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Abstract-Data cube materialization is commonly 
used in reducing OLAP response time. However, 
materializing a whole data cube requires large disk 
space as the focus on the interested subjects results 
in only a small portion of data cubes being 
frequently accessed. The subcube, a finer partition of 
a data cube, is proposed. The subcubes are formed 
from multi-dimensional queries, and the number of 
subcubes grows when various queries issued by 
users with different dimension levels and value 
ranges. The management framework of these 
subcubes is important. The technique for searching 
the subcubes directly affects the query performance, 
and therefore binary trees and linked lists are used 
to manage the subcubes. For saving the query 
processing time, an algorithm for searching 
appropriate subcubes is proposed.  
 
Keywords: data cube, materialization, subcube, 
query processing. 
 
1. Introduction 
 

In most cases, OLAP execution is expensive 
because answering a query with aggregation entails 
processing numerous details from the fact tables in 
the data warehouse. Materialized views have long 
been proposed to speed up query processing. The 
most common practice is applying view selection 
algorithms on search lattice in advance as an 
undividable unit and then picking up some nodes for 
materialization. Research by Huei-Huang Chen and 
Kuo-Wei Ho [1] suggest that most OLAP queries 
merely focus on some nodes and even some regions 
within the nodes. That means only a small portion of 
the materialized nodes is accessed. A subcube-based 
implementation framework is proposed to further 
partition a node in a lattice into subcubes for 
materialization. Thus, storage space is saved. 

In OLAP query processing, the most important 
issue is to find the appropriate subcubes for a query 
efficiently in order to reduce the query processing 
cost. A subcube's identifier (a combination of 
subcube cell and subcube class) is adequate for a 
query cell to check whether it can be answered from 
the subcube or not. A Subcube Table Method (STM) 
is introduced to store subcube's information in a 
RDB table. Appropriate subcubes are then searched 

to answer a query by scanning the table. Appropriate 
as these subcubes may be, they may not be the best 
choice. The best choice is the "nearest parent" [8] 
based on the subcube computational dependency. 

To avoid incurring the extra cost of selecting the 
best subcube from several appropriate ones, a tree 
structure constructed from the data cube lattice is 
maintained to keep the computational dependency of 
subcubes. The tree called Subcube Dependency Tree 
(SDT) is designed to prune the search space down to 
a subset of potentially appropriate subcubes. Each 
node of the tree is a subcube fragment. In this paper, 
algorithms for SDT management (insertion, deletion 
and adjustment of SDT nodes) and searching 
appropriate subcubes for OLAP queries are proposed. 
 
2. Related Works 
 

Data warehouses come to fill a gap in the field of 
querying large, distributed and frequently updated 
systems. Data are extracted from several data 
sources, cleansed, customized and inserted into the 
data warehouse. OLAP is one of the analysis tools 
supported by data warehouses. [3] generalizes OLAP 
query operators as aggregation, subtotaling, cross 
tabulation, and grouping. To select views to be 
materialized for reducing OLAP computing cost, [4] 
proposed a lattice framework frequently used by 
view selection algorithms, and it captures the 
computational dependencies among the data cubes. 
The static view selection method requires large disk 
space to store a whole data cube. Research by Yu 
Feng and Shan Wang [2] proposes a method to build a 
compressed data cube by a clustering technique and use 
this compressed data cube to provide approximate 
answers to queries directly. 

[1] states that most OLAP queries merely focus 
on some nodes and even some regions within nodes. 
A subcube-based implementation framework is 
proposed to further partition a node in a lattice into 
subcubes for materialization. The subcubing 
methods have the following two advantages: First, 
the unit for materialization can be reduced from a 
node in a lattice to a finer partition. Second, the drill-
down operation in all dimensions will not result in a 
partition that is too fine to take possible locality 
effect into consideration. Smith et al. [7] proposes a 
method for adaptively representing multidimensional 
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data cubes using wavelet view elements in order to 
more efficiently support data analysis and querying 
involving aggregations. The proposed method 
decomposes the data cubes into an indexed hierarchy 
of wavelet view elements. The view elements differ 
from traditional data cube cells in that they 
correspond to partial and residual aggregations of the 
data cube. The view elements provide highly 
granular building blocks for synthesizing the 
aggregated and range-aggregated views of the data 
cubes. 

