教育部教學實踐研究計畫成果報告

計畫編號: PMS1100193 學門專案分類:數理學門 執行期間: 2021.08.01 - 2022.07.31

動態幾何軟體融入微積分教學

(微積分(一)課程)

計畫主持人:張其棟

執行機構及系所:逢甲大學應用數學系

成果報告公開日期:□立即公開 ■延後公開

繳交報告日期: 2022.09.20

一. 本文

1. 研究動機與目的

微積分課程在大學教育承擔傳遞數學知識,以及訓練學生計算技巧的重要任務,是 各專業領域的發展基礎。不過由於微積分的內容豐富多元,更涉及抽象的概念,在課堂 時間與教學資源有限的前提之下,教師有時無法針對特定概念深入解說,造成學生不易 在課堂上同步理解,導致學習成效不佳的情況。為解決學生不易理解抽象概念的困境, 已經有許多教材透過靜態的圖像將抽象概念轉換為視覺呈現,降低了理解的門檻,但是 仍有部分學生無法從中獲益,因此本計畫導入動態幾何軟體(Dynamic Geometry Software, DGS)GeoGebra 搭配學習單輔助微積分教學,讓學生經由課堂上的教師示範與課後的動 手操作,得以觀察動態幾何的系列變化,增進對應知識的理解;不僅於此,本計畫也透 過 Kolb 學習風格的分類,探究不同類型學生在此教學法的學習成效,以作為課程改善 的重要依據。

根據上述說明,本計畫的研究主題為導入 GeoGebra 搭配學習單輔助微積分教學, 並探討不同學習風格學生的學習成效,在此分述如下:

- 應用 GeoGebra 搭配學習單進行微積分(一)課程的教學,並提供學生動手操作機會, 以增進學生的學習動機與學習成效。
- II. 瞭解不同學習風格學生在此教學法之下的學習表現。

文獻探討

(1) 動態幾何軟體 GeoGebra

動態幾何軟體是讓使用者能夠設計並操作幾何物件的軟體,包括 GeoGebra(<u>https://www.geogebra.org/</u>)與動態幾何繪圖板(Geometer's Sketchpad, GSP)等常 見軟體,左台益(2012)指出在動態幾何環境下所操作的物件,可以保持數學結構的動態 影像,這包含了圖形概念(figural concept)(Fischbein, 1993)與電腦所認知的圖形(computerrecognized figure)(Talmon, V., & Yerushalmy, M., 2004),使螢幕呈現出虛擬的圖像元件、 數學的幾何圖形,以及電腦動畫等三個動態表徵,讓使用者得以透過操作的歷程,觀察 並體會當中所蘊含的數學思維,因此能有效運用於數學課程。其中 GeoGebra 是近年新 興的動態幾何軟體,亦為免費的授權軟體,因此廣泛應用在數學課程輔助教學。基於上 述理由,本計畫亦選取 GeoGebra 作為輔助微積分教學的動態幾何軟體,使學生能夠動 手操作並觀察體會重要概念,以增進微積分的學習效益。

(2) Kolb 學習風格

為瞭解不同學習者的學習方式與策略,Kolb (1984)基於經驗學習理論提出四種不同 的學習風格(圖 1),主要是透過資訊的理解與處理兩個構面進行區分。圖 1 中縱軸是資 訊理解的構面,由上至下分別是具體經驗(concrete experience)到抽象概念(abstract conceