
Using Genetic Algorithm to Solve Sequence Dependent Setup Time Jobs
Scheduling Problem

Shih-Tang Lo
Department of Engineering

Science, National Cheng
Kung University

edwardlo@mail.ksut.edu.tw

Ruey-Maw Chen
Department of Electronic

Engineering National Chin-yi
Institute of Technology
raymond@ncit.edu.tw

Yueh-Min Huang
Department of Engineering

Science, National Cheng
Kung University

huang@mail.ncku.edu.tw

Abstract-Scheduling problems exist in many
applications and most of them have demonstrated as
NP complete. A lot of schemes introduced to solve
scheduling problem. Among them, genetic algorithm
(GA) is successfully used for similar problems in the
past, and leading toward much more successful on
some NP-complete domain than others. In this paper,
we presented a genetic algorithm to solve “sequence
dependent setup time” jobs scheduling problem. The
objective of this paper is to minimized the make span
and (or) maximum machine utilization. Simulation
results demonstrate that the proposed method can
find a good solution and is subjected to user
requirements, if the user has different objective
considerations.

Keywords: Scheduling, genetic algorithm (GA),
Setup time

1. Introduction

Many applications involve the concepts of
scheduling, such as communications, routing, and
production planning and task assignment in multi-
processor. Most problems in these applications are
categorized into the class of NP-complete problems.
It would take a lot of time to get an optimal solution,
especially for a large-scale scheduling problem.

Most of the studies dealing with scheduling have
been confined to optimization of a single criterion.
Many researchers have considered a variety of
scheduling problems with a single performance
measure such as the average flow time, maximum
completion time or tardiness [1-2].

Scheduling decisions frequently involve
considerations of more than one criterion [3-6]. The
bi-criteria scheduling problems are generally divided
into two classes. First one involves minimized one
criterion subject to the constraint that the other
criterion has to be minimized. Second class of
problems, both criteria are considered equally
important and the problem involves finding efficient
schedulers [7]. The problem considered in this paper
belongs to this class.

This study considers the problem of scheduling N
jobs on identical parallel machines, with processing
time p1, p2,…,pn, respectively. These jobs have
different job types. The setup time is small, if one
job and its immediate successor job are the same job
type. Setup time between jobs make machine idle,
increasing the producing cost. Nevertheless, the
setup time is always omitted or included in
processing time on most scheduling problems.
Therefore, this paper focuses on job sequence
arrangement under setup time consideration.

There are various researches in parallel machine
scheduling problem. This paper addressed sequence
dependent setup time jobs scheduling problem on
unrelated parallel machines. The minimization of
complete time, tardiness and make-span are the
common objectives on most study. Karp[8] and
HO[9] had showed that the minimization of total
tardiness in identical machine was NP-hard
problem[10].

Hopfield started using an artificial neural
network (ANN) to solve optimization problems [11].
Since that, Hopfield networks have been
successfully applied to a variety of applications. As
generally known, most scheduling problems are
combinational, thereby ensuring the optimization
process by an ANN . However, these researches are
basically non-adaptive networks, of which the neural
unit connection weights and biases must be
prescribed before applying of the networks to a
particular problem. These networks also have
drawbacks such as failing to converge to a valid
solution, inability to locate the global minimum and
poor scaling properties due to the use of quadratic
energy function. Additionally, most scheduling
problems are limited to the preemptive and
migratory processes on a multiprocessor and,
therefore, only consider the timing constraints.
Simulated Annealing (SA) was introduced by
Metropolis in 1953 [12]. SA is also to solve a widely
complex problems and a lot of solution combinations
[13], but time consuming is a significant concern.
Furthermore, GA has been considered as a powerful
heuristic search method to solve combinational
optimization problems [14].

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

742

In our previous work, we studied multiprocessor
scheduling problem using ANN and Normalized
Mean Field Annealing (MFA) [15-16]. In this paper,
we utilized a genetic algorithm to solve sequence
dependent setup time jobs scheduling problem.
Simulation results demonstrate that suggested
method finds a good solution and is subject to user
requirements, if the user has different objective
considerations. If the deadline time constraint is
more important, then the user can increase the
weight factors α or (and)γ, otherwise increase the
weight factors β or (and)γ of setup time and idle time
constraint. Therefore, the investigated scheduling
system is adaptive to user requirement.