 
3. Subcube Dependency Tree 
 

The disadvantages of employing Subcube Table 
Method (STM) are its inefficiency in checking all 
the subcubes in the table and the overhead of picking 
up the nearest subcubes. To address these problems, 
a data structure called Subcube Dependency Tree 
(SDT) is proposed. 

 
3.1 Nodes of the SDT 
 

The SDT is a tree structure formed of nodes, the 
subcube fragments. A subcube fragment computed 
from its parent node is a part or a complete subcube. 
In other words, the fragments for a subcube may be 
scattered in the SDT. As Figure 1 illustrated, Node 3 
and Node 4 are computed from Node 1 and Node 2, 
respectively; Node 3 and Node 4 represent a 
complete subcube. In our investigation, the 
operations of SDT are performed in the unit of nodes 
(subcube fragments) regardless of subcubes. 

The basic properties of nodes in the SDT are 
similar to that in a common tree. Each node in the 
SDT, except for the root, has one parent node and 
zero or more child nodes. The root node is the base 
fact table, which exists originally in the data 
warehouse; the leaf nodes contain the coarsest 
summarized information among the nodes in the 
branch. By keeping the computational dependency, 
parents and children are related in that data in parent 
nodes can be used to compute data in child nodes, 
whereas sibling nodes are totally independent of one 

another. Computing can span across more than two 
levels of the SDT as the computational dependency 
of nodes is kept in the branches of the tree. 

 
3.2 Construction of the SDT 

 
One main job of a subcube based query processor is 
to find the appropriate subcubes for queries and then 
use the found subcubes to compute the results. At the 
same time, the corresponding subcube is checked if 
it is worth materializing. When the subcube deserves 
materialization, it is computed by the query 
processor and stored in the pool for future use, as 
shown in Figure 2. These newly formed fragments 
for a subcube are all inserted into the SDT as child 
nodes of their parents from whom they are computed 
one by one. 

OLAP Query Dictionary

Subcube pool

Result
………………..
………………..
…………………

subcube

Subcube

Subcube cell
Subcube class

??

SQL
EXECUTION

Materialization
Admission

Figure 2. A newly formed subcube. 

In the initial construction stage, a SDT contains 
only the root node (the base fact table) and the child 
nodes are computed from the root without any other 
choices. Along with the coming queries, the 
corresponding fragments may be computed from the 
coarser nodes, and therefore, the descendants of the 
root may have their own child nodes. The newly 
formed nodes are then added into the SDT, and 
hence the SDT grows as the materialized subcubes 
are formed for coming queries. 

 
3.3 A Binary tree representation 

r o o t

21

3 4

P a r e n t

A  s u b c u b e  

Figure 1. The nodes in the SDT. 

 
The node degree of a node in the SDT is 

unlimited. To simplify its representation, a k-ary tree 
is usually transformed into a binary tree for storing. 
In this case, the SDT is transformed into a binary 
tree by Left-Most-Child-Right-Nearest-Sibling 
method. An example of transformation of a SDT into 
a binary tree is shown in Figure 3.  The Node 3 is the 
left most child of Node 1 in the SDT, so Node 3 is 
the left child of Node 1 in the mapped binary tree. 
The Node 2 is the right nearest sibling of node 1 in 
the SDT, so Node 2 is the right child of Node 1 in 
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the mapped binary tree. The most popular data 
structure to represent a binary tree is the linked lists. 

