
Explanation-Based Constraint Programming for a University Timetabling
Problem

Chia-Lin Hsieh
Department of Industrial Management,

Aletheia University, Tamsui, Taipei, Taiwan.
hsiehcl@email.au.edu.tw

ABSTRACT- Explanation-based constraint

programming is a new way of solving constraint

systems. It allows to propagate constraints of the

problem, learning from failure and from the solver

and finally allows to get rid of backtrack-based

complete search by allowing more free moves in the

search space. In this paper, we present our

experience in using explanations within constraint

programming: how to implement an explanation

system, what to use explanation for solving a

university timetabling problem. Beside classical uses,

we are attempting to solve the problem with the class

library of ILOG Solver [7] which leads to a new kind

of explanation-based constraint programming.

Keywords: Explanation, Constraint programming,

Timetabling, Contradiction handling

1. Introduction

Constraint programming has been proved

extremely successful for modeling and solving

combinatorial search problems appearing in fields

such as scheduling resource allocation and

timetabling. Several languages and systems such as

ILOG Solver [7], CHOCO [9] have been developed

and widely spread. But these systems are helpless

when the constraint system to be solved has no

solution. Indeed, only a no solution message is sent to

the user who is left alone to find: why the problem

has no solution, which constraint to relax in order to

restore the failure etc. These questions yield two

fundamental tasks: identification of constraints to be

relaxed and efficient constraint suppression.

 Our previous work [6] presented an explanation

-based constraint system, where a promising

technique using explanations provides useful

information. The prototype system has been

instantiated and evaluated successfully for finite

domain constraint satisfaction problems. However, it

is not practical enough. It is concerned to experiment

with more real-life problems to evaluate the system.

In this paper, we propose a prototype of an

explanation-based constraint programming system

for a timetabling problem. Timetabling is a process of

assigning events or activities to resources such as

timeslots, rooms and lecturers which could satisfy all

required (or hard) constraints and also preference (or

soft) constraints as acceptable as possible. The

problem is combinatorial and dynamic. A good and

efficient timetabling system is required to manage the

rapidly growing academic activities within a limited

time and limited room resources. We are attempting

to solve the problem with the class library of ILOG

Solver [7] which leads to a new kind of

explanation-based constraint programming.

2. Explanations within Constraint
Programming

We consider here a constraint satisfaction

problem (CSP). Decisions are made during variable

assignments correspond to adding or removing

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

748

constraints from the current constraint system. These

constraints are called decision variables.

2.1. Contradiction explanations

Let us consider a constraint system whose

current state is contradictory. A contradiction

explanation (a.k.a nogood [10]) is a subset of the

current constraint system of the problem that leads to

a contradiction. A contradiction explanation divided

into two parts: a subset of the original sets of

constraints (CC ⊂′ in equation (1)) and a subset

of decision constraints introduced in the search so far.

)..(11 kk avavCC =∧∧=∧′a (1)

In a contradiction explanation composed of at
least one decision constraint, a constraint jv is

rewritten in the following way:

jjii
jki

avavCC ≠→=′ ∧
∈

)((
\]..1[

a (2)

The left hand side of the implication is called an

eliminating explanation because it justifies the
removal of value ja from the domain of the

variable jv and is noted:)exp(jj av ≠ .

Classical CSP solvers use domain reduction

techniques. Recording eliminating explanation is

sufficient to compute contradiction explanations.

Indeed, a contradiction is identified when the domain
of a variable jv is emptied. A contradiction

explanation 1 can be easily computed with the

eliminating explanations associated with each

removed value:

))exp((
)(

avC
vda

≠¬ ∧
∈

a (3)

There exist generally several eliminating

explanations for the removal of a given value.

Recording all of them leads to an exponential space

complexity. Another technique relies on forgetting

1 If contradiction explanation doesn�t contain any decision
constraints, the associated problem is over-constrained.

eliminating explanations that are no longer relevant2

to the current variable assignment. By doing so, the

space complexity remains polynomial. We keep only

one explanation at a time for a value removal.

2.2. Computing explanations

Minimal (w.r.t. inclusion) explanations are the

most interesting events. Such explanations allow

highly focused information about dependency

relations between constraints and variables [5].

