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ABSTRACT- Explanation-based constraint 

programming is a new way of solving constraint 

systems. It allows to propagate constraints of the 

problem, learning from failure and from the solver 

and finally allows to get rid of backtrack-based 

complete search by allowing more free moves in the 

search space. In this paper, we present our 

experience in using explanations within constraint 

programming: how to implement an explanation 

system, what to use explanation for solving a 

university timetabling problem. Beside classical uses, 

we are attempting to solve the problem with the class 

library of ILOG Solver [7] which leads to a new kind 

of explanation-based constraint programming. 

Keywords: Explanation, Constraint programming, 

Timetabling, Contradiction handling 

1. Introduction 

Constraint programming has been proved 

extremely successful for modeling and solving 

combinatorial search problems appearing in fields 

such as scheduling resource allocation and 

timetabling. Several languages and systems such as 

ILOG Solver [7], CHOCO [9] have been developed 

and widely spread. But these systems are helpless 

when the constraint system to be solved has no 

solution. Indeed, only a no solution message is sent to 

the user who is left alone to find: why the problem 

has no solution, which constraint to relax in order to 

restore the failure etc. These questions yield two 

fundamental tasks: identification of constraints to be 

relaxed and efficient constraint suppression. 

 Our previous work [6] presented an explanation 

-based constraint system, where a promising 

technique using explanations provides useful 

information. The prototype system has been 

instantiated and evaluated successfully for finite 

domain constraint satisfaction problems. However, it 

is not practical enough. It is concerned to experiment 

with more real-life problems to evaluate the system.  

In this paper, we propose a prototype of an 

explanation-based constraint programming system 

for a timetabling problem. Timetabling is a process of 

assigning events or activities to resources such as 

timeslots, rooms and lecturers which could satisfy all 

required (or hard) constraints and also preference (or 

soft) constraints as acceptable as possible. The 

problem is combinatorial and dynamic. A good and 

efficient timetabling system is required to manage the 

rapidly growing academic activities within a limited 

time and limited room resources. We are attempting 

to solve the problem with the class library of ILOG 

Solver [7] which leads to a new kind of 

explanation-based constraint programming. 

2. Explanations within Constraint 
Programming 

We consider here a constraint satisfaction 

problem (CSP). Decisions are made during variable 

assignments correspond to adding or removing 
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constraints from the current constraint system. These 

constraints are called decision variables. 

2.1. Contradiction explanations 

Let us consider a constraint system whose 

current state is contradictory. A contradiction 

explanation (a.k.a nogood [10]) is a subset of the 

current constraint system of the problem that leads to 

a contradiction. A contradiction explanation divided 

into two parts: a subset of the original sets of 

constraints ( CC ⊂′  in equation (1)) and a subset 

of decision constraints introduced in the search so far.  

)..( 11 kk avavCC =∧∧=∧′a  (1) 

In a contradiction explanation composed of at 
least one decision constraint, a constraint jv  is 

rewritten in the following way: 
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The left hand side of the implication is called an 

eliminating explanation because it justifies the 
removal of value ja  from the domain of the 

variable jv  and is noted: )exp( jj av ≠ .  

Classical CSP solvers use domain reduction 

techniques. Recording eliminating explanation is 

sufficient to compute contradiction explanations. 

Indeed, a contradiction is identified when the domain 
of a variable jv  is emptied. A contradiction 

explanation 1  can be easily computed with the 

eliminating explanations associated with each 

removed value:  

))exp((
)(
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≠¬ ∧
∈

a   (3) 

There exist generally several eliminating 

explanations for the removal of a given value. 

Recording all of them leads to an exponential space 

complexity. Another technique relies on forgetting 

                                                
1  If contradiction explanation doesn�t contain any decision 
constraints, the associated problem is over-constrained.  

eliminating explanations that are no longer relevant2 

to the current variable assignment. By doing so, the 

space complexity remains polynomial. We keep only 

one explanation at a time for a value removal.  