 
3.4 Node structure 
 

The node structure of the SDT transformed binary 
tree is shown in Figure 4. A node has four parts. 
Lchild links to the child node, Rsibling links to a 
sibling node which has the same parent as the node, 
the block pointer points to the starting address of a 
disk block that stores the subcube data, and the 
information field in the node stores the subcube 
identifier (a combination of subcube cell and 
subcube class), the dimension value ranges and 
usage statistics (accessed frequency, last accessed 
time, etc.). 

3.5 Operation algorithms 
The SDT tree is designed for subcube-based 

query processing. It helps the query processor to 
search the storage pool for appropriate subcubes. We 
then explain those algorithms regarding the 
maintenance of SDT including insertion, deletion 
and necessary adjustment.  

3.5.1. Node Insertion 
After issuing a new query, if the corresponding 

subcube is worth materializing, the new subcube 
fragments are formed and the insertion operation will 
be performed to insert the new nodes into the SDT 
for consistency. Figure 5 shows a case that a node is 
inserted into the SDT. The Node 8 is computed from 
Node 6, so Node 8 is a child of Node 6 in the SDT. 

The Node insertion algorithm for the mapped 
binary tree of SDT is shown in Figure 6. We let the 
inserted node be the Lchild of its parent node for 
quicker access in the near future. The operation 
requires changing only two pointers and thus, the 
time complexity of the algorithm is O(1). 
 
3.5.2. Node deletion 

Due to the constraints imposed by disk space and 
update window, the less frequently used subcubes 
are evicted from the pool of subcubes on disk. The 

0 /* p computed v */

add (subcube p, subcube v){

v->Rsibling=p->Lchild;  /* p->Lchild maybe a null value */

p->Lchild=v;

}  

Figure 6: Adding a SDT node algorithm. 
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Figure 3: Transformation of a SDT into 
a binary tree. 

0

1 2

4

5

0

1

2

4 58

8

0

1 4 58

0

1

4

5

8

9

9

9

9

SDT Mapped Binary Tree  

Figure 7: Deleting a node from SDT. 
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Figure 4: Node structure of SDT. 

delete (subcube v){

if (v->Lchild <> Null){

s=v->Lchild;

r=v->Rsibling;

v.data=s.data;

v->Lchild=s->Lchild;

v->Rsibling=s->Rsibling;

t=s;

/*to find the last right leaf */

while(t->Rsibling<>Null)

t=t->Rsibling;

t->Rsibling=r;

…

…

…

destroy(s);

}
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Figure 5: Inserting a node into the SDT. Figure 8: Node deletion algorithm (Case 1).
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node of an evicted subcube should be deleted from 
the SDT for consistency. Figure 7 shows a case of 
deleting a node from SDT. The Node 2 in the SDT is 
deleted, and its child nodes (Node 4 and Node 8) 
become child nodes of the parent of Node 2, Node 0. 

Actually, there are three cases to be considered 
for the deletion operation of the mapped binary tree: 
Case 1: v has Lchild. 
Case 2: v has no Lchild but Rsibling. 
Case 3: v is a leaf.  
(The deleted node is assumed to be Node v.) 

The deletion algorithm for case 1 is shown in 
Figure 8; for case 2 and case 3 it is shown in Figure 
9. 

The time complexity of the algorithm is O(n), 
because of the traversal to find the last sibling node 
in Case 1. 

 
3.5.3. Adjustment 

In the insertion stage of the SDT, an inserted node 
probably becomes a parent of its sibling. Figure 10 is 
used as an example to explain it. Nodes 5, 6 and 7 
show the ancestor-descendant relationship. When 
Node 6 is deleted, Node 7 replaces Node 6 and 
becomes a child of Node 5. After some time, Node 6 
may be recomputed from Node 5 for some coming 

queries, and Node 5 is the parent of both Node 6 and 
Node 7. However, Node 6 computes Node 7 more 
efficiently than Node 5 does, so Node 6 is better to 
be the parent of Node 7 than Node 5. To keep the 
SDT in the good condition, after inserting a node, 
the adjustment is necessary be made to discover any 
potential ancestor-descendant relationship and adjust 
the SDT accordingly. 

