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Abstract- A novel scheme for training support 
vector regression (SVR) with self-adaptive 
mechanism, called adaptive SVR (ASVR), is 
introduced herein to tune automatically user-defined 
free parameters, C and ε -tube, optimally in SVR. In 
the traditional support vector regression, two free 
parameters, C and ε -tube, are set in the default 
values, infinite and zero, respectively. However, this 
default setting is not optimal one for any SVR 
forecasting applications, and thus it may encounter 
some big residual errors leading to worst prediction 
accuracy. In order to best fit SVR model, adaptive 
support vector regression is applied to tuning free 
parameters C and ε -tube optimally. In such this way, 
the generalization capability can be enhanced in 
SVR model so as to improve prediction accuracy 
highly. 
 
Keywords: support vector regression, adaptive 
support vector regression, generalization capability. 
 
1. Introduction 
 

Well-known methods, such as ARMA [1], 
artificial network [2], or fuzzy inference system [2], 
have been widely employed into many forecasting on 
the scientific or economic applications. However, 
these methods usually require a lot of observed data 
for fitting their model to build more accurate 
approach [3] so that these models probably do not be 
suitable for the short-term task using only scarce data 
for modeling. Both grey model (GM) [4] and 
cumulated 3 points least squared linear polynomial 
(C3LSP) [5] have introduced acts contrary to the 
aforementioned just acquiring a few data for 
modeling without training process, implying a simple 
and fast short-term task. Notwithstanding it is good 
to short-term task, the overshooting problem [5] 
often occurs in grey model and resulted in a big 
residual error around the region of turning points. In 
contrast, C3LSP model has encountered the 
underestimated results. Alternatively, support vector 
regression (SVR) [6] is very useful to process the 
short-term task with sparse data given and possibly 
producing a best-fit model to avoid the overshooting 

problem. If outliers exist somewhere in the given 
training data set, the trained SVR (might be deviated 
one) might not work best-fit in the prediction or 
estimation. It is interested that fewer literatures have 
mentioned about the user-defined free parameters C 
and ε -tube in SVR for years. How to scheme a self-
adaptive method for tuning two user-defined free 
parameters automatically is proposed in this study.  
 
2. Learning Algorithm for Support 

Vector Regression 
 

The foundations of Support Vector Machines 
(SVM) have been developed by Vapnik [7], and are 
gaining popularity due to many attractive features, 
and promising empirical performance. The 
formulation embodies the Structural Risk 
Minimization (SRM) principle, as opposed to the 
Empirical Risk Minimization (ERM) approach 
commonly employed within statistical learning 
methods. SRM minimizes an upper bound on the 
generalization error, as opposed to ERM that 
minimizes the error on the training data. It is this 
difference that equips SVMs with a greater potential 
to generalize, which is our goal in statistical learning. 
The SVM can be applied to both classification and 
regression problems [8]. 
Support Vector Machines along with neural networks 
as one of the standard tools for machine learning and 
data mining [8]. Initially developed for solving 
classification problems, SV technology can also be 
successfully applied in regression, i.e. functional 
approximation, problems. Unlike pattern recognition 
problems, where the desired outputs are discrete 
values like Booleans, here there are real-valued 
functions [9]. We consider approximating functions 
solved by support vector regression (SVR) as the 
form of 
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where )(xφ  are denoted by features. In order to 
introduce all relevant and necessary concept of SV 
regression in a gradual way, linear regression is 
considered first. 
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Furthermore, Vapnik introduced a general type of 
loss function, namely, error, the linear loss function 
with ε -insensitivity zone: 
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A new empirical risk is introduced for performing 
SVM regression. 
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According to the learning theory of SVMs, the 
objective is to minimize the empirical risk and norm-
squared of weight vector simultaneously. Thus, 
estimate a linear regression hyperplane 

bxwwxf T +=),(  by minimizing 

 







