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Abstract–Data integration is highly complex in

fuzzy relational databases, partially because of the

involvement of the resemblance relation matrix.

Inconsistent data redundancy may occur when the

fuzzy databases to be integrated are associated with

different relation matrices on a given domain.

This work presents a solution for integrating fuzzy

relational databases with inconsistent data redun-

dancy.
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1. Introduction

Data integration has been extensively studied in
the context of classical databases [1], [2], [3], [4].
Several works [5], [6], [7], [8] have also discussed
data integration in fuzzy databases, but they only
focus on joining database relations within one
fuzzy database. Integrating database relations
from multiple fuzzy databases has not yet been ad-
dressed, and it is more complex because of more
heterogeneity involved. Heterogeneity may ini-
tially occur in the resemblance relation matrices
among multiple fuzzy databases.

A fuzzy relational database consists of a set of
database relations. A fuzzy database relation r of
a relation schema R(A1, A2, . . . , Am) is a subset of
the set cross product Φ(D1)×Φ(D2)×· · ·×Φ(Dm),
where Φ(Dj) := 2Dj − ∅. Each Dj is the domain
of attribute Aj , and is either discrete scalars or
discrete numbers drawn from a finite or infinite
set. An example of a finite scalar domain is {poor,
average, good, excellent}. Let ti represent the i -th
tuple of r, and ti be of the form (di1, di2, . . . , dim).
Each component dij of ti is a non-empty subset of
the corresponding domain Dj . That is, dij ⊆ Dj

and dij 6= ∅. An interpretation of ti is a tuple θ =
(a1, a2, . . . , am) where aj ∈ dij for each domain
Dj .

Buckles and Petry use the similarity relation

to describe the degree of resemblance between el-
ements in a scalar domain, and defined redun-
dant tuples [9]. A similarity relation is a mapping
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sj : Dj × Dj → [0, 1] such that for x, y, z ∈ Dj ,

sj(x, x) = 1 (reflexivity)
sj(x, y) = sj(y, x) (symmetry)
sj(x, z) ≥ maxy∈Dj

{min{sj(x, y), sj(y, z)}}
(max-min transitivity)

Different similarity relations and different associ-
ated thresholds may induce different equivalence
classes. Equivalence classes serves as the basis of
data redundancy. Two fuzzy databases might em-
ployee different similarity relations and/or differ-
ent thresholds, and thus have different data re-
dundancy, termed inconsistent database relations.
It is difficult to integrate data from inconsistent
database relations without violating the principle
of fuzzy relational database, namely, database re-
lation contains no redundant tuple.

This paper first demonstrates the problem of in-
tegrating data from inconsistent database relations
in the resemblance-based database models [9], [10],
and then presents a solution for integrating incon-
sistent database relations. Accordingly, the in-
tegration result does not violate the principle of
fuzzy relational database, and can be interpreted
soundly.

2. Preliminaries

The fuzzy database relation removes redun-
dant tuples by tuple merging. Tuples ti =
(di1, di2, . . . , dim) and tk = (dk1, dk2, . . . , dkm) are
redundant if

min
x,y∈dij∪dkj

sj(x, y) ≥ αj

for j = 1, 2, . . . ,m, and each αj given apriori is the
threshold of similarity relation sj on domain Dj .

Theorem 1[9]. Let r be a database relation gen-

erated by merging the redundant tuples according

to the level constraints on similarity relations. If

Ti represents the set of interpretations of a tuple

ti, then for ti, tk ∈ r,

Ti ∩ Tk = ∅ whenever ti 6= tk. 2

Shenoi and Melton [10] noted that Theorem
1 depends on the fact that a similarity relation
induces disjoint subsets (also called equivalence

classes) by α-similarity. Given any α ∈ [0, 1]
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and a similarity relation s on domain D, two ele-
ments x, y ∈ D are α-similar (denoted by xSαy)
if s(x, y) ≥ α. And, a subset C ⊆ D is an equiva-
lence class [10] in the partition determined by Sα

if and only if C is a maximal subset of D that
satisfies the constraint

min
x,y∈C

s(x, y) ≥ α.