The adjustment algorithm is proposed in Figure 
11. Each node from the Rsibling of the inserted node 
is checked to the last, so the time complexity of the 
algorithm is O(n). 

 
3.5.4. Searching 

The tree, SDT is designed for subcube based 
query processing. It helps the query processor to 
search the storage pool for appropriate subcubes. 
The looking up procedure for nodes is made in 
breadth-first fashion. At first, the child nodes of the 
root are checked. If an appropriate node is found, the 
checking is turned to its child nodes to find the better 
node. The better of the node is coarser and nearer to 
the leaf, and more efficiently to compute the query 
result. By the tree traversal method, the SDT prunes 
down search space to a subset of potentially 
appropriate subcubes, as Figure 12 shows. 

…

…

…

else if (v->Rsibling <> Null){

s=v->Rsibling;

v.data=s.data;

v->Lchild=s->Lchild;

v->Rsibling=s->Rsibling;

else /* v is a leaf */

s = v

destroy(s);

}

/* p computed v*/
Add (p,v);
Refresh (v);
Refresh (subcube v) {

s=v;
t=v->Rsibling;
while (t <> Null) {

if (vcan compute t) {
s->Rsibling=t->Rsibling;
t->Rsibling=v->Lchild;
v->Lchild=t;
t=s->Rsibling; 
}

else {
s=s->Rsibling;
t=s->Rsibling;
}

}
}
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Figure 11: Adjustment algorithm. 
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Figure 9: Node deletion algorithm (Case 2 & 3).
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Figure 12: Looking up nodes. 
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Figure 10: An example of adjustment. 
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Figure 13 is the searching algorithm for the 

mapped binary tree. The time complexity of the 
algorithm is O(n) where n is the number of nodes in 
the unbalanced binary tree. 

 
4. Implementation 
 

The overall system framework proposed by [5] is 
shown in Figure 14. The subcubes are stored in the 
subcube pool. Through the API calls, the subcubes 
could be accessed, managed and updated by 
queryPool(), storePool(), and updatePool(), 
respectively. Our implementation is the queryPool() 

including the subcube based query processing 
algorithm. We implement the algorithm using STM 
and SDT, respectively. 
4.1 Environments 
 

The system used is a Pentium 4 2.8G Hz with 
1GB DDR 400 SDRAM, running Microsoft 
Windows 2000 Advanced Server and SQL Server 
2000. The algorithms were implemented by 
Microsoft C#.NET. 

We use the APB-1 OLAP Benchmark File 
Generator to produce the sample data. [6] The 
common parameters are: channel=10, number of 
users= 100. The density is 1.0. The complete relation 
schemas of the APB-1 Benchmark database are 
listed below (the subscripts denote corresponding 
dimension level numbers). 

/* Searching a subcube in a SDT */

/* picked node records the recent useful subcube*/

/*The Lchild of SDT root is the first node being checked */

SDT_Search(SDT t, query cell q) {

Picked_Node=Null;

v=t.Root->Lchild
While (v<>Null)

if (v can compute q){
Picked_Node=v;
v=v->Lchild;

}
else

v=v->Rsibling;
}
Return Picked_Node;

}

 
SalesFact(Code, Store, Store, Month, UnitsSold, 
DollarSales) 
ProdDim(Code7, Class6, Group5, Family4, Line3, 
Division2, Top1) 
CustDim(Store3, Retailer2, Top1) 
ChanDim(Base2, Top1)  

Figure 13: A SDT searching algorithm. 
TimeDim(Month3, Quarter2, Year1) 
 

The queries are produced from four types(only 
these queries are considered directly related to our 
Sales cube). The query types are listed bellow. 
Query 1: (?product, ?customer, ?channel, ?time) 
Query 2: (?product, ?customer, ?channel, ?time) 
Query3: (?product, ?customer, ?channel, 1995Q1-

1996Q2) divided into two query cells: 
(?product, ?customer, ?channel, 1995Q1)  
(?product, ?customer, ?channel, 1996Q1) 

Query 4:(?product, ?customer, allchannel, ?time) 
 
4.2 Results 
 

In our implementation, we materialized all the 
mapped subcubes that we used in the process of 
computing the query results, and the query values 
were generated randomly within a range of locality. 