++= ∑∑

==

l

i
i

l

i
iCwwR

1

*

1

2*

2
1),,( ξξξξ , (5) 

under constrains 
 libxwy ii
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 liybxw iii
T ,...,1,* =+≤−+ ξε  (7) 

 lii ,...,1,0 =≥ξ  (8) 
 lii ,...,1,0* =≥ξ  (9) 
where the constant C influences a trade-off between 
an approximation error and an estimation error 
decided by the weight vector norm w , and this 

design parameter is chosen by the user. iξ  and *
iξ are 

slack variables as the measurement upper bound and 
lower bound of outputs. This quadratic optimization 
is equivalence to apply Karush-Kuhn-Tucker (KKT) 
conditions for regression in which maximizing dual 
variables Lagrangian ),( *ααdL : 
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subject to constraints 
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 liCi ,...,1,0 =≤≤α  (12) 
 liCi ,...,1,0 * =≤≤ α  (13) 

After calculating Lagrange multipliers iα  and *
iα , 

find an optimal desired weights vector of the 
regression hyperplane as 
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and an optimal bias of regression hyberplane as 
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In non-linear cases for regression, the kernal function, 
for typical instances, polynomial, RBF, or sigmoid 

function, will be adopt to replace the scale product 
j

T xx
i

 with ),( ji xxK  in Eq. (10).  
If the term )( *

iii ααβ −=  is defined in training data 
set, the output of SVR can be obtained with new 
input pattern iz  [9]. 
 0bgy += β  (16) 
where the vector g  is constructed by 

xzg T
i= , 

and matrix x  stands for patterns in training data set 
as well as vector iz  represents new input pattern. 

]...[ 21 lxxxx =  
T

iNiii zzzz ],...,,[ 21=  

 
3. Adaptive Support Vector Regression 

(ASVR) 
 
3.1 Definition of ASVR Notations  
 

The specific notations that are utilized to form 
adaptive support vector regression (ASVR) proposed 
in this study will be defined and described clearly in 
the following statements. Those are the total absolute 
differences κ , the coefficient of oscillation µ , the 
first-degree tail rate ρ , the second-degree tail rate ϑ , 
the tail weight σ , the q-base q , and the gauge factor 
v  listed in the subsection 3.1. All of them are applied 
to tuning ε -tube in SVR learning automatically. The 
formulation of those notations is listed in the 
subsection 3.2. 
 
3.1.1. Slant rate. A straight line is derived from the 
most recent specified data points. The slant of this 
straight line is enlarged by tangent function in order 
to emphasize the most recent observed data 
distribution on a time series. This slant rate is 
denoted as ς  on Eq. (20). 
 
3.1.2. Total absolute differences. The total 
differences κ  on Eq. (25) denotes sum of absolute 
components in the normalized difference sequence 

1−ΛN  on Eq. (24). 
 
3.1.3. Coefficient of oscillation. The coefficient of 
oscillation µ  on Eq. (26) represents the ratio of 
absolute sum of components in the normalized 
difference sequence to the total differences κ . It 
means what percent of amplitude up-and-down 
(including down-and-up) changes in the difference 
sequence and interprets the oscillation phenomenon 
existing over the sampled data set indeed. A very 
small real value, say 10-6, used as a padding number 
is placed in both denominator and numerator in order 
to avoid a case of dividing by zero. 
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3.1.4. First-degree tail rate. The first-degree tail 
rate ρ  on Eq. (27) stands for the ratio of the last 
difference to mean difference, and shows the sign of 
first-degree of the most recent inertia with respect to 
the current trend. This rate may provide significant 
information to support the future planning when we 
want to use the current sampled data set to carry out 
n-steps-look-ahead prediction. 
 
3.1.5. Second-degree tail rate. The second-degree 
tail rate ϑ  on Eq. (28) expresses the ratio of average 
of the last two differences to mean difference, and 
shows the sign of second-degree of the most recent 
inertia with respect to the current trend. We think of 
this rate as information of another one used to 
support the future planning. In other words, both 
first-degree tail rate ρ  and second-degree tail rate ϑ  
are taken into account as n-steps-look-ahead 
prediction is proceeding. 
 
