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Abstract-Scheduling problems exist in many 
applications and most of them have demonstrated as 
NP complete. A lot of schemes introduced to solve 
scheduling problem. Among them, genetic algorithm 
(GA) is successfully used for similar problems in the 
past, and leading toward much more successful on 
some NP-complete domain than others. In this paper, 
we presented a genetic algorithm to solve “sequence 
dependent setup time” jobs scheduling problem. The 
objective of this paper is to minimized the make span 
and (or) maximum machine utilization. Simulation 
results demonstrate that the proposed method can 
find a good solution and is subjected to user 
requirements, if the user has different objective 
considerations. 
 
Keywords: Scheduling, genetic algorithm (GA), 
Setup time 
 
1. Introduction 
 

Many applications involve the concepts of 
scheduling, such as communications, routing, and 
production planning and task assignment in multi-
processor. Most problems in these applications are 
categorized into the class of NP-complete problems. 
It would take a lot of time to get an optimal solution, 
especially for a large-scale scheduling problem. 

Most of the studies dealing with scheduling have 
been confined to optimization of a single criterion. 
Many researchers have considered a variety of 
scheduling problems with a single performance 
measure such as the average flow time, maximum 
completion time or tardiness [1-2].  

Scheduling decisions frequently involve 
considerations of more than one criterion [3-6]. The 
bi-criteria scheduling problems are generally divided 
into two classes. First one involves minimized one 
criterion subject to the constraint that the other 
criterion has to be minimized. Second class of 
problems, both criteria are considered equally 
important and the problem involves finding efficient 
schedulers [7]. The problem considered in this paper 
belongs to this class. 

This study considers the problem of scheduling N 
jobs on identical parallel machines, with processing 
time p1, p2,…,pn, respectively. These jobs have 
different job types. The setup time is small, if one 
job and its immediate successor job are the same job 
type. Setup time between jobs make machine idle, 
increasing the producing cost. Nevertheless, the 
setup time is always omitted or included in 
processing time on most scheduling problems.  
Therefore, this paper focuses on job sequence 
arrangement under setup time consideration. 

There are various researches in parallel machine 
scheduling problem. This paper addressed sequence 
dependent setup time jobs scheduling problem on 
unrelated parallel machines. The minimization of 
complete time, tardiness and make-span are the 
common objectives on most study. Karp[8] and 
HO[9] had showed that the minimization of total 
tardiness in identical machine was NP-hard 
problem[10].  

Hopfield started using an artificial neural 
network (ANN) to solve optimization problems [11]. 
Since that, Hopfield networks have been 
successfully applied to a variety of applications. As 
generally known, most scheduling problems are 
combinational, thereby ensuring the optimization 
process by an ANN . However, these researches are 
basically non-adaptive networks, of which the neural 
unit connection weights and biases must be 
prescribed before applying of the networks to a 
particular problem. These networks also have 
drawbacks such as failing to converge to a valid 
solution, inability to locate the global minimum and 
poor scaling properties due to the use of quadratic 
energy function. Additionally, most scheduling 
problems are limited to the preemptive and 
migratory processes on a multiprocessor and, 
therefore, only consider the timing constraints.  
Simulated Annealing (SA) was introduced by 
Metropolis in 1953 [12]. SA is also to solve a widely 
complex problems and a lot of solution combinations 
[13], but time consuming is a significant concern. 
Furthermore, GA has been considered as a powerful 
heuristic search method to solve combinational 
optimization problems [14].  
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In our previous work, we studied multiprocessor 
scheduling problem using ANN and Normalized 
Mean Field Annealing (MFA) [15-16]. In this paper, 
we utilized a genetic algorithm to solve sequence 
dependent setup time jobs scheduling problem. 
Simulation results demonstrate that suggested 
method finds a good solution and is subject to user 
requirements, if the user has different objective 
considerations. If the deadline time constraint is 
more important, then the user can increase the 
weight factors α or (and)γ, otherwise increase the 
weight factors β or (and)γ of setup time and idle time 
constraint. Therefore, the investigated scheduling 
system is adaptive to user requirement. 
 
2. Problem Definition and Characteristics 
 

Most scheduling problems are limited to the 
preemptive and migratory jobs on machines, 
therefore, only consider the timing constraint. 
Suppose the system has M identical parallel 
machines and N jobs with different types. A job is 
non-segmented and non-preemptive. The execution 
time of each job is predetermined. The set up time 
matrix is predefined base on the job type 
characteristics. The machine is idle while setting up 
or completes the jobs before the maksspan, causing 
low utilization. The set up time is small or zero if 
concessive job has the same job type. Given these 
assumptions, this work is to find a schedule, which 
to minimize maximum complete time and to 
maximize the machine utilization. Hence, the job 
processing sequence and makepan is the most 
important factor on scheduling problem. This paper 
uses Genetic Algorithm (GA) to resolve such 
scheduling problem; considerations are listed as 
follows: 

(1) Each job has only one operation; no jobs 
can be processed on more than one machine 
simultaneously 

(2) Machines are all identical. Each machine 
can process one job at a time. 