2.2. Computing explanations 

Minimal (w.r.t. inclusion) explanations are the 

most interesting events. Such explanations allow 

highly focused information about dependency 

relations between constraints and variables [5]. 

Unfortunately, computing such an explanation can be 

exponentially time-consuming [8]. A good 

compromise between preciseness and easy 

computation is to use the knowledge embedded 

inside the constraint solver to provide explanations. 

Indeed, constraint solvers always know why they 

remove values from the domains of considered 

variables. By explicitly stating such information, 

quite precise and interesting explanations can be 

computed. To achieve this behavior, it is necessary to 

alter the code of the solver itself. 

The constraint solver that we develop uses an 

event-based model. During propagation, constraints 

are awakened each time when a variable domain is 

reduced (the reduction is an event) and possibly 

generating new events (value removals). In such a 

model, a constraint is fully characterized by its 

behavior regarding the basic events: value removal 

from the domain of a variable (method 

awakeOnRem), domain bound updates (method 

awakeOnInf and awakeOnSup) and a variable 

instantiation (method awakeOnInst)  

Example1: (Constraint cyx +≥ ) 

This is one of the basic constraint in our system. It 

is represented by the BGT/BGE class. If the upper 

bound of x  is modified, the upper bound of y  

                                                
2 A no-good is said to be relevant if all the decision constraints in 
it are still valid in the current search state [1]. 
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should be lowered to the new value of the upper 

bound of x taking into account of the constant c. 

This is coded as:.  

[awakeOnSup(c:BGT/BGExyc, idx:integer) : void 

->if (idx=1) updateSup(c.v2, c.v1.sup - c.cst)] 

In Example1, idx is the index of the variable of 

the constraint whose bound has been modified. This 

constraint only reacts to modification of the upper 

bound on variable x (c.v1 in the constraint). The 

method updateSup only modifies the value of y  

(c.v2 in the constraint). Explanations for events need 

to be computed when the events are generated, i.e. 

within the propagation code of the constraints. In 

order to make it as simple as possible, one only needs 

to add an extra information to the updateInf and 

updateSup calls: the actual explanation.  

Let us consider Example 1, modifications to be 

made are quite simple. Indeed, all the information is 

at hand in the awakeOnSup method. The 

modification of the upper bound of variable c.v2 (or 

y ) is due to the use of constraint itself and the 

previous modification of the upper bound of variable 

c.v1 (or x). An explanation for the modification can 

be computed using the becauseOf method. The 

source code is then modified in the following way: 

[awakeOnSup(BGT/BGExyc, idx:integer) : void 

if (idx=1) updateSup(c.v2, c.v1.sup - c.cst,  

becauseOf(c, theSup(c.v1)))] 

 Our implementation of explanations provides a 

set of tools in order to ease the modification process. 

The Explanation class that captures contradiction 

and the modification of the domain update method 

in order to efficiently store the explanations 

associated to a given variable. These modifications 

added to each propagation method efficiently 

construct an explanation-based constraint solver.  

3. Using Explanations 

Explanations can be used to determine direct or 

indirect effects of a given constraint on the domain of 

variables of the problem. But what is interesting in 

the context is the ability of explanation system. 

3.1. Explanations for constraint retraction 

A constraint, in an explanation-based constraint 

system, includes value removal and value 

restorations. It is time to see how explanation is 

useful when dealing constraint retraction. Constraint 

retraction in dynamic problem has been studied [2], 

but here we simplify the algorithm due to 

explanations. When using an explanation-based 

system, constraint retraction of a given constraint c 

can be achieved in two main steps:   

− Setting values back: Setting back values refers to 

undo the past effects of the constraints. That is, all 

the associated events which are no more valid 

should be put back to their respective domain. 

This step is quite easy by considering all 

explanations containing the removed constraint.  

− Re-achieving consistency: A consistency check 

should be done in order to get a consistent state as 

if the removed constraints never appeared in the 

constraint system. Those new removals need to be 

propagating again. At the end of this process, the 

system should be in a consistent state. This 

process is like the ones in [2][5], but we don�t 

need to compute the past effects of a constraint 

since each explanation in our system contains all 

the information at once. We just need to compute 

the set of explanations containing the retracted 

constraint.  