Unfortunately, computing such an explanation can be

exponentially time-consuming [8]. A good

compromise between preciseness and easy

computation is to use the knowledge embedded

inside the constraint solver to provide explanations.

Indeed, constraint solvers always know why they

remove values from the domains of considered

variables. By explicitly stating such information,

quite precise and interesting explanations can be

computed. To achieve this behavior, it is necessary to

alter the code of the solver itself.

The constraint solver that we develop uses an

event-based model. During propagation, constraints

are awakened each time when a variable domain is

reduced (the reduction is an event) and possibly

generating new events (value removals). In such a

model, a constraint is fully characterized by its

behavior regarding the basic events: value removal

from the domain of a variable (method

awakeOnRem), domain bound updates (method

awakeOnInf and awakeOnSup) and a variable

instantiation (method awakeOnInst)

Example1: (Constraint cyx +≥)

This is one of the basic constraint in our system. It

is represented by the BGT/BGE class. If the upper

bound of x is modified, the upper bound of y

2 A no-good is said to be relevant if all the decision constraints in
it are still valid in the current search state [1].

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

749

should be lowered to the new value of the upper

bound of x taking into account of the constant c.

This is coded as:.

[awakeOnSup(c:BGT/BGExyc, idx:integer) : void

->if (idx=1) updateSup(c.v2, c.v1.sup - c.cst)]

In Example1, idx is the index of the variable of

the constraint whose bound has been modified. This

constraint only reacts to modification of the upper

bound on variable x (c.v1 in the constraint). The

method updateSup only modifies the value of y

(c.v2 in the constraint). Explanations for events need

to be computed when the events are generated, i.e.

within the propagation code of the constraints. In

order to make it as simple as possible, one only needs

to add an extra information to the updateInf and

updateSup calls: the actual explanation.

Let us consider Example 1, modifications to be

made are quite simple. Indeed, all the information is

at hand in the awakeOnSup method. The

modification of the upper bound of variable c.v2 (or

y) is due to the use of constraint itself and the

previous modification of the upper bound of variable

c.v1 (or x). An explanation for the modification can

be computed using the becauseOf method. The

source code is then modified in the following way:

[awakeOnSup(BGT/BGExyc, idx:integer) : void

if (idx=1) updateSup(c.v2, c.v1.sup - c.cst,

becauseOf(c, theSup(c.v1)))]

 Our implementation of explanations provides a

set of tools in order to ease the modification process.

The Explanation class that captures contradiction

and the modification of the domain update method

in order to efficiently store the explanations

associated to a given variable. These modifications

added to each propagation method efficiently

construct an explanation-based constraint solver.

3. Using Explanations

Explanations can be used to determine direct or

indirect effects of a given constraint on the domain of

variables of the problem. But what is interesting in

the context is the ability of explanation system.

3.1. Explanations for constraint retraction

A constraint, in an explanation-based constraint

system, includes value removal and value

restorations. It is time to see how explanation is

useful when dealing constraint retraction. Constraint

retraction in dynamic problem has been studied [2],

but here we simplify the algorithm due to

explanations. When using an explanation-based

system, constraint retraction of a given constraint c

can be achieved in two main steps:

− Setting values back: Setting back values refers to

undo the past effects of the constraints. That is, all

the associated events which are no more valid

should be put back to their respective domain.

This step is quite easy by considering all

explanations containing the removed constraint.

− Re-achieving consistency: A consistency check

should be done in order to get a consistent state as

if the removed constraints never appeared in the

constraint system. Those new removals need to be

propagating again. At the end of this process, the

system should be in a consistent state. This

process is like the ones in [2][5], but we don�t

need to compute the past effects of a constraint

since each explanation in our system contains all

the information at once. We just need to compute

the set of explanations containing the retracted

constraint.