(3) Jobs’ processing time is known, and setup 
time is determined by job type sequence  

 
3. Genetic Algorithms 
 

According to Darwin’s theory of survival of 
fittest, a genetic algorithm is an optimization process 
based on the evolution of nature. Using the natural 
selection and exchange of genetic information, the 
species with the optimal fitness govern the word. 
The genetic algorithm is a search algorithm on the 
basis of biological principles of crossover, mutation 
and selection process. This algorithm maintains a 
population of candidate solutions that evolves over 
time and ultimately converges. Individuals in 
population are represented with chromosomes. Each 

individual has a numeric fitness value obtained from 
fitness function that measures how well of this 
solution [17].  

The basic GA contains three parts: 
(1) Chromosome representation involves the 

parameters combination of handling 
problems, and different genetic 
representation depicts different solutions of 
problems. A Binary representation is 
usually used for the coding of each solution. 

(2) Fitness function can determine the category 
of the parameters combination within a set. 
GA uses this information to determine 
which combinations of parameters would 
survive.  

(3) Genetic operators are the kernels of GA. 
Their primary task is to synthesize new 
combinations of parameters in accordance 
with the fitness function of each parameters 
combination to achieve the target of 
evolution. GA contains three operators. The 
selection operators select the fittest 
individuals of the current population to 
serve as parents of the next generation. The 
crossover operator chooses randomly a pair 
of individuals and exchanges some part of 
the information. The mutation operator 
takes an individual randomly and alters it. 

The structure of GA is an iteration composed of a 
selection step followed by a sequence of crossovers 
and mutations procedures. Finally, GA is executed 
until some termination state is achieved, such as the 
number of iterations, execution time, result stability, 
etc. This paper is deal with sequence dependent job 
setup time and machine utilization problem. The 
proposed algorithm is using most common genetic 
operator by the past research to verify our scheduling 
problem. The following are the GA operators in this 
scheduling system.  

 
3.1 Genetic Expressions and Initial Population. 
 

The coding of individual δ is composed of m 
strings (δ1,δ2,……,δm-1,δm), δj is the jobs sequence on 
machine j. There is one to one correspondence 
between machines and strings, where each string 
represents the jobs assigned to some specific 
machine. Restated, string δj represents a list of jobs 
to machine j. Figure 1 shows an example of a coding 
for three machines, job 1,3,4 are processed in 
machine 1. 

{ { { ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

321

6,7,*,5,2,*,1,3,4
δδδ

!
!  

Figure 1 Genetic expression for 3 machines 
 

Since the initial population has been produced 
randomly in most GA researches, it always requires 
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longer search time to obtain an optimal solution. 
There is a lot of scheduling system using heuristic 
rule to generate the initial population. But this will 
decreases the diverse of individuals for searching an 
optimal solution. In this investigated scheduling 
system, the initial population is generated randomly.  

 
3.2 Crossover Operator  
 

The crossover operator focuses on creating 
alternative solutions around the best solution. 
Generally, crossover is an operation used to generate 
a new string (i.e., child) from two parent strings. It 
provides a mechanism for parameters to mix and 
match through random processes. The operation of 
crossover operator is described as follows (Figure. 
2). : 

(1) Using a random process to select two 
parents individual sequence string Parent1 
and Parent2 that have different jobs 
schedules from the old generation. 

(2) Generate k as random number between 1 to 
N to exchange string into new offspring. 

(3) Select the first k members of Parent1 and 
the last N -k of Parent2 save them in the 
new offspring. 

(4) If the new offspring is not feasible, some 
jobs may be duplicated. We replace these 
duplicated jobs by the randomly selected 
short jobs. Job 1 and 4 are duplicated, job 2 
and 6 are short. Replace one of job 1 with 
job 2 or 6; job 4 is done in the same way. 

  

 
Figure. 2 Crossover operation (if k=4) 

 
3.3 Mutation Operator  
 

Mutation operation is used to randomly select 
one chromosome with a pre-specified probability. In 
order to avoid the risk of staying in the local 
maximum, a mutation operator is proposed herein. 
Exchange two randomly choused jobs of an 
individual string. Figure.3 describes the suggested 
mutation operation in this study. The operator of this 
operation is consists of the following steps: 

(1) Randomly generate two integers k and s 
between 1 to N 

(2) Swap jobs that are in the kth and sth 
position in an individual sequence. 