3.2. Explanations for contradiction handling  

Explanation can be used to select and relax a 
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constraint which allows the discovery of new 

solutions. Once a contradiction occurs, there is no 

need to backtrack: simply consider the explanation 

that justifies the lack of more solutions for the current 

problem (calling explain(FailingVariable(), domain, 

e)), and select a constraint in it. As shown in [4], one 

needs to select the more recent constraint in the 

explanation in order to remain complete. In order to 

move from the dead-end, one can remove the 

considered constraint and add its negation. Figure 1 

shows such a contradiction handling mechanism.  

 handleContradiction(): void 
   {  

 if FailingVariable?()        // a failure occurred 
{   
let e =conflict_set(); 

 { 
explain(FailingVariable(), domain, e);  //compute an explanation 
if empty(e)                        // the problem unsolvable 

contradiction!();          // raise a contradiction  
  else  {  
       let sc = select Constraint(e); 
                   if known?(sc)  

{    unassignedVars= add(sc.v1); 
      remove (sc);    //relax the constraint and remove its effects 
      

 e =delete(sc);      //posting the associated negation constraint
post(current_pb, e); 
propagate(current_pb);  //restoring consistency 
 
if  contradiction!() 
      handleContradiction();   //doing it recursively } 

   }}}}  

Figure 1. The code for contradiction handling 

4. Application to Timetabling Problem  

In this section, explanation-based constraint 

programming is used to solve a university timetabling 

problem. The objective is to implement a prototype 

for efficient and comfortable timetabling in our own 

department. In addition, we expect a significant 

improvement of the timetable�s �quality� and an 

acceleration of the generation process. The system 

will also be designed to be adaptable to the 

requirements of other departments. First prototype 

has currently being validated in our department. 

4.1 Overview of the prototype timetabling system 

The prototype of our timetable system adopts an 

object-oriented approach [3] which separates problem 

specifications and constraint solver in two different 

layers to enhance model formulation and 

maintenance (see Figure 2). The layer of the problem 

specifications is consisting of three modules (e.g. 

Constraint Manager, Timetable Generator and 

Optimization Criteria) which can be modeled 

according to the user�s requirements. In fact, the 

constraint solver provides tools for explanation-based 

search paradigm, contradiction handling mechanism 

and constraint posting methods. Whatever changes 

take place, we may only change the problem 

specifications (e.g. constraints, variables, etc.) 

without disturbing the logic of the constraint solver.  

Constraint 
Manager

Timetable  
Generator

Optimization 
Criteria

Explanation-Based Constraint Solver
(Search, Contradiction Handling , Constraint Propagation)

Figure 2.  Prototype for timetabling problem 

4.2 Design results 

Firstly, in Constraint Manger module, we build a 

first library of constraints to organize the variable 

limitations in requirement classes called constraint 

levels. A constraint level is just a container for 

concrete constraints. For example, all constraints of 

the type �no concurrence of courses of the same 

lecturer� are put on one constraint level. Each 

constraint of this level consists of all the courses of 

one lecturer and the level comprises time preferences 

of each lecturer.  

Constraints are divided into two groups: hard and 

soft constraints. Hard constraints are the minimum 

requirements to be satisfied, otherwise it is 

impossible to generate a reasonable timetable. On the 

other hand, soft constraints should be satisfied as 

acceptable as possible. In our prototype, we arrange 
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the constraint levels by assigning to each of them a 

priority due to their subjective importance. The result 

is a list of all constraint levels by priority. The 

priority 0 is assigned to the level of all hard 

constraints. Thus, the objective of the timetabling 

problem is to satisfy as many constraint levels as 

possible. 

All concrete constraints with similar meaning can 

be abstracted to constraint classes. For example, all 

possible types of �no concurrence of courses� can be 

abstracted to be the class called �NotConcurrence� 

which is the most important constraint class. Figure 3 

shows an extract of Booch�s [3] class diagram as a 

result of the analysis and design process.  

