
Strategies for Translating UML/OCL Design Models to JAVA/JML
Designs

Ali Hamie
School of Computing, Mathematical and Information Sciences,

University of Brighton, Brighton, UK.
{a.a.hamie@brighton.ac.uk}

Abstract. The Object Constraint Language OCL is
a textual notation that can be used for making UML
models more precise by expressing formal
constraints on the modelling elements that occur in
UML diagrams. OCL can be used to specify
invariants on classes and preconditions and
postconditions of operations and methods. The Java
Modeling Language JML is a behavioural interface
specification language for specifying Java classes
and interfaces. Like OCL, JML can be used to specify
invariants and preconditions and postconditions.
However JML explicitly targets Java, whereas OCL
is not specific to any one programming language.

This paper deals with the translation of some
aspects of UML design models with OCL constraints
to Java classes and interfaces annotated with JML
assertions. Rather than giving a particular
translation, the paper proposes different translation
strategies that would be possible. A set of defaults for
all the decisions would be adopted which would
allow translation to be automated, for example by a
tool that could take the UML/OCL model and
translate it directly into an initial JML/Java design
that could later be modified as desired.

Keywords: OCL, UML, JML, Constraints

1. Introduction

The Unified Modeling Language UML [2] is
widely accepted as the standard for object-oriented
modelling and is supported by a number of CASE
tools. The Object Constraint Language OCL [8] is a
part of UML, and was introduced to formally express
additional constraints on object-oriented models that
diagrams cannot convey by themselves. OCL can be
used to specify invariants on classes and
preconditions and postconditions of operations.

The Java Modeling Language JML [5][6] is a
formal specification language specifically developed
for specifying and describing the detailed design and
implementation of Java modules (classes and
interfaces) [1]. It is model-based supporting, in
particular, class invariants, and method specification
by precondition and postcondition to document
required module behaviour. There are various tools

that support the checking and manipulation of JML
specifications including a run-time assertion checker.
A description of the different tools available can be
found in [3].

Following the lead of Eiffel [7], the assertion
language of JML is based on side-effect free Java
expressions. The language is extended with few
operators and constructs including operators for
universal and existential quantifications that are
essential for making the language more expressive.
JML also provides a library of mathematical models
(sets, bags, sequences, etc.) defined as pure Java
classes that are intended to be used in specifications.

This paper presents and discusses different
strategies for translating UML/OCL design models
into JML/Java designs consisting of Java classes and
interfaces annotated with JML assertions. The paper
also adopts a set of defaults for the translation. This
makes it possible for the translation to be automated
by a tool that could take the UML model with OCL
constraints and translate it directly into an initial
JML/Java design that could later be modified as
desired. The main focus will be on translating the
modelling elements of class diagrams with
associations that are directed. The translation
facilitates reasoning about the specification and the
verification and testing of the Java classes using a
wide range of tools that manipulate JML. And
because JML/Java preserves most features of the
object-oriented structure of UML/OCL models,
errors detected within the JML/Java specification
produced by the translation could more easily be
traced back into the initial UML/OCL model.

The rest of the paper is organised as follows.
Section 2 presents various choices for translating
classes, attributes, and invariants. Section 3 shows
how associations with various multiplicities are
translated. Section 4 shows how aggregation and
composition are translated. Section 5 shows how
association classes are translated. Section 6 shows
how generalisation is translated. Section 7 shows
how operation specifications are translated. Section 8
provides the conclusion.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

202

2. Translating UML classes

In this section we discuss various options for
translating UML class diagrams into JML. A class in
a class diagram is mapped to a Java class of the same
name, annotated with JML assertions.

2.1 Class attributes

 The attributes of a class are mapped to fields of
the same name and with the appropriate types.
Attribute type declarations are required for
translation to JML/Java. Figure 1 shows a class
named A with attribute att of type T, where T is
assumed to be a basic value type, i.e. one of the
following types: Boolean, Integer, Real, or String.