 

 
Figure. 3 Mutation Operation 

(1, 3, 4,*, 5, 2,*, 6, 7) 
 

(1, 3, 6,*, 5, 2,*, 4, 7) 

 
3.4 Fitness Function 
 

Minimizing the machine utilization (setup time, 
idle time) and make span of the job scheduling is the 
goal of this study. Accordingly, fitness function is 
defined correlating to those targets as depicted below. 
In this paper, we introduce idle time in fitness 
function. The idle time indicates that the machine 
does nothing, hence decreases the machine 
utilization. The fitness value of each individual 
sequence is computed by fitness function with 
respective weights. α ,β and γ are weight factors 
based on the user’s requirements. Using different 
weights, one may expand the dimensions of the 
objective function and provide solutions that 
incorporate multiple objective criteria. 

 

IdleTimeSetupTimeMakeSpan
ef

*
1)(

γβα +∗+∗
=

 
Figure.4 Fitness function 

 
• Makespan is the time of the last job in the 

sequence leaves the system. Makespan can 
be computed as the complete time of the nth 
job in the sequence. 

 
Ci = Cji + Sji + Pi 

 
(1, 3, 4,*, 5, 2,*, 6, 7) 
(2, 4,*, 6, 7, 3,*, 1, 5) 

 
(1, 3, 4, *, 7, 3, *, 1, 5) 

 
(6, 3, 4,*, 5, 2,*, 1, 7) 

 Where 
o Ci is the complete time of the ith 

job in the sequence 
o Sji is the setup time between the jth 

job and the ith job (the jth job is an 
intermediate predecessor of ith job) 
in the sequence, in which the setup 
time is predefined in setup time 
matrix. 

o Pi is the processing time of the ith 
job in the sequence. 

• Setup tTime is computed by the summation 
of Sji showed in the sequence. 

• Idle time is computed as difference between 
total machine capacity and total processing 
time plus setup time. The idle time is 
dependent to makespan and setup time. 
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3.5 Selection Operation 
 

The selection is done using a Roulette Wheel 
principle. Thus, the better fitness of an individual, 
the higher probability of it will be selected. The 
process of creating new generation continues until a 
given number of generations are achieved or the cost 
of a given solution is achieves an acceptable level. In 
this study, the termination conditions is set to 
number of generations equal 50 or the best solution 
will never get improved after 10 times. 

4. Simulation considerations and results 

To evaluate the scheduling system, the 
simulation involved 15 jobs and 3 machines example 
(Table 1). Jobs are categorized to three types A, B, 
and C. Setup time matrix is depicted in Table 2. The 
first column indicates the processing job’s type and 
the first row represents the immediately successive 
job’s type. The values in the matrix are setup time. 
For example, the setup time is 3 if processing job’s 
type is “B” and the immediate successive job’s type 
is “A”. The setup time is 0 when the job types in a 
row are the same. Three different cases 
corresponding to the different scheduling objectives 
are simulated.  

First one is the typical case; make span is the 
only scheduling objective (α=1, β=0, γ=0) (Fig 5). In 
this simulation result we found that the make span is 
not minimum, and the machine utilization is equal to 
75/(3*35)≅0.806. The machine utilization is lower 
than the others case. The second case is to maximum 
the machine utilization (i.e. minimum the total set up 
time and idle time, set α=0, β=1, γ=1) (Fig 6). We 
found that the total set up time and idle time is 
minimized as possible.  The last case is set α=0.2, 
β=0.8, γ=0.8 (Fig 7). In this case the machine 
utilization is .75/(3*28)≅0.892 after the number of 
generation is 46, the best case in these three cases.  
All cases set the mutation rate, crossover rate as 0.02 
and 0.4 respectively. The simulation results show 
that jobs have the same type seems to be arranged to 
together as possible if taking setup time into account 
as shown in Fig. 6 and 7. One job which type is “A” 
will not be scheduled immediate before one job 
which type is “C” (the setup is 6). And in Figure 7, 
job 8,12,2,5,3  which  type “B” are scheduled in the 
same machine 2.  

Figure 8 show the simulation results of makesapn 
after 50 generations. It shows that using proposed 
fitness function gets a better solution in different 
weight factor simulation results. If setting α=0, β=1, 
γ=1, the simulated scheduling result is better than 
setting α=1, β=0, γ=0. Table 3 shows the same 
conclusions in different simulation runs. 