Timetable Generator 

    generate() 

NeededRoomEquipment

Equipment: set 

Constraint Manager 

      post() 

Constraint Level 

     priority : int 

   postPercentage() 

Constraint 

post() 

GenerateTimeExclusion 

  times bool[days][times] 

TimeExclusion 

   times bool[days][times]

TimePreference 

 times bool[days][times] 

NeededLectureUnits 

    quantity : int 

NotConcurrent  

    

lectures 
courses 

 

Figure 3. Class diagram of constraint manger 

It is shown in Figure 3 that all constraint levels 

containing all concrete constraints are collected in 

one object of the class �Constraint Manger� which 

can be accessed by the object of the class �Timetable 

Generator�. The diagram was reduced to those 

classes related to constraints and thus relevant to 

Constraint Solver. As one can see all constraints 

classes (e.g �NotConcurrent�, �TimePreference�, 

�GenerateTimeExclusion�, etc.) are derived from an 

abstract base class called �Constraint�. This base 

class only consists of the virtual operation �post� that 

has to be inherited to each class. It makes sure that 

one object from each constraint class can convert its 

data member to constraints so that Constraint Solver 

can understand. 

Start 

Idle
Stisfying hard 

constraints 

Constraint Solver

Optimization Criteria 

generate() 

Stisfying soft 

constraints 

success 

failure

Try to satisfy all hard 

constraints 

Satisfy as many 

constraints as possible of 

each constraint level 

 

Figure 4. State diagram of timetable generator 

Secondly, in Timetable Generator module, we 

design the class �Timetable Generator� (see Figure 4). 

When the timetable generator gets the message to 

generate a timetable, it consults the constraint solver 

to search for solutions satisfying all hard constraints. 

If there exists no solution of these constraints, the 

generation has failed as they are the minimum 

requirements to the timetable. 

If all hard constraints could be satisfied, the 

generator proceeds to the state �Satisfying soft 

constraints�. Thus, the objective is to satisfy as 

acceptable as possible of each constraint level. In this 

state, the generator inquires optimization criteria 

from the user to receive an optimal solution when all 

constraints of each level are satisfied. However, these 

optimization criteria are user-defined. The generator 

leaves this state always with a �success� result 

meaning that a valid and so-called �best� timetable 

(w.r.t. optimization criteria) could be generated as at 

least all hard constraint are satisfied. 

5. First Results  

The proposed system is in fact mad of several 

modules delivered in the class library of ILOG Solver 

[7] and modified with C++ which is dedicated to 
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explanation-based constraint programming. It is 

implemented using real university timetabling data of 

our department. We were very quickly acquainted 

with ILOG Solver and wrote our first results. It is 

striking the very readable and compact codes of the 

system. Simple models can easily be extended and 

the Solver is very useful for rapid prototyping. In fact, 

we are not the first ones attempting to solve 

timetabling problem in our university. A lot of 

academic staff have tried but failed. With constraint 

solver as part of our prototype, we have already 

achieved the results as the conventional planners in 

our department, but in significantly less time.  

Our results demonstrate the system performance 

where the feasible and acceptable solution is found in 

a reasonable time compared to the size and the 

complexity of the problem with the help of the 

explanation-based constraint solver. It successfully 

finds the acceptable solution. Due to these facts, our 

system behaves desirable features.  

6. Conclusion 

We presented an original use of explanation-based 

constraint programming to propose a solution for a 

difficult timetabling problem. A library of dedicated 

constraints is developed to solve this problem. 

Explanations are also used to provide an efficient 

system: conflicts are identified and explained, the 

search can be completely driven automatically or by 

the user. The system is implemented using real 

university data. The solution is found in a reasonable 

time. The first results show flexibility and 

adaptability of the tool with the help of 

object-oriented design of the system. In the future, 

the proposed prototype will try for further 

improvement. The aim is to apply explanation-based 

constraint programming to develop an efficient and 

appropriate university-wide professional version.  
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