A

- att : T

public class A {
 private /*@ spec_public @*/ T’ att;}

Figure 1. A class and its translation to JML

The class A is mapped to a Java class with the

same name A and the attribute att is mapped to a
field of the same name att of type T’, where T’ is
the translation of type T. JML specifications are
included in the code as annotations which are
comments starting with //@ or starting with /*@ and
ending with @*/. For example, the annotation
/*@ spec_public @*/ indicates that for the
purpose of specification the field att is public. The
type of the corresponding Java field depends on the
type T. If T is Boolean, the corresponding field type
is boolean. If T is Integer, the corresponding field
type is one of the following types: byte, short,
int, or long. Given that Integer is the type of
mathematical integers, it is appropriate to translate it
as long, by default. If T is Real, the corresponding
field type is one of the following types: float or
double. We also translate Real as double, by
default. If T is String, the corresponding field type is
String. And because the type String is an object
(reference) type, an additional constraint is needed on
the field att that says att cannot take the value
null since it is declared to be total. This constraint
can be expressed using either the annotation
/*@ non_null @*/ on the declaration as follows:

public class A {

 private /*@ spec_public non_null @*/
 String att; }

or as an explicit invariant as follows:

 public class A {

 private /*@ spec_public @*/ String att;
 //@ public invariant att != null;}

JML invariants are boolean expressions and
follow the keyword invariant. The modifier public
indicates that the invariant is public. Using
annotations on the declaration makes the
specification simpler and easier to read. For this
reason, this translation will be the default.

The disadvantage of using private fields as public
for specification purposes is that the specification is
coupled with these fields so that any changes to them
will affect the specification. This can be overcome by
using model fields which are used only in the
specification. This is shown in Figure 2 where a
represents clause is added which indicates how the
value of the model field att is obtained from the
concrete field att_c.

A

- att : T

 public class A {

 //@ public model T’ att;
 private T’ att_c;
 //@ private represents att<- att_c;}

Figure 2. An alternative translation for class A

If the type T is an enumerated type with values v1

and v2, the corresponding type is simply the Java
type T declared as enum T {v1, v2}.

If the attribute att is optional, i.e. declared as
att : T[0..1], the corresponding type is the wrapper
class for the basic types. For example, if T is Integer,
the corresponding type would be one of the following
types: Byte, Short, Integer, or Long. By
default, Integer is translated as Long. If T is Real,
the corresponding type would be one of the
following: Float or Double. Again by default,
Real is translated as Double. If T is String, the
field type would be String in which case there is
no additional constraint on the field att since it can
already have the value null.

Using wrapper classes for the translation may
make the corresponding JML assertions more
complicated because one needs to unwrap the objects
in order to get the actual value. However, this is no
longer a problem since the new version of Java
makes the unwrapping process automatic.

If the attribute att is marked with UML’s
{frozen} property as shown in Figure 3, the
corresponding field att is declared with the
modifier final.

A

- att : T {frozen}

public class A {
 private final /*@ spec_public @*/ T’ att;}

Figure 3. A frozen attribute and its translation

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

203

An alternative way is to translate the frozen
property of the attribute using a history constraint as:

//@ constraint att == att@pre;

That is, once the object is initialised the value of att
will be the same in every state.

2.2 Class invariants

Class invariants involving attributes are translated
to JML invariants constraining the corresponding
fields. Invariants in OCL are expressed as follows:

context A
inv: att-invariant

where the keyword context indicates the context of
the invariant which is the class A in this case, and inv
indicates the type of the constraint which is an
invariant. The invariant itself att-invariant is a
boolean expression which may involve the attribute
att. This invariant translates to a JML invariant on
the corresponding field att as shown in Figure 4,
where att-invariant is the corresponding JML
boolean expression. If a model field is used in the
translation, the invariant constrains it.

A

- att : T context A inv:
att-invariant

 public class A {
 private /*@ spec_public @*/ T’ att;
 //@ public invariant att-invariant; }

Figure 4. A class invariant and its translation

OCL assertions are boolean expressions built

using the boolean operators and, or, not, and
implies. Quantified expressions are built using the
quantifiers forAll and exists. The expressions p and
q, p or q, not p, and p implies q are translated to the
corresponding JML expressions p’&&q’, p’|| q’,
!p’, and p’==>q’ respectively, where p’ and q’
are the translation of the expressions p and q
respectively. Quantified expressions are translated
using the JML quantifiers \forall and \exists.

Equality between expressions of the basic types
Boolean, Integer, and Real are translated using the
Java equality operator ==. That is e1 = e2 is
translated to e1’ == e2’, where e1’ and e2’ are
the translations of e1 and e2 respectively. However,
if e1 and e2 are of type String, e1=e2 is translated
to e1’.equals(e2’). More details about
translating OCL expressions and operations into JML
can be found in [4].