3.1.6. Tail weight. The dilate operation, hyperbolic 
tangent function, on the specific value that is 
calculated by squaring the percent of coefficient of 
oscillation on the first-degree tail rate is emphasized 
herein to form a tail weight σ  on Eq. (29) meaning 
proportionality over the oscillated portion of a 
sequence. This subtle measure insights the possibility 
of future outcome, especially applied to single-step-
look-ahead forecasting, so that it gives enriched 
additional information referred by the future planning 
highly in hope. 
 
3.1.7. Q-base. The q-base q  on Eq. (30) is defined 
as an exponential function with negative power, and 
the power is assigned either a tail weight scaled by 
hyperbolic tangent function of ϕ  or a first-degree tail 
rate based on the dependency of oscillation 
coefficient µ . This q-base will be used for 
computing the gauge factor v  on Eq. (31), and then 
this gauge factor will be employed to adjust ε -tube 
on Eq. (35). 
 
3.1.8. Gauge factor. The gauge factor v  on Eq. (31) 
describes a specific tuning factor used to adapt 
optimal ε -tube, and ε -tube is one of free parameters 
should be applied into the training process of support 
vector regression. In order to speed-up the training 
process of support vector regression, adaptation of 
the gauge factor in fact contributing a great help to 
obtain ε -tube on Eq. (35) is explored herein and 
designated a way to compute its appropriate value 
through a formula that is proposed in this paper. 
 
3.2 ASVR Learning Algorithm  
 

A scheme of regularization for the adaptation on 
free parameter ε-tube in SVR constrained 
optimization has been introduced herein so that it can 

reduce the computation burden and converge to the 
approximately optimal solution faster. Let the 
original data sequence to be as follows. 
 )}(),...,2(),1({ )0()0()0( nxxxX N =  (17) 
The novel regularization algorithm proposed in this 
study is proceeding in the following several steps. 
Step 1: normalization of data sequence on Eq. (17) 
as follows. 
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Step 2: constructing a simple linear regression from 
the most recent normalized data points, 

)(~),...,(~),1(~ )0()0()0( nxnxx  as well as a slant rate ς  to the 
most recent specified data points is also measured. 
 ψϕ += kkx )(~ )0( , nk ,...,2,1=  (19) 
 |)tan(|ϕς =  (20) 
where ϕ  is the slope and ψ  is the bias in this line. 
Step 3: Eq. (19) turns out to be a normal equation 
and its solution Θ  to this least squared problem is 
obtained. 
 ΩΘ=X

~ , (21) 
 XTT ~
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Step 4: taking difference on Eq. (18) led to a 
difference sequence 1−∆N  followed by a normalized 
difference sequence 1−ΛN  which is normalized from 

1−∆N . 
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Step 5: according to the above difference sequence 
1−∆N  and normalized difference sequence 1−ΛN , total 

absolute differences κ , coefficient of oscillation µ , 
first-degree tail rate ρ , second-degree tail rate ϑ , 
and tail weight σ  are calculated. 
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 )/tanh( 2 µρσ =  (29) 
 
Step 6: based on Eq. (25)-(29), two specific factors, 
q-base q  and gauge factor v , are determined.  
 { }ϑµ ρµσϕ ⋅−−−= −− )1(|)tanh(|exp ))1(1(2/1 uq u  (30) 
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where the unit-step function ( )u t  is written by 

 




≥

<
=−

0

0
0 ,1

,0
)(

ttif
ttif

ttµ  (32) 

pulse function is represented as 
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and the sign function is defined as 
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Step 7: the absolute difference between maximum 
and minimum observed value is set. The half width 
of this absolute difference has tuned by gauge factor 
v  in Eq. (35) and then ε -tube is established as 
follows. 
 | ( ) ( ) |

2
N NMax X Min Xvε −

= × , (35) 