Pool
API

queryPool(q)

storePool (f)

updatePool (d)

Directory

View
Pool

Figure 14: The overall system framework. 

The height of the mapped binary tree of SDT 
means the worst case to search a subcube. If the 
height of the tree is h (including the root), it is 
possible to search an appropriate subcube by 
checking h times (h-1 nodes and 1 Null). That is the 
reason why we concern with the growth of the tree 
height. 
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Figure 15: The tree height vs. number of 
subcubes. 

  

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

164



Figure 15 shows that the height of the tree grows 
with the number of materialized subcubes and the 
speed of growth is getting slower. When the disk 
space of materialized subcubes is under 60%, most 
new nodes are the sibling of existing nodes. After 
the materialized subcubes occupy 60% of disk space, 
the growth rate (added height / new nodes) is getting 
slower (≤ 2 / 5) because the descendant subcubes can 
be already computed from the existed subcubes. 
Thus, the newly inserted Lchild nodes do not make 
the tree much higher. The tree is efficient for looking 
up when the number of subcubes is large in a 
specified disk space (the locality property). 

In the next implementations, the following three 
algorithms are employed in the query processing: 

STM: Looking up subcubes in a table stored 
subcubes' information. When an appropriate 
is found, it stops searching. 

STM+NPS: Scanning all records in the STM table 
for the nearest parent subcube (NPS). 

SDT: The subcube Dependency Tree. 
The results show that when the number of 

subcubes is large (over 60% in our experiments), the 
spent time in SDT is nearly the same as STM, and 
SDT found the best subcube spent almost half of the 
time compared with STM+NPS, as shown in Figure 
16. SDT is more efficient than STM+NPS. We also 
observe that the SDT is nearly a balanced tree when 
the number of subcubes is large. 
 
5. Conclusions and Future works 

 
By introducing the computational dependency of 

the data cube lattice framework, we propose the 
Subcube Dependency Tree (SDT), an improved 
dictionary to keep the parent-child relationship of 
subcube fragments. The SDT can prune the search 
space to save the checking time for the most 
appropriate subcubes. For storing the SDT with 
unlimited node degrees (the number of children), we 
adopt the common method (Left Most Child Right 

Nearest Sibling) to transform the SDT into the 
mapped binary tree. The mapped binary tree is 
therefore like a decision tree for checking whether 
the subcube is appropriate or not. We design the 
node structure to store the necessary information and 
links (Lchild and Rsibling) for a subcube fragment. 
The necessary management algorithms for insertion, 
deletion, and adjustment of nodes are also proposed. 
In our implementation, the SDT shows the efficiency 
for OLAP queries compared with STM especially 
when the queries focus on domain ranges (locality 
property).The other two functions (storePool() and 
updatePool()) of the system framework in Figure 14 
are possible future works. 

0

20

40

60

80

100

120

1 10 20 30 40 50 60 70 80 90 10
0
11
0

Number of Nodes

N
um
be
r 
of
 C
he
ck
ed
 N
od
es

STM

STM+NPS

SDT

 

Figure 16: Performance comparison. 
The design of admission of materializing 

subcubes is an important issue. The storePool() 
should judge whether the subcube mapped by the 
new queries is worth materializing or not. The less 
useful subcubes should be evicted from the pool for 
the better usage of resources. 

Once updates occur in base fact table, how to 
determine those affected subcubes and propagate 
necessary updates is another issue worth future 
investigation. updatePool() should adopt a suitable 
update policy in the update phase. 
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