As an example, Figure 5 shows a class Person
with attributes name and weight, and an invariant
that says the name cannot be empty and the weight
must be greater than or equal to zero. The mapping to
JML/Java is also shown in Figure 5, where the name

and weight are translated to the fields name and
weight respectively. The inequality name <> ”” is
translated to !name.equals(““).

Person

name : String
weight : Integer

context Person inv:
name <> "" and weight >= 0

public class Person {
 private /*@ spec_public non_null @*/ String name;
 private /*@ spec_public @*/ int weight;
 //@ invariant !name.equals(“”) && weight >=0;}

Figure 5. Class Person and its translation

3. Translating associations

This section considers associations with various
multiplicities and how they are mapped to JML/Java.
Associations are used to show how classes are related
to each other. Associations are drawn as lines
between pairs of classes. The association line may be
annotated with role names and multiplicity
constraints that indicate how many instances of one
class can be linked to an instance of another class.
Associations are translated through declared fields in
Java classes depending on the navigability specified
across the association line. This paper only handles
associations that are directed. Bi-directional
associations are translated as if they were two
separate uni-directional associations with additional
constraints.

3.1 Associations with ‘one’ multiplicity

Figure 6 shows a directed association between
classes A and B with role name r at the B’s end. This
says that an instance of class A is associated with
exactly one instance of class B. Translating the
association involves translating the classes and the
role r. Since the multiplicity of the association is one,
r is translated to a field r of type B that is declared in
A. An additional constraint is needed to say that r
cannot be null. The mapping is shown in Figure 6
where field r is declared as public for specification
purposes. This is similar to the attribute case where
the attribute type is an object type.

1
rA B

public class A {
 private /*@ spec_public non_null@*/ B r;}

Figure 6. Association translation

The translation can also be achieved using a
model field r and a concrete field rc, together with a
represents clause that defines the model field in terms
of the concrete one, as follows:

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

204

public class A {

 //@ public model non_null B r;
 private B rc;
 //@ private represents r <- rc;}

The advantage here is that the specification is not tied
to the implementation of the class.

The mapping provides a general case for the
translation of associations that can be instantiated to
specific classes and role names.

3.2 Associations with ‘0..1’ multiplicity

Figure 7 shows an optional (i.e. 0..1 multiplicity)
directed association between classes A and B with
role name r. This says that an instance of class A
might or might not be associated with an instance of
class B. In this case the role r is translated to a private
field r of type B with no additional constraints
because it can already take the value null. The
mapping is also shown in Figure 7.

0..1
rA B

public class A {
 private /*@ spec_public @*/ B r;}

Figure 7. Optional association translation

The translation can also be achieved using a

model field r and a concrete field rc, with a
represents clause. The translation in this case is
similar to that of the association with ‘1’ multiplicity
where the non_null constraint is removed.

3.3 Associations with ‘many’ multiplicity

A very common multiplicity in modelling is
‘many’, which is indicated by an asterisk, and means
any integer greater than or equal to zero. Figure 8
shows an association between classes A and B with
‘many’ multiplicity and role name r. Each instance of
class A is associated or related to a set of instances of
class B. JML supports modelling types that can be
used in specifications. These include sets, bags and
sequences. In order to translate associations with
‘many’ multiplicity, these modelling types are used.

The translation is shown in Figure 8 where the
role r is translated to a model field r of type
JMLObjectSet. The type JMLObjectSet is the
type of finite sets containing objects rather than
values. That it treats its elements as object references
(addresses) and does not care about the values of
these objects. The equality test used by the
membership method has uses Java's == operator to
compare addresses of these objects. Since
JMLObjectSet is defined as a Java class, a
constraint is required that restricts the value of the

field r to be not null. An additional constraint is also
required to say that the elements of r are instances of
class B. This is expressed using the universal
quantifier \forall, as (\forall Object e;
r.has(e);e instanceof B). Note that this
translation does not specify how the role r is
implemented.

*

rA B

public class A {
//@ public model non_null JMLObjectSet r;
/*@ invariant (\forall Object e;r.has(e);
 @ e instanceof B);
 @*/ }

Figure 8. A translation of an association with *
multiplicity

Another possible translation is to use the private

representations of role r as public for the
specification. However, the use of model variables
provide abstract and more concise specifications.

If the association is also annotated with {bag} or
{seq}, the translation is similar to the set case but
uses the types of bags JMLObjectBag and
sequences JMLObjectSequence respectively.