2. Problem Definition and Characteristics

Most scheduling problems are limited to the
preemptive and migratory jobs on machines,
therefore, only consider the timing constraint.
Suppose the system has M identical parallel
machines and N jobs with different types. A job is
non-segmented and non-preemptive. The execution
time of each job is predetermined. The set up time
matrix is predefined base on the job type
characteristics. The machine is idle while setting up
or completes the jobs before the maksspan, causing
low utilization. The set up time is small or zero if
concessive job has the same job type. Given these
assumptions, this work is to find a schedule, which
to minimize maximum complete time and to
maximize the machine utilization. Hence, the job
processing sequence and makepan is the most
important factor on scheduling problem. This paper
uses Genetic Algorithm (GA) to resolve such
scheduling problem; considerations are listed as
follows:

(1) Each job has only one operation; no jobs
can be processed on more than one machine
simultaneously

(2) Machines are all identical. Each machine
can process one job at a time.

(3) Jobs’ processing time is known, and setup
time is determined by job type sequence

3. Genetic Algorithms

According to Darwin’s theory of survival of
fittest, a genetic algorithm is an optimization process
based on the evolution of nature. Using the natural
selection and exchange of genetic information, the
species with the optimal fitness govern the word.
The genetic algorithm is a search algorithm on the
basis of biological principles of crossover, mutation
and selection process. This algorithm maintains a
population of candidate solutions that evolves over
time and ultimately converges. Individuals in
population are represented with chromosomes. Each

individual has a numeric fitness value obtained from
fitness function that measures how well of this
solution [17].

The basic GA contains three parts:
(1) Chromosome representation involves the

parameters combination of handling
problems, and different genetic
representation depicts different solutions of
problems. A Binary representation is
usually used for the coding of each solution.

(2) Fitness function can determine the category
of the parameters combination within a set.
GA uses this information to determine
which combinations of parameters would
survive.

(3) Genetic operators are the kernels of GA.
Their primary task is to synthesize new
combinations of parameters in accordance
with the fitness function of each parameters
combination to achieve the target of
evolution. GA contains three operators. The
selection operators select the fittest
individuals of the current population to
serve as parents of the next generation. The
crossover operator chooses randomly a pair
of individuals and exchanges some part of
the information. The mutation operator
takes an individual randomly and alters it.

The structure of GA is an iteration composed of a
selection step followed by a sequence of crossovers
and mutations procedures. Finally, GA is executed
until some termination state is achieved, such as the
number of iterations, execution time, result stability,
etc. This paper is deal with sequence dependent job
setup time and machine utilization problem. The
proposed algorithm is using most common genetic
operator by the past research to verify our scheduling
problem. The following are the GA operators in this
scheduling system.

3.1 Genetic Expressions and Initial Population.

The coding of individual δ is composed of m
strings (δ1,δ2,……,δm-1,δm), δj is the jobs sequence on
machine j. There is one to one correspondence
between machines and strings, where each string
represents the jobs assigned to some specific
machine. Restated, string δj represents a list of jobs
to machine j. Figure 1 shows an example of a coding
for three machines, job 1,3,4 are processed in
machine 1.

{ { { ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

321

6,7,*,5,2,*,1,3,4
δδδ

!
!

Figure 1 Genetic expression for 3 machines

Since the initial population has been produced
randomly in most GA researches, it always requires

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

743

longer search time to obtain an optimal solution.
There is a lot of scheduling system using heuristic
rule to generate the initial population. But this will
decreases the diverse of individuals for searching an
optimal solution. In this investigated scheduling
system, the initial population is generated randomly.

3.2 Crossover Operator

The crossover operator focuses on creating
alternative solutions around the best solution.
Generally, crossover is an operation used to generate
a new string (i.e., child) from two parent strings. It
provides a mechanism for parameters to mix and
match through random processes. The operation of
crossover operator is described as follows (Figure.
2). :

(1) Using a random process to select two
parents individual sequence string Parent1
and Parent2 that have different jobs
schedules from the old generation.

(2) Generate k as random number between 1 to
N to exchange string into new offspring.

(3) Select the first k members of Parent1 and
the last N -k of Parent2 save them in the
new offspring.

(4) If the new offspring is not feasible, some
jobs may be duplicated. We replace these
duplicated jobs by the randomly selected
short jobs. Job 1 and 4 are duplicated, job 2
and 6 are short. Replace one of job 1 with
job 2 or 6; job 4 is done in the same way.

Figure. 2 Crossover operation (if k=4)

3.3 Mutation Operator

Mutation operation is used to randomly select
one chromosome with a pre-specified probability. In
order to avoid the risk of staying in the local
maximum, a mutation operator is proposed herein.
Exchange two randomly choused jobs of an
individual string. Figure.3 describes the suggested
mutation operation in this study. The operator of this
operation is consists of the following steps:

(1) Randomly generate two integers k and s
between 1 to N

(2) Swap jobs that are in the kth and sth
position in an individual sequence.

Figure. 3 Mutation Operation

(1, 3, 4,*, 5, 2,*, 6, 7)

(1, 3, 6,*, 5, 2,*, 4, 7)

3.4 Fitness Function

Minimizing the machine utilization (setup time,
idle time) and make span of the job scheduling is the
goal of this study. Accordingly, fitness function is
defined correlating to those targets as depicted below.
In this paper, we introduce idle time in fitness
function. The idle time indicates that the machine
does nothing, hence decreases the machine
utilization. The fitness value of each individual
sequence is computed by fitness function with
respective weights. α ,β and γ are weight factors
based on the user’s requirements. Using different
weights, one may expand the dimensions of the
objective function and provide solutions that
incorporate multiple objective criteria.

IdleTimeSetupTimeMakeSpan
ef

*
1)(

γβα +∗+∗
=

Figure.4 Fitness function

• Makespan is the time of the last job in the

sequence leaves the system. Makespan can
be computed as the complete time of the nth
job in the sequence.

Ci = Cji + Sji + Pi

(1, 3, 4,*, 5, 2,*, 6, 7)
(2, 4,*, 6, 7, 3,*, 1, 5)

(1, 3, 4, *, 7, 3, *, 1, 5)

(6, 3, 4,*, 5, 2,*, 1, 7)

 Where
o Ci is the complete time of the ith

job in the sequence
o Sji is the setup time between the jth

job and the ith job (the jth job is an
intermediate predecessor of ith job)
in the sequence, in which the setup
time is predefined in setup time
matrix.

o Pi is the processing time of the ith
job in the sequence.

• Setup tTime is computed by the summation
of Sji showed in the sequence.

• Idle time is computed as difference between
total machine capacity and total processing
time plus setup time. The idle time is
dependent to makespan and setup time.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

744

3.5 Selection Operation

The selection is done using a Roulette Wheel
principle. Thus, the better fitness of an individual,
the higher probability of it will be selected. The
process of creating new generation continues until a
given number of generations are achieved or the cost
of a given solution is achieves an acceptable level. In
this study, the termination conditions is set to
number of generations equal 50 or the best solution
will never get improved after 10 times.

4. Simulation considerations and results

To evaluate the scheduling system, the
simulation involved 15 jobs and 3 machines example
(Table 1). Jobs are categorized to three types A, B,
and C. Setup time matrix is depicted in Table 2. The
first column indicates the processing job’s type and
the first row represents the immediately successive
job’s type. The values in the matrix are setup time.
For example, the setup time is 3 if processing job’s
type is “B” and the immediate successive job’s type
is “A”. The setup time is 0 when the job types in a
row are the same. Three different cases
corresponding to the different scheduling objectives
are simulated.

First one is the typical case; make span is the
only scheduling objective (α=1, β=0, γ=0) (Fig 5). In
this simulation result we found that the make span is
not minimum, and the machine utilization is equal to
75/(3*35)≅0.806. The machine utilization is lower
than the others case. The second case is to maximum
the machine utilization (i.e. minimum the total set up
time and idle time, set α=0, β=1, γ=1) (Fig 6). We
found that the total set up time and idle time is
minimized as possible. The last case is set α=0.2,
β=0.8, γ=0.8 (Fig 7). In this case the machine
utilization is .75/(3*28)≅0.892 after the number of
generation is 46, the best case in these three cases.
All cases set the mutation rate, crossover rate as 0.02
and 0.4 respectively. The simulation results show
that jobs have the same type seems to be arranged to
together as possible if taking setup time into account
as shown in Fig. 6 and 7. One job which type is “A”
will not be scheduled immediate before one job
which type is “C” (the setup is 6). And in Figure 7,
job 8,12,2,5,3 which type “B” are scheduled in the
same machine 2.

Figure 8 show the simulation results of makesapn
after 50 generations. It shows that using proposed
fitness function gets a better solution in different
weight factor simulation results. If setting α=0, β=1,
γ=1, the simulated scheduling result is better than
setting α=1, β=0, γ=0. Table 3 shows the same
conclusions in different simulation runs.