Figure 9 demonstrates the resulting machine 
utilization based on proposed fitness function. The 

case of considering makespan (α=1, β=0, γ=0) yields 
the worse results than that of other cases. 
Accordingly, the system is more efficient than only 
concerning makespan. The proposed algorithm 
converges in about 15 generations, if apply to other 
job cases, different setup time matrix or no setup 
time included.  

 In this study, we employed a new idea to design 
a scheduling system; the scheduling database is 
created. We translate the scheduling constrains into 
database table. The setup time matrix can be 
modified by the setup cost, or add setup time cost 
constraints into fitness function. Because the setup 
cost really reflect the main concerned by the 
enterprise managers.  

 
Table 1: Simulation jobs data 

Job# Process Time Job Type
1 5 C
2 5 B
3 3 B
4 7 A
5 8 B
6 7 C
7 2 A
8 6 B
9 2 A

10 6 A
11 5 A
12 6 B
13 2 C
14 8 A
15 3 B

Total 
processing time

75  

 
Table 2  Setup time matrix  

A B C 
A 0 2 6 
B 3 0 2 
C 1 5 0 

 
 
 

 
Figure 5 Scheduling result after iteration=46, α=1, 

β=0, γ=0, Make span= 31, Setup time= 16, Idle 
time=2 

Machine Job# /complete time 
2 8 1 4 3 M1 
5 11 18 26 31 
10 11 14 7 12 M2 
6 11 19 21 29 
15 5 13 9 6 M3 
3 11 15 18 31 
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Figure 6 Scheduling result after iteration=11, α=0, 

β=1, γ=1, Make span= 29, Setup time= 9, Idle 
time=3 

Machine  Job# /complete time 
1 13 10 11 4 M1 
5 7 14 19 26 
15 12 5 9 7 3 M2 
3 9 17 22 24 29
6 14 2 8 M3 
7 16 23 29 

 

 
Figure 7 Scheduling result after iteration=46,α=0.2, 

β=0.8, γ=0.8,Make span= 28,Setup time= 4, Idle 
time=5 
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Figure 8 Makespan under different weight factors 

 

5. Conclusions 
 

In this paper, genetic algorithms were applied to 
a job scheduling problem. Most scheduling problems 
concern minimizing the make span. The setup time is 
always is included in processing time or ignored. 
Such scheduling problem can’t reflect a scheduling 
problem in the real world. In real situation, the user 
may have dynamic objective based on the 
environment circumstances. In this paper, we  
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 Figure 9 Machine utilization performances 

Machine  Job# /complete time 
8 12 2 5 3 M1 
6 12 17 25 28 
11 10 7 14 9 M2 
5 11 13 21 23 
4 15 13 1 6 M3 
7 12 16 21 28 

 
introduced the scheduling algorithm with sequence 
dependent setup time and make span considerations. 
And we employed the idle time into fitness function, 
although the idle time is computed from makespan. 
It is easily to converge than use makespan only.    

According to simulation results, GA is confirmed 
to be a better scheme to fit the user requirements. 
Most researches use problem constrains to solve the 
scheduling problem. They have to modify the 
corresponding system case by case. But in real 
situation, different conditions and scheduling 
objectives exist in manufacturing company. They 
have different decision-making consideration. GA 
are powerful but usually suffer from longer 
scheduling time. Genetic algorithms can circumvent 
many inappropriate solutions, and speed up 
searching efficiency significantly [18]. Another 
advantage of using genetic algorithms is their 
flexibility. Accordingly, GA is used in solving many 
similar scheduling problems. For the constrained 
problems, the searching efficiency can be improved 
by means of the proper modification of genetic 
representations and genetic operators.  

Future research in this field may combine with 
other artificial intelligence techniques, thus 
improving the solution quality and accelerating the 
calculations. The continued research is to take more 
consideration in real case, such as job structure (or 
the job operation precedence) or different machine 
types. 
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 Table 3 Simulation result 

 Weight Factor 

  α=0  β=1 γ=1 α=0.2 β=0.8 γ=0.8 α=0.8 β=0.2 γ=0.2 α=1 β=0 γ=0 

Run Generation Makespan  Setup+Idle Generation Makespan Setup+Idle Generation Makespan Setup+Idle Generation Makespan Setup+Idle

1 35 31 18 21 31 18 37 28 9 51 29 12 
2 5 30 15 6 30 15 17 29 12 30 32 21 
3 6 30 15 8 31 18 29 31 18 25 33 24 
4 17 29 12 12 28 9 17 33 24 36 31 18 
5 7 30 15 7 31 18 27 29 12 17 30 15 
6 7 31 18 7 28 9 75 30 15 12 31 18 
7 28 28 9 21 31 18 18 28 9 13 31 18 
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