state set which means a numbered

square and a mine are present in this column,

and the number square needs one extra mine to

equalize it.

 q7 = {11?B, 11BB, 22?B, 22BB, 33?B, 33BB},

q7 is the state set which means a numbered

square and a mine are present in this column,

and the number square does not need extra

mines to equalize it.

 q8 = {2020, 20?0, 3131, 31?0, 31?B, 31BB, 4242, 42?0,

42?B, 42BB, 53?B, 53BB },

q8 is the state set which means 2 numbered

squares are present, and they need two extra

mines to equalize them.

After combining those states, we can get a

simplified state transition table as shown in Table 5,

where there are 6 accepting states: q0, q1, q2, q3, q4,

and q7.

The state transition diagram is shown in Figure

7. Since it is an NFA— several choices may exist for

the next state for some inputs. For example, when the

machine goes to the state set ‘q3’ with the next input

‘??’, the machine will have three possible state sets q1,

q2 or q3 to go. According to computation theory [8],

we have the following theorem.

Theorem 1: An NFA has an equivalent

deterministic finite automaton.

Deterministic and nondeterministic finite

automata recognize the same class of languages. Such

equivalence is both surprising and useful. Now we

are certainly able to find an equivalent DFA for the

NFA we constructed for 2×n MCP.

Table 5. Simplified state transition Table for 2×n MCP NFA

input

state
sets

1? 2? 3? 4? ?B ?? 00 0? 11 1B 22 2B 33 3B 44 4B 5? 5B BB

q0 q5

q7

q6

q8

q8 q2

q3

q1

q2

q3

q4 q4 q5 q7 q8 q6 q8 q2

q1 q5

q7

q6

q8

q8 q2

q3

q1

q2

q3

q4 q4 q5 q 7 q8 q6 q8 q2

q2 q4 q5

q7

q6

q8

q2

q3

q1

q2

q3

 q4 q5 q7 q8 q6 q 8 q 8 q2

q3 q4 q5

q7

q6

q8

q8 q2

q3

q1

q2

q3

 q4 q5 q7 q8 q6 q8 q2

q4 q5 q8 q1 q4 q4 q5 q8

10

q5 q7 q6 q8 q3 q3 q7 q6 q8

q6 q7 q6 q8 q3 q3 q7 q6 q8

q7 q4 q5 q8 q1 q4 q5 q8

q8 q2 q2 q2

Theorem 2: 2×n MCP is in P.

Proof: The equivalent DFA can determine 2×n

MCP in O(n) time, for the DFA takes linear time to

scan a 2×n Minesweeper board. So we proved that

2×n MCP is in class P.

q6

q5

q8

??

??

 ??

 ??

 ?
?

?B, ??

?B
, ?

?,
BB

2?, 3
?, 2

2, 3
B

?B
, ?

?,
 B

B

4?
, 4

4,
 5

?,
5B

2?, 22

2?
, 2

B

2?, 22

?B, ??, BB

1?, 1B

2?, 3?, 22, 3B

 ?B, ??, BB

?B, ??, BB

?B, ??

?B, ??

1?, 11

2?, 22

2?, 22

3?, 33

?B, ?? ?B, ??

00, 0?

00, 0?

1?, 11

3?, 3
B

3?
, 4

?,
 3

3,
 4

B

1?, 1B

2?, 2B

4?, 4B

3?, 3B

2?, 2B

2?
, 2

B

1?
, 1

1

1?, 1B

3?, 33

??

1?, 11 3?, 3B

?B, ??
4?, 4B

1?, 11

2?, 2B

00, 0?

q0

q1

q2

q3 q4

q7

Figure 7. Simplified state transition diagram for 2×n MCP NFA

5 Finding consistent
configurations

For the example of Figure 6, we can find 4

consistent configurations as shown in Figure 9

according to the possible state transition paths as

shown in Figure 8. Note that there are only three

accepting states, but there are two possible

configurations ‘?0?B’ and ‘?B?0’ for the second

column in the lowest path of Figure 9, hence we have

totally 4 consistent configurations.

11

When the DFA determines that a Minesweeper

sequence is consistent, it passes the state sets which

include all possible consistent configurations for all

input symbols. In order to find these consistent

configurations, we use the depth-first search to

traverse the search tree whose search space is the

possible state sets. We can find all consistent

configurations after finishing depth-first search, so it

may take exponential time to find all consistent

configurations which is equal to the time to do

depth-first search. However, if we only want to find a

consistent configuration, it only takes O(n) time to

walk on any path of the search tree from the root to a

leaf node.

s0

2?

21?B

20?0

2?

?? ?B?B

?? ?0?B 42?B

4?

4?

42?0

43?B

4?