Figure 9 demonstrates the resulting machine
utilization based on proposed fitness function. The

case of considering makespan (α=1, β=0, γ=0) yields
the worse results than that of other cases.
Accordingly, the system is more efficient than only
concerning makespan. The proposed algorithm
converges in about 15 generations, if apply to other
job cases, different setup time matrix or no setup
time included.

 In this study, we employed a new idea to design
a scheduling system; the scheduling database is
created. We translate the scheduling constrains into
database table. The setup time matrix can be
modified by the setup cost, or add setup time cost
constraints into fitness function. Because the setup
cost really reflect the main concerned by the
enterprise managers.

Table 1: Simulation jobs data

Job# Process Time Job Type
1 5 C
2 5 B
3 3 B
4 7 A
5 8 B
6 7 C
7 2 A
8 6 B
9 2 A

10 6 A
11 5 A
12 6 B
13 2 C
14 8 A
15 3 B

Total
processing time

75

Table 2 Setup time matrix

A B C
A 0 2 6
B 3 0 2
C 1 5 0

Figure 5 Scheduling result after iteration=46, α=1,

β=0, γ=0, Make span= 31, Setup time= 16, Idle
time=2

Machine Job# /complete time
2 8 1 4 3 M1
5 11 18 26 31
10 11 14 7 12 M2
6 11 19 21 29
15 5 13 9 6 M3
3 11 15 18 31

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

745

Figure 6 Scheduling result after iteration=11, α=0,

β=1, γ=1, Make span= 29, Setup time= 9, Idle
time=3

Machine Job# /complete time
1 13 10 11 4 M1
5 7 14 19 26
15 12 5 9 7 3 M2
3 9 17 22 24 29
6 14 2 8 M3
7 16 23 29

Figure 7 Scheduling result after iteration=46,α=0.2,

β=0.8, γ=0.8,Make span= 28,Setup time= 4, Idle
time=5

25

27

29

31

33

35

37

39

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation#

M
ax
 C
om
pl
et
io
n
T
im
e

α=0 β=1 γ=1
α=0.2β=0.8 γ=0.8
α=0.8β=0.2 γ=0.2
α=1 β=0 γ=0

Figure 8 Makespan under different weight factors

5. Conclusions

In this paper, genetic algorithms were applied to
a job scheduling problem. Most scheduling problems
concern minimizing the make span. The setup time is
always is included in processing time or ignored.
Such scheduling problem can’t reflect a scheduling
problem in the real world. In real situation, the user
may have dynamic objective based on the
environment circumstances. In this paper, we

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation#

M
ac
hi
ne
 U
ti
li
za
ti
on

α=0 β=1 γ=1
α=0.2β=0.8 γ=0.8
α=0.8β=0.2 γ=0.2
α=1 β=0 γ=0

 Figure 9 Machine utilization performances

Machine Job# /complete time
8 12 2 5 3 M1
6 12 17 25 28
11 10 7 14 9 M2
5 11 13 21 23
4 15 13 1 6 M3
7 12 16 21 28

introduced the scheduling algorithm with sequence
dependent setup time and make span considerations.
And we employed the idle time into fitness function,
although the idle time is computed from makespan.
It is easily to converge than use makespan only.

According to simulation results, GA is confirmed
to be a better scheme to fit the user requirements.
Most researches use problem constrains to solve the
scheduling problem. They have to modify the
corresponding system case by case. But in real
situation, different conditions and scheduling
objectives exist in manufacturing company. They
have different decision-making consideration. GA
are powerful but usually suffer from longer
scheduling time. Genetic algorithms can circumvent
many inappropriate solutions, and speed up
searching efficiency significantly [18]. Another
advantage of using genetic algorithms is their
flexibility. Accordingly, GA is used in solving many
similar scheduling problems. For the constrained
problems, the searching efficiency can be improved
by means of the proper modification of genetic
representations and genetic operators.