3.2. Explanations for contradiction handling

Explanation can be used to select and relax a

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

750

constraint which allows the discovery of new

solutions. Once a contradiction occurs, there is no

need to backtrack: simply consider the explanation

that justifies the lack of more solutions for the current

problem (calling explain(FailingVariable(), domain,

e)), and select a constraint in it. As shown in [4], one

needs to select the more recent constraint in the

explanation in order to remain complete. In order to

move from the dead-end, one can remove the

considered constraint and add its negation. Figure 1

shows such a contradiction handling mechanism.

 handleContradiction(): void
 {

 if FailingVariable?() // a failure occurred
{
let e =conflict_set();

 {
explain(FailingVariable(), domain, e); //compute an explanation
if empty(e) // the problem unsolvable

contradiction!(); // raise a contradiction
 else {
 let sc = select Constraint(e);
 if known?(sc)

{ unassignedVars= add(sc.v1);
 remove (sc); //relax the constraint and remove its effects

 e =delete(sc); //posting the associated negation constraint
post(current_pb, e);
propagate(current_pb); //restoring consistency

if contradiction!()
 handleContradiction(); //doing it recursively }

 }}}}

Figure 1. The code for contradiction handling

4. Application to Timetabling Problem

In this section, explanation-based constraint

programming is used to solve a university timetabling

problem. The objective is to implement a prototype

for efficient and comfortable timetabling in our own

department. In addition, we expect a significant

improvement of the timetable�s �quality� and an

acceleration of the generation process. The system

will also be designed to be adaptable to the

requirements of other departments. First prototype

has currently being validated in our department.

4.1 Overview of the prototype timetabling system

The prototype of our timetable system adopts an

object-oriented approach [3] which separates problem

specifications and constraint solver in two different

layers to enhance model formulation and

maintenance (see Figure 2). The layer of the problem

specifications is consisting of three modules (e.g.

Constraint Manager, Timetable Generator and

Optimization Criteria) which can be modeled

according to the user�s requirements. In fact, the

constraint solver provides tools for explanation-based

search paradigm, contradiction handling mechanism

and constraint posting methods. Whatever changes

take place, we may only change the problem

specifications (e.g. constraints, variables, etc.)

without disturbing the logic of the constraint solver.

Constraint
Manager

Timetable
Generator

Optimization
Criteria

Explanation-Based Constraint Solver
(Search, Contradiction Handling , Constraint Propagation)

Figure 2. Prototype for timetabling problem

4.2 Design results

Firstly, in Constraint Manger module, we build a

first library of constraints to organize the variable

limitations in requirement classes called constraint

levels. A constraint level is just a container for

concrete constraints. For example, all constraints of

the type �no concurrence of courses of the same

lecturer� are put on one constraint level. Each

constraint of this level consists of all the courses of

one lecturer and the level comprises time preferences

of each lecturer.

Constraints are divided into two groups: hard and

soft constraints. Hard constraints are the minimum

requirements to be satisfied, otherwise it is

impossible to generate a reasonable timetable. On the

other hand, soft constraints should be satisfied as

acceptable as possible. In our prototype, we arrange

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

751

the constraint levels by assigning to each of them a

priority due to their subjective importance. The result

is a list of all constraint levels by priority. The

priority 0 is assigned to the level of all hard

constraints. Thus, the objective of the timetabling

problem is to satisfy as many constraint levels as

possible.

All concrete constraints with similar meaning can

be abstracted to constraint classes. For example, all

possible types of �no concurrence of courses� can be

abstracted to be the class called �NotConcurrence�

which is the most important constraint class. Figure 3

shows an extract of Booch�s [3] class diagram as a

result of the analysis and design process.

Timetable Generator

 generate()

NeededRoomEquipment

Equipment: set

Constraint Manager

 post()

Constraint Level

 priority : int

 postPercentage()

Constraint

post()

GenerateTimeExclusion

 times bool[days][times]

TimeExclusion

 times bool[days][times]

TimePreference

 times bool[days][times]

NeededLectureUnits

 quantity : int

NotConcurrent

lectures
courses

Figure 3. Class diagram of constraint manger

It is shown in Figure 3 that all constraint levels

containing all concrete constraints are collected in

one object of the class �Constraint Manger� which

can be accessed by the object of the class �Timetable

Generator�. The diagram was reduced to those

classes related to constraints and thus relevant to

Constraint Solver. As one can see all constraints

classes (e.g �NotConcurrent�, �TimePreference�,

�GenerateTimeExclusion�, etc.) are derived from an

abstract base class called �Constraint�. This base

class only consists of the virtual operation �post� that

has to be inherited to each class. It makes sure that

one object from each constraint class can convert its

data member to constraints so that Constraint Solver

can understand.

Start

Idle
Stisfying hard

constraints

Constraint Solver

Optimization Criteria

generate()

Stisfying soft

constraints

success

failure

Try to satisfy all hard

constraints

Satisfy as many

constraints as possible of

each constraint level

Figure 4. State diagram of timetable generator

Secondly, in Timetable Generator module, we

design the class �Timetable Generator� (see Figure 4).

When the timetable generator gets the message to

generate a timetable, it consults the constraint solver

to search for solutions satisfying all hard constraints.

If there exists no solution of these constraints, the

generation has failed as they are the minimum

requirements to the timetable.

If all hard constraints could be satisfied, the

generator proceeds to the state �Satisfying soft

constraints�. Thus, the objective is to satisfy as

acceptable as possible of each constraint level. In this

state, the generator inquires optimization criteria

from the user to receive an optimal solution when all

constraints of each level are satisfied. However, these

optimization criteria are user-defined. The generator

leaves this state always with a �success� result

meaning that a valid and so-called �best� timetable

(w.r.t. optimization criteria) could be generated as at

least all hard constraint are satisfied.

5. First Results

The proposed system is in fact mad of several

modules delivered in the class library of ILOG Solver

[7] and modified with C++ which is dedicated to

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

752

explanation-based constraint programming. It is

implemented using real university timetabling data of

our department. We were very quickly acquainted

with ILOG Solver and wrote our first results. It is

striking the very readable and compact codes of the

system. Simple models can easily be extended and

the Solver is very useful for rapid prototyping. In fact,

we are not the first ones attempting to solve

timetabling problem in our university. A lot of

academic staff have tried but failed. With constraint

solver as part of our prototype, we have already

achieved the results as the conventional planners in

our department, but in significantly less time.

Our results demonstrate the system performance

where the feasible and acceptable solution is found in

a reasonable time compared to the size and the

complexity of the problem with the help of the

explanation-based constraint solver. It successfully

finds the acceptable solution. Due to these facts, our

system behaves desirable features.

6. Conclusion

We presented an original use of explanation-based

constraint programming to propose a solution for a

difficult timetabling problem. A library of dedicated

constraints is developed to solve this problem.

Explanations are also used to provide an efficient

system: conflicts are identified and explained, the

search can be completely driven automatically or by

the user. The system is implemented using real

university data. The solution is found in a reasonable

time. The first results show flexibility and

adaptability of the tool with the help of

object-oriented design of the system. In the future,

the proposed prototype will try for further

improvement. The aim is to apply explanation-based

constraint programming to develop an efficient and

appropriate university-wide professional version.

Reference

[1] R. J. Bayardo, and D. P. Miranker, �A

complexity analysis of space-bounded learning

algorithms for the constraint satisfaction

problem�, AAAI-96, pp. 298-304, 1996.

[2] C., Bessiere, �Arc-consistency in dynamic

constraint satisfaction problems�, Proceedings of

the 9th National Conference on Artificial

Intelligence, pp. 221-226, 1991.

[3] G. Booch, Object-oriented analysis and design,

Benjamin/Cummings,1994.

[4] M. L. Ginsberg, �Dynamic backtracking�,

Journal of Artificial Intelligence Research, vol. 1,

pp. 25-46, 1993.

[5] C. L. Hsieh and J. Archibald, �A dependency

-based constraint relaxation scheme for over

-constrained problems�, International Computer

Symposium, pp. 134-141, 1998.

[6] C. L. Hsieh, �Conflict resolution with

explanations and best-first search for solving

over-constrained problems�, Proceedings of 5th

Conference on Artificial Intelligence and

Applications, pp. 429-435, 2000.

[7] ILOG, Ilog Solver reference manual, 2001.

[8] U. Junker, �QUICKXPLAIN: conflict detection

for arbitrary constraint propagation algorithms�,

IJCAI�01 Workshop on Modeling and Solving

Problems with Constraints, 2001.

[9] F. Laburthe, �Choco: implementing a CP Kernel�,

CP�2000 Post Conference Workshop on

Techniques for Implementing Constraint

Programming Systems, 2000.

[10] T. Schiex and G. Verfaillie, �Nogood recording

for static and dynamic constraint satisfaction

problems�, International Journal of Artificial

Intelligence Tools�, vol. 3, no. 2, pp. 187-207,

1994.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

753