Shenoi and Melton [11] generalized the model of
Buckles and Petry [9] by replacing similarity rela-
tion with proximity relation, and using α-proximity

to induce equivalence classes. A proximity rela-

tion is reflexive and symmetric but not necessarily
transitive. Let s be a proximity relation on D and
α ∈ [0, 1]. Two elements x, z ∈ D are α-proximate

(denoted by xS+
α z) if xSαz or there exists a se-

quence y1, y2, . . . , yr ∈ D, such that

xSαy1Sαy2 . . . SαyrSαz.

Note that xSαz is called α-similarity and holds if
s(x, z) ≥ α.

3. The Problems of Inconsistent Integration

Data redundancy over a fuzzy database influ-
ences the elimination of redundant tuples through
tuple merging. In [9], two redundant tuples
t = (d1, d2, . . . , dm) and t′ = (d′

1, d
′

2, . . . , d
′

m) are
merged into t′′ = (d′′

1 , d′′2 , . . . , d′′

m) where d′′

j =
dj ∪ d′

j , 1 ≤ j ≤ m. An example is given below.

Example 1. Consider a database relation
R(A1, A2), and let Di denote the set of equiva-
lence classes used on domain Di of attribute Ai in
R. The following figures reveal that, given the set
r of tuples, the result of tuple merging in R varies
with D1 and D2.

r

A1 A2

a e

a f

b d

c f

r(R)
case 1: A1 A2

D1 = {{a, b}, {c}} {a, b} {d, e}
D2 = {{d, e}, {f}} =⇒ a f

c f

r(R)
case 2: A1 A2

D1 = {{a}, {b, c}} a {e, f}
D2 = {{d}, {e, f}} =⇒ b d

c f

With classical databases, two union compati-

ble database relations can be integrated using the
union operation [12], which removes redundant tu-
ples (namely, duplicates in the case of classical
databases) from the integrated result. When gen-
eralizing the union operation to fuzzy databases,
two union compatible database relations can be
integrated via the traditional union operation, fol-
lowed by tuple merging to remove redundant tu-
ples from the integrated result.

Definition 1. Let t � t′ denote the result of merg-
ing tuples t and t′, and let r and r′ be two union
compatible fuzzy database relations. The union of
r and r′, denoted by r∪̃r′, then is given by

r∪̃r′ = r′′ \ {t, t′ ∈ r′′ : t ∼= t′}
∪{t � t′ : t, t′ ∈ r′′, t ∼= t′}

where r′′ = r ∪ r′, and t ∼= t′ denotes that t and t′

are redundant. 2

Notably, neither r nor r′ contains redundant tu-
ples since they comply with the principle of the
fuzzy database, and consequently the union result
contains no redundant tuples.

The prerequisite of the above definition is that
r and r′ agree with each other regarding data re-
dundancy so that the union result can be based
on the data redundancy of both operands. How-
ever, when two fuzzy database relations disagree
with each other in terms of data redundancy, the
data redundancy for the union result remains un-
defined. The union result cannot simultaneously
agree with both operands unless the two operands
agree with each other on data redundancy. If
integrating two inconsistent database relations,
the union result cannot simultaneously agree with
both of them on data redundancy, and could vio-
late Theorem 1.

Example 2. Consider the database relation r(R)
and its equivalence classes D1 and D2 of case 1
in Example 1, and a database relation r′(R) de-
scribed below, using equivalence classes D1 and
D2 of case 2 in Example 1.

r′(R)
A1 A2

{b,c} f
a f

As r(R) and r′(R) are inconsistent, forcibly inte-
grating them by Definition 1 using the equivalence
classes D1 and D2 of case 1 to determine redundant
tuples yields the following result.
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r(R) ∪̃ r′(R)
colors temperatures

t1 : {a,b} {d,e}
t2 : a f
t3 : c f
t4 : {b,c} f

2

The merging result in Example 2 violates The-
orem 1 owing to T3 ⊂ T4, where Ti denotes the
set of all possible interpretations of ti. That is be-
cause Definition of redundant tuple implies that
all elements in a component of a tuple must be-
long to the same equivalence class. Otherwise,
even identical tuples may not be considered as re-
dundant. For example, tuples t4 and t4 are not
redundant based on D1 and D2 of case 1. On the
other hand, the same problems occur as using the
equivalence classes of case 2 to determine redun-
dant tuples during database integration. To avoid
the heterogeneity of equivalence classes between
database, the consistency on similarity relations is
introduced as constraint for the fuzzy database re-
lations to be integrated [13]. Similarity relations
that satisfy the consistency constraint, shown be-
low, can induce the identical sets of equivalence
classes via appropriate thresholds.