Future research in this field may combine with
other artificial intelligence techniques, thus
improving the solution quality and accelerating the
calculations. The continued research is to take more
consideration in real case, such as job structure (or
the job operation precedence) or different machine
types.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

746

 Table 3 Simulation result

 Weight Factor

 α=0 β=1 γ=1 α=0.2 β=0.8 γ=0.8 α=0.8 β=0.2 γ=0.2 α=1 β=0 γ=0

Run Generation Makespan Setup+Idle Generation Makespan Setup+Idle Generation Makespan Setup+Idle Generation Makespan Setup+Idle

1 35 31 18 21 31 18 37 28 9 51 29 12
2 5 30 15 6 30 15 17 29 12 30 32 21
3 6 30 15 8 31 18 29 31 18 25 33 24
4 17 29 12 12 28 9 17 33 24 36 31 18
5 7 30 15 7 31 18 27 29 12 17 30 15
6 7 31 18 7 28 9 75 30 15 12 31 18
7 28 28 9 21 31 18 18 28 9 13 31 18

References

[1] S. Tzafestas, A. Triantafyllakis,” Deterministic

scheduling in computing and manufacturing
systems: a survey of models and algorithms.
Mathematics and Computers in Simulation,”
35(5):397–434,1993.

[2] K.R. Baker, G.D. Scudder,” Sequencing with
earliness and tardiness penalties: A review,”
Operations Research ;38(1):22–36,1990.

[3] Ruiz-Diaz F, French S, ”A survey of multi-
objective combinatorial scheduling,” Multi-
objective decision making. New York, NY:
Academic Press; p. 59–77. ,1983.

[4] Dileepan P, Sen T. ,”Bicriteria state scheduling
research for a single machine,” Omega;16:53-
9.,2000

[5] Murata T, Ishibuchi H, Tanaka H.,” Multi-
objective genetic algorithm and its applications
to flowshop scheduling.”,Computer and
Industrial Engineering ;30(4):957–69,1996.

[6] Allahverdi A. “The two- and m-machine
flowshop scheduling problems with bicriteria of
makespan and mean flow time.” European
Journal of Operational Research;147(2):373–
96.,2003.

[7] Sang M. Lee and Arben A. Asllani, ”Job
scheduling with dual criteria and sequence-
dependent setups: mathematical versus genetic
programming,” Omega, Volume 32, Issue 2,
April 2004, Pages 145-153, April 2004.

[8] Karp RM. Reducibility among combinatorial
problems: complexity of computer
computations. NewYork: Plenum Press, pp. 85–
103, 1972.

[9] J.C. Ho, Y. L. Chang, ”Minimizing the number
of tardy jobs for m-parallel machines” in
European Journal of Operating Research, vol.
84, Pages343–55.1995;

[10] D.W. Kim, K. H. Kim, W. Jang and F. F.
Chen,”Unrelated parallel machine scheduling
with setup times using simulated annealing ,“ in

Robotics and Computer-Integrated
Manufacturing, Volume 18, Issues 3-4, June-
August 2002, Pages 223-231

[11] J. J. Hopfield and D.W. Tank ,”Neural
computation of decisions in optimization
problems,” Biol. Cybern., vol. 52,pp.141-
152,1985.

[12] S. Yang and D. Wang, “Constraint satisfaction
adaptive neural network and heuristics
combined approaches for generalized” in IEEE
Transactions on. Neural Networks, 2000, vol.
11, pp. 474–486.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“Optimization by simulated annealing,” Science,
vol. 220, pp. 671–680, May 1983.

[14] H. Topcuoglu, S. Hariri , and M.Y.
Wu., ”Performance-effective and low-
complexity task scheduling for heterogeneous
computing” in IEEE transactions on parallel
and distributed systems, 2002, vol. 13, pp. 260–
274.

[15] Y. M. Huang and R. M. Chen, “Scheduling
Multiprocessor Job with Resource and Timing
Constraints Using Neural Networks,” in IEEE
Transactions on Systems, Man, and
Cybernetics—Part B: Bybernetics, Vol. 29, no.
4 , pp490-502, august 1999

[16] Y.M. Huang and R.M. Chen, ” Multiconstraint
task scheduling in multi-processor system by
neural network,” in Tools with Artificial
Intelligence, 1998. Proceedings. Tenth IEEE
International Conferenc, pp288 -294 e, 1998

[17] Y. Z. Wang ,”Using genetic algorithm methods
to solve course scheduling problems,“ in Expert
Systems with Applications, Volume 25, Issue 1,
Pages 39-50 , July 2003

[18] Dirk C. Mattfeld and Christian Bierwirth ,”An
efficient genetic algorithm for job shop
scheduling with tardiness objectives,” European
Journal of Operational Research, Volume 155,
Issue 3, Pages 616-630 ,June 200.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

747