?B

?B

?B

22?B

22?0

22?0

?BBB

?0BB

?BBB

?2

?2

?2

21?0

?2

?0?B or
?B?0

Figure 8. The possible state transition paths for Figure 6

Figure 9. All consistent configurations for Figure 6

6 Concluding remarks

In this paper, we extend Meredith Kadlac’s

one-dimensional MCP [7] to 2×n MCP which is more

complex and difficult to be dealt with. According to

the properties of 2×n Minesweeper game, we analyze

all possible input symbols, states, and state transitions

and successfully construct an NFA which can

determine the consistency of 2×n MCP. We further

simplify the original 43 states to 8 state sets

according to their behavior. Then we can convert this

NFA to a corresponding DFA which also takes linear

time to solve 2×n MCP. Hence we proved that 2×n

MCP is tractable and in class P.

B
B

B
B

B
B B B B B B B B

B

 B
B

B B
B

12

When we know a 2×n Minesweeper board is

consistent, we may spend exponential time expanding

the search tree to find all consistent configurations for

that board or spend linear time walking on any path

of the search tree from the root to a leaf node.

The topics of “Minesweeper consistency

problem” are worth studying further in the future.

Furthermore, we hope that we can extend the

problem to more general problems and try to prove

the complexity of these kinds of problem. Because

Richard Kaye has proved general MCP is

NP-complete, we may devote to find a number m

which causes m×n MCP to be NP-complete.

Let us consider another problem. The

complexity of 2-SAT belongs to P, which means we

can find a NFA with finite states to solve it. However,

3-SAT is NP-complete, which means no NFA can be

found to solve 3-SAT at the present time. That is to

say, we even cannot derive all accepting patterns to

form a correct NFA. In this paper, we are able to

show that 1×n and 2×n Minesweeper consistency

problems belong to P. When the board is extended to

3×n or even larger, does there exist an NFA which

can solve this problem? This is a quite interesting

open problem. We hope this paper will prompt

researchers to study other related problems.

7 Acknowledgement
This research was supported in part by a grant

NSC94-2213-E-003-004 from National Science

Council, R.O.C.

8 References
[1] B. P. McPhail, "The Complexity of Puzzles:

NP-Completeness Results for Nurikabe and

Minesweeper," Senior Thesis, Reed College,

2003.

[2] C. Studholme, "Minesweeper as a Constraint

Satisfaction Problem," 2005.

http://www.cs.toronto.edu/~cvs/Minesweeper/

[3] F. Wester, "The Minesweeper Page," 2005.

http://www.frankwester.net/winmine.html

[4] I. Stewart, "Ian Stewart on Minesweeper,"

http://www.claymath.org/Popular_Lectures/Mine

sweeper/

[5] J. D. Ramsdell, "Programmer's Minesweeper,"

http://www.ccs.neu.edu/home/ramsdell/pgms/

[6] J. Palumbo, "The P Vs NP Problem, NP

Completeness, and Minesweeper," 2003.

http://www.math.rutgers.edu/~greenfie/

currentcourses/sem090/pdfstuff/palumbo.pdf

[7] M. Kadlac, "Explorations of the Minesweeper

Consistency Problem," Proceedings of the

Research Experiences for Undergraduates

Program in Mathematics, Oregon State

University, pp.78-126 , 2003.

[8] M. Sipser, Introduction to the Theory of

Computation, Second Edition, Course

Technology, 2005.

[9] Pedro Gimeno Fortea., "Minesweeper Designer

v0.1 beta,"

http://www.formauri.es/personal/pgimeno/comp

urec/Minesweeper.php

[10] R. Donner and C. Johnson., "Minesweeper,"

http://www.planat-minesweeper.com/download.

php
[11] R. Kaye, "Richard Kaye’s Minesweeper

Website,"

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/
[12] R. Kaye, "Minesweeper is NP-Complete," The

Mathematical Intelligencer, 22(22) pp. 9-15,

2000.

13

http://www.cs.toronto.edu/%7Ecvs/minesweeper/
http://www.frankwester.net/winmine.html
http://www.claymath.org/Popular_Lectures/Minesweeper/
http://www.claymath.org/Popular_Lectures/Minesweeper/
http://www.ccs.neu.edu/home/ramsdell/pgms/
http://www.math.rutgers.edu/%7Egreenfie/currentcourses/sem090/pdfstuff/palumbo.pdf
http://www.math.rutgers.edu/%7Egreenfie/currentcourses/sem090/pdfstuff/palumbo.pdf
http://www.formauri.es/personal/pgimeno/compurec/Minesweeper.php
http://www.formauri.es/personal/pgimeno/compurec/Minesweeper.php
http://www.planat-minesweeper.com/download.php
http://www.planat-minesweeper.com/download.php
http://web.mat.bham.ac.uk/R.W.Kaye/minesw/

[13] R. Kaye, "Some Minesweeper Configurations,"

2000.

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/
[14] Raphaël Collet, "Playing the Minesweeper with

Constraints," Second International Mozart/Oz

Conference, pp.251-262, 2004.
[15] T. A. Sudkamp, Languages and Machines: An

Introduction to the Theory of Computer Science,

3rd Edition, Addison-Wesley, 2005.

14

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/