Once the value of v  has been determined, the ε  in 
Eq. (35) is set, and then the constrained optimization 
on Eq. (10)-(13) will start for several iterations to 
search the optimal 0w  and 0b  on Eq. (14)-(15). In 
this subsection, the goal is to search the appropriate 
free parameter ε -tube and C such that a fast 
convergence to the optimal 0w  and 0b  can be 
obtained. In support vector regression, an increase of 
value of parameter C will highly penalizes the big 
empirical error while an increase of value of ε -tube 
will reduce the support vectors to loose the bound of 
empirical error [2]. Therefore, how to deal with a 
trade-off between C and ε -tube so as to achieve the 
optimal generalization in SVR is become a very 
important topic. In this research, the relationship 
between ε -tube and C, we proposed, can be 
constructed in the basis of modified Bessel function 
of second kind with the order n  as expressed below. 
A specific integer number n  is obtained from a 
function    of the coefficient of the oscillation µ  as 
described on Eq. (26). 
  µ=n  (36) 

where the operator  µ  is represented as a smallest 
integer bigger than µ . 
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where ...5772156.0=γ  is Euler’s constant and 
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The tunable free parameters in SVR can be done 
automatically and referred it to as adaptive support 
vector regression (ASVR). 
 
4. Model Simulation 
 

As shown in Fig. 1, a remarkable benchmark, 
Mackey-Glass chaotic time [11], is used to test the 
forecasting performance on ASVR. This data 
sequence is generated by the following Mackey-
Glass time-delay differential equation. 

 )(1.0
)(1

)(2.0)( 10 tx
tx

txtx −
−+

−
=

τ
τ

&  (39) 

This time series is chaotic, and so there is no clearly 
defined period. Here we assume 2.1)0( =x , 17=τ , 
and 0)( =tx  for 0<t  as the initial conditions to apply 
fourth-order Runge-Kutta method to find the 
numerical solution to the above MG equation. 
Comparing with grey model GM(1,1) [4], the 
forecasting of ASVR, as shown in Fig. 2, 3, and 4, 
can actually avoid the overshooting results because 
the appropriate tunable parameters, C and ε -tube, 
are computed directly by Eq. (18)-(38), as shown in 
Fig. 5 and Fig. 6, to obtain higher accurate predicted 
values. However, the GM(1,1) has encountered a 
severe problem, overshooting phenomenon, and 
caused big residual errors around turning-point 
region in that chaotic time series. 
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Figure 1. The Mackey-Glass chaotic time series for 
1201 sample points as a benchmark of complex time 
series prediction. 
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Figure 2. The prediction of Mackey-Glass chaotic 
time series for 1102 sample points is performed by 
applying both GM(1,1) indicated by •  and ASVR 
marked by × . 
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Figure 3. A room-in plot shows that the overshooting 
phenomenon has occurrence indicated by •  from 
GM(1,1) predicted results around the turning-point 
region. 
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Figure 4. A higher room-in plot has clearly shown 
the overshooting results from GM(1,1) prediction 
marked by • . In contrast, ASVR has perform very 
well in the prediction of G-M chaotic time series 
without any overshooting problem and its predicted 
results are indicated by × . 
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Figure 5. The top plot represents a tuneable epsilon-
tube ε  used for training SVR. The bottom one shows 
a scaling factor v  applied to computing ε -tube. 
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Figure 6. The plotted curves represents modified 
Bessel function of second kind scaled by exp(z) with 
different order 1, 2, 3, 4, 5, 6, and 7, indicated aside, 
respectively. 

 
5. Experimental Results 
 

As shown in Fig. 7 to Fig. 10 or Fig. 11 to Fig. 12, 
several models are used to compare their 
performance applied to (1) one-dimensional 
application: the prediction on international stock 
price indices, and (2) two-dimensional application: 
the forecasting on typhoon moving traces. The 
applied models are follows: grey model GM(1,1|τ ) 
(GM), cumulated 3-point least squared linear 
polynomial (C3LSP), auto-regression moving-
average (ARMA), radial basis function neural 
network (RBFNN), adaptive support vector 
regression (ASVR). In these experiments, the most 
recent four actual values is considered as a set of 
input data used for modeling to predict the next 
desired output. As the next desired value is obtained, 
the first value in the current input data set is 
discarded and joins the latest observed value to form 
a new input data set for the use of next prediction. 
The predictions of international stock price indices 
for four areas (U.S.A New York Dow Jones, Taiwan 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