Associations with other ‘many’ multiplicities are
translated in a similar way, where the multiplicities
are reflected in additional constraints constraining the
size of such collections. For example Figure 9 shows
an association annotated with multiplicity m..n,
where m and n are positive integers. In this case the
role r is translated to a field r of type
JMLObjectSet where the size of r is restricted to
be between m and n. The translation is given in
Figure 9. The case where the multiplicity is a fixed
integer is subsumed within range multiplicity where
m and n are equal.

m..n
rA B

public class A {
//@ public model non_null JMLObjectSet r;
/*@ public invariant
 @(\forall Object e;r.has(e);e instanceof B)
 @ && m <= r.size() && r.size() <= n;
 @*/ }
Figure 9. A translation of an association with

m..n multiplicity

4. Translating aggregation/composition

Aggregations in UML are special associations
that represent ‘part-whole’ relationships. The ‘whole’
side of the relationship is often called the aggregate
or assembly. Aggregations are specified using a
diamond symbol, which is placed next the aggregate.
Aggregation is translated as an ordinary association.

Composition is a stronger form of aggregation
and implies that instances of the part class may

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

205

belong to just one instance of the compound class. A
composition is shown using a solid (filled-in)
diamond, as opposed to an open one. The translation
of composition is similar to translating aggregation
with an additional constraint to enforce unshared
containment. This translation is shown in Figure 10
where the last constraint is used to prevent sharing.

*
r

A B

public class A {
//@ public model non_null JMLObjectSet r;
/*@ invariant (\forall Object e;r.has(e);
 @ e instanceof B);
 @ (\forall A a1, a2;a1 != a2;
 @ a1.r.intersection(a2.r).
 @ equals(new JMLObjectSet());
 @*/ }

Figure 10. Composition translation

5. Translating association classes

An association class enables class like features to
be added to UML associations. An association class
is connected to its association by a dashed line. Such
classes may be translated to JML/Java as described
above, but with the addition of two fields
corresponding to rolenames and types of the classes
participating in the association. Depending on the
navigability specified across the association line, the
participating classes constructs will contain
additional fields whose type is a power set of the
association class and constrained in size by the
multiplicity specified at the opposite association end.

A BC * 11 *
r

*

*
r

A B*

C

Figure 11. Association class and its

transformation to one-many associations

Any pair of classes with a many-to-many

association with an association class can be
transformed into a model that uses only one-to-many
associations as shown in Figure 11. In this case the
translation deals only with ordinary associations as
covered above. An additional constraint is also
needed which says that given an object of type A and
another of type B, there is a unique object of C
associated with those objects.

6. Translating generalisation

The translation of UML generalisation is
straightforward in that Java supports inheritance.

Specialised subclass features may then be translated
as described earlier. However since Java does not
support multiple inheritance, models with such
features have to be translated using interfaces. If an
operation is redefined in a subclass, its specification
in the superclass is inherited. This is indicated in
JML by using the keyword also as in Figure 12.
That is class B only shows part of the specification
for operation op, the other part is specified within
class A.

context B::op()
pre: precondition
post: postcondition

B
op()

A
op()

public class B extends A {
 /*@ also
 @ requires precondition;
 @ ensures postcondition;

 @*/ }

Figure 12. Translation of a subclass

7. Translating operation specifications

In OCL operations are specified using
preconditions and postconditions which are boolean
expressions. The general form of an operation
specification is given as follows:

context A::op(p1:T1, ..., pn:Tn)
pre: op-precondition
post: op-postcondition

The first line of the specification defines the class

in which the operation is defined, and this is
indicated by the keyword context, followed by the
signature of the operation. The precondition and
postcondition follow the keywords pre and post
respectively. This specification is translated to a JML
specification of the corresponding method op of
class A as follows:

public Class A {
 //@ requires op-precondition;
 //@ ensures op-postcondition;
public void op(T1’ p1,...,Tn’ pn){...};}

The types T1’,..., Tn’ in the signature of the

method op are the translation of T1, ..., Tn
respectively. The precondition op-precondition of
method op which follows the keyword requires
is the translation of the OCL precondition op-
precondition and the postcondition op-
postcondition which follows the keyword
ensures is the translation of op-postcondition.