Definition 2. Let p1, p2, . . . , pk be k Similar-
ity relations on domain D. These k relations
p1, p2, . . . , pk are consistent if the following con-
ditions are satisfied,

pi(x, y) > pi(z, u) ⇔ pj(x, y) > pj(z, u)
for every 1 ≤ i, j ≤ k, where x, y, z, u ∈ D. 2

However, in multi-databases or data ware-
houses, each component database was created in-
dependently and thus, the similarity relations on
the same domain were likely defined by different
experts with slightly different opinions regarding
this domain. It is worth providing an integral view
of these database relations in the multi-databases
or data warehouses. The following section dis-
cusses how to identify an appropriate set of equiv-
alence classes for the union operation to make the
result meaningful.

4. Selection of Equivalence Classes

According to the implication of Definition of re-
dundant tuple, each equivalence class used for the
union result must be a super set of some of the
equivalence classes used for each operand. An ex-
treme example is as follows: for each attribute
of the union result, using an entire domain as an
equivalence class, the result will not violate Theo-
rem 1. However, the result contains only one tuple
after tuple merging, and consequently much infor-
mation is lost. This study introduces the notion
of the general set to preserve more information in
the union result after tuple merging.

Definition 3. Let E1, E2, . . . , Ek and E′ be k+1
sets of equivalence classes on the same domain.
E′ is a general set of E1, E2, . . . , Ek, denoted by
E′ � {E1, E2, . . . , Ek}, if for every e ∈ Ei, there
exists e′ ∈ E′ such that e ⊆ e′, for i = 1, 2, . . . , k.
2

To integrate two inconsistent fuzzy database re-
lations, we first choose a general set as a set of
equivalence classes (discussed further below) for
each attribute, and then proceed tuple merging
based on the general set. Using the general set,
the database relation may contain redundant tuple
regarding the new data redundancy. After merg-
ing redundant tuples for each of involved database
relations based on the general sets chosen, these
database relations can be integrated by Defini-
tion 1.

But, the question is which general set is bet-
ter than the others. Notably, more than one gen-
eral set could exist for given sets of equivalence
classes on the same domain. A general set contain-
ing fewer elements than other general sets on the
same domain has vaguer semantic meaning. Con-
sequently, selecting a general set containing more
elements can preserve more semantic meaning of
the original sets of equivalence classes, and thus
can conserve more information of the original fuzzy
database relations.

Example 3. Consider two sets of equiva-
lence classes E1 = {{a, b}, {c}, {d, e}} and E2 =
{{a}, {b, c}, {d}, {e}}. Both {{a, b, c}, {d, e}} and
{{a, b, c, d, e}} are a general set of E1 and E2, and
the later is semantically vaguer. 2

The general set that has the least vagueness se-
mantic representation is formally defined below.
For brevity, let E denote the set {E1, E2, . . . , Ek}
for any given sets E1, E2, . . . , Ek of equivalence
classes on the same domain.

Definition 4. A set E is the minimal general set

of E if E � E and no set E′ � E exists such that
E′ 6= E and E � {E′}. 2

Notably, the minimal general set (MGS for
short) of E is unique. For instance, only
{{a, b, c}, {d, e}} is the MGS of E1 and E2 in
Example 3. Obviously, when E is the MGS
of E , |E| > |E′| for every other general set
E′ of E . Thus, using the MGS in the union
of fuzzy database relations can minimize the
information loss in the union result. The
MGS of E1, E2, . . . , Ek on domain D of size N

can be determined in O(kN) using Algorithm

Find MGS. In the Algorithm, the underlined
statement can be performed within a constant
time for each iteration by storing each Ei in the
adjacent list [14], in which each element in the do-
main represents a node, and the elements in the
same equivalence classes are regarded as the adja-
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cent nodes. This statement is executed only k×N

times in total.