905



TAIEX, Japan Nikkei Index, and Korea Comp. Index) 
[10] have been experimented as shown in Fig. 1 to 
Fig. 4. The accuracy of prediction method is also 
compared and the summary of this experiment is 
listed in Table 1, and the goodness of model fitting is 
tested by Q-test successfully due to averaged p-value 
(0.4406) greater than level of significance (0.05) [11]. 
The forecast of typhoon moving trace is a very 
important issue herein provided that two typhoon 
moving traces, Nari and Toraji typhoons [12], have 
been taken for forecasting their future moving 
position as shown in Fig. 11 and Fig. 12. Table 2 has 
listed the summary of forecasting accuracy for the 
comparison between methods, and. the goodness of 
model fitting is tested by Q-test successfully due to 
averaged p-value (0.2752) greater than level of 
significance (0.05). 
 
Table 1. The mean squared error (MSE) between the 
desired values and the predicted results for 
international stock price indexes is up to 41 months 
from Aug. 2000 to Dec. 2003. (unit=105) (p-value 
0.4406 >0.05 in Q-test of goodness of model fitting) 
Methods N Y- D.J. 

Industry 
Index 

Taiwan 
TAIEX 
Index 

Japan 
Nikkei 
Index 

Korea 
Composite 
Index 

Average 
of MSE

GM 4.0577 2.8018 4.7121 0.048139 2.9049 
C3LSP 3.4603 3.0014 6.4032 0.048856 3.2284 
ARMA 7.4955 5.5694 7.1935 0.085545 5.0860 
RBFNN 2.5457 2.6482 4.4123 0.045783 2.4130 
ASVR 2.3300 2.0803 3.6498 0.029807 2.0225 
Note: method abbreviation   
1. GM- GM(1,1|τ ) Model 
2. C3LSP- Cumulated 3-point Least Squared Linear Prediction 
3. ARMA- Autoregressive Moving-Average 
4. RBFNN- Radial Basis Function Neural Network 
5. ASVR-Adaptive Support Vector Regression 
 
Table 2. The mean squared error (MSE) between the 
desired values and the predicted results for Nari 
typhoon moving trace during 6-19, September 2001 
and Toraji typhoon moving trace during 28-31, July 
2001 (p-value 0.2752>0.05 in Q-test of goodness of 
model fitting) 
Methods Nari Typhoon 

Moving Trace 
Toraji Typhoon 
Moving Trace 

Average of MSE

GM 0.0648 0.0594 0.0621 
C3LSP 0.3698 0.9682 0.6690 
ARMA 0.2165 0.1438 0.1802 
RBFNN 0.4647 1.9409 1.2028 
ASVR 0.0609 0.0407 0.0508 

 
6. Concluding Remarks 
 

The traditional support vector regression is a 
remarkable model especially applied to the non-
periodic short-term forecasting under the condition of 
scarce data sequence; however, the default setting for 
free parameters might cause a trained model rather 
than best-fit one and lead to bad performance due to 
not sufficient generalization capability. This study 

introduces a scheme of adaptive support vector 
regression (ASVR) self-tuning the user-defined free 
parameters, C and ε -tube, optimally. In such this 
way, enhancing generalization capability is realized 
so as to achieve best performance. 
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Figure 7. Forecasts of monthly N.Y.D.J. Indus. Index 
for 41 months from Aug. 2000 to Dec. 2003. 
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Figure 8. Forecasts of monthly Taiwan TAIEX index 
for 41 months from Aug. 2000 to Dec. 2003. 
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Figure 9. Forecastsof monthly Japan Nikkei Index for 
41 months from Aug. 2000 to Dec. 2003. 
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Figure 10. Forecasts of monthly Korea Comp. Index 
for 41 months from Aug. 2000 to Dec. 2003. 
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Figure 11. Forecasts of Nari typhoon moving trace 
during 6-19, September 2001. 
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Figure 12. Forecasts of Toraji typhoon moving trace 
during 28-31, July 2001. 
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