This will be the default translation of the
operation specification. OCL does not support frame

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

206

conditions that indicate which properties an operation
is allowed to modify. However JML supports the
description of frame conditions using the assignable
or modifies clause. The user can then strengthen the
method specification by adding an assignable or
modifies clause that indicates which variables the
method is allowed to change. In some simple cases
this can be deduced by inspecting the postcondition
of the operation. However in other cases it is difficult
to decide which properties are being modified in
order to satisfy the postcondition. In order to make
the translation simpler, it is proposed that OCL be
extended with a new keyword modifies used in the
context of operations to express frame conditions.
Query operations that do not alter the state of an
object may be indicated by modifies: nothing.

In a postcondition, the expression can refer to
values of object properties at the start of the
operation or method and upon completion of the
operation or method. The value of a property in a
postcondition is the value upon the completion of the
operation. To refer to the value at the start of the
operation, OCL postfixes the property name with the
keyword ‘@pre’ as the following example shows:

context Person::weightIncreased(n : Integer)
pre: n >= 0
post: weight = weight@pre + n

The property weight@pre refers to the value of

the property weight of the person object that executes
the operation, at the start of the operation.

In JML the operator \old is used to refer to the
value of an expression at the start of a method. Thus
\old(exp) denotes the value of the expression
exp at the start of a method.

In general expressions of the form
self.property@pre in postconditions where property
is either an attribute or association role are translated
to \old(this.property). OCL expressions of
the form self.operation@pre(p:T) where operation
is a query operation are translated to
\old(this.operation(T’ p)).

The operation oclIsNew is used in postconditions
to assert that an object is newly created. That is the
expression o.oclIsNew() is true if o is created by the
operation and did not exist at precondition time. Such
expressions are translated using the JML operator
\fresh so that exp.oclIsNew() is translated to
\fresh(exp’) where exp’ is the translation of
exp. This indicates that the object denoted by exp’
is newly allocated.

8. Conclusion

This paper presented and discussed different
strategies for translating some aspects of UML/OCL
design models to JML/Java designs, that is Java
classes and interfaces annotated with JML assertions.

The paper dealt with the translation of classes,
attributes, invariants, directed associations with
various multiplicities, and operation specifications. A
set of defaults for the translation has been adopted
that would allow it to be automated by a tool that
could take the UML/OCL model and translate it
directly into a JML/Java design that could later be
modified as desired.

One of the benefits of this translation is that it
enables the use of JML for the specification of object
constraints especially in the detailed design stage of
the development of a Java application using UML
and OCL. Other benefits include the use of a wide
range of tools that support JML for reasoning about
specifications, testing and verification of Java
programs.

The translation presented in this paper could
further be extended to cover the translation of more
complex UML constructs such as interfaces, abstract
classes, qualified associations and static class
features. This should be possible since all these
constructs have corresponding representations in
JML/Java. Further research needs to be carried out to
check whether OCL action constraints can be
mapped to JML/Java.

References

[1] K. Arnold, and J. Gosling, The Java
Programming Language. The Java Series.
Addisson-Wesley, Reading, MA, 2nd edition,
1998.

[2] G. Booch, J. Rumbaugh, and I. Jacobson, The
UML User Guide, Addison-Wesley, 1999.

[3] L. Burdy et al., An overview of JML tools and
Applications. In Thomas Arts and Wan Fokkink
(editors), 8th International Workshop on Formal
Methods for Industrial Critical Systems
(FMICS’03), pp. 73-89. Volume 80 of Electronic
Notes in Theoretical Computer Science
<http://www.elsevier.nl/locate/entcs>, Elsevier,
June, 2003.

[4] A. Hamie, Translating the Object Constraint
Language into the Java Modeling Language. In
the proceedings of the 19th ACM Symposium on
Applied Computing, 2004.

[5] G. Leavens, et al., JML: A Notation for Detailed
Design. In Haim Kilov, Bernhard Rumpe, and
Ian Simmonds (editors), Behavioural
Specifications of Businesses and Systems,
Kluwer, 1999.

[6] G. Leavens, A. Baker, and C. Ruby, Preliminary
Design of JML: A Behavioral Interface
Specification Language for Java. TR #98-06y,
revised version June 2004.

[7] B. Meyer, Eiffel: The Language. Object-oriented
Series. Prentice Hall, New York, N. Y., 1992.

[8] J. Warmer and A. Kleppe, The Object Constraint
Language, second edition, Addison-Wesley,
2003.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

207