Algorithm Find MGS

Input: The sets of equivalence classes
E1, E2, . . . , Ek on domain D;

Output: The minimal general set E of
E1, E2, . . . , Ek.

begin

E := ∅; V := ∅; V ′ := ∅;
// V collects all elements in an Ei

while D 6= ∅ do {
choose an element d from D;
V := {d}; V ′ = ∅;
// V ′ = {e ∈ V : e is processed}
while V \ V ′ 6= ∅ do {

choose an element d′ from V \ V ′;
// executed N times in total

V ′ = V ′ ∪ {d′};
for each Ei ∈ {E1, E2, . . . , Ek} do

V := V ∪ ê where ê ∈ Ei and d′ ∈ ê

} // end while V \ V ′ 6= ∅
E := E ∪ {V }; D := D \ V ;

}
end

Recall that a set of equivalence classes is deter-
mined by a similarity relation and its associated
threshold, and thus, lowering the threshold can
derive a new set of equivalence classes, which is
vaguer than the original set of equivalence classes
but still complies semantically with of the origi-
nal similarity relations. One shortcoming of MGS
is that it may not be obtained by reducing the
thresholds on the original similarity relations, il-
lustrated in Example 4. Consequently, MGS may
conflict semantically the original similarity rela-
tions. The minimal adapted general set (MAGS
for short) is introduced to avoid this situation.

Example 4. Consider E1 and E2 in Example 3.
Suppose that E2 is obtained by similarity relation
s and threshold β, and s(b, d) = s(c, d) > s(a, d) >

s(d, e). Then, the MGS {{a, b, c}, {d, e}} of E1

and E2 can not be obtained by Sα (that is, α-
similarity) for any α ∈ [0, 1]. Restated, the MGS
conflicts with the similarity relation s on semantic
meaning. 2

Definition 5. Let s1, s2, . . . , sk denote k similar-
ity relations on the same domain. A set E of equiv-
alence classes is an adapted set on s1, s2, . . . , sk if
there exist α1, α2, . . . , αk such that E can be ob-
tained by Sαi

on si for each i = 1, 2, . . . , k. 2

Definition 6. A set E′ is an adapted general

set of E if E′ is an adapted set on similarity
relations s1, s2, . . . , sk and E′ � E , where E =
{E1, E2, . . . , Ek}, and each Ei is a set of equiv-
alence classes induced by Sαi

on si, αi ∈ [0, 1].
An adapted general set E of E is minimal if no

adapted general set E′ of E exists in which E′ 6= E

and E � {E′}. 2

Though MAGS has vaguer semantic meaning
and takes more time to determine than MGS, it
presents a semantic meaning that is more concor-
dant to the semantic meaning of the similarity
relations used in the original database relations.
MAGS thus is a better choice than MGS if MAGS
does not cause unacceptable information loss, oth-
erwise MGS is necessary. For example, the MAGS
of E1 and E2 in Example 4 is no other than the
set of the entire domain. Using such equivalence
classes yields one-tuple result, and much infor-
mation is consequently lost following integration.
Thus, MGS is a better choice in this case. Also,
note that no information is lost when integrating
consistent database relations.

5. Conclusions

In the proximity-based data model, data re-
dundancy is also based on equivalence classes, al-
though, without max-min transitivity, a proximity
cannot induce equivalence classes by applying the
α-similarity operation. Shenoi and Melton [10] de-
veloped the α-proximity operation to induce equiv-
alence classes on proximity relations. Thus, the
solution provided in this paper can be applied to
the proximity-based fuzzy databases.

To date, the discussion has been limited to us-
ing union operations for integration. To inte-
grate two database relations which are not union-
compatible, outer join or outer union operation
is frequently used [15], [16], which extends each
operand to include attributes that are peculiar to
the other, deposits null values in every tuple for
all such adding attributes, and then performs the
normal union operation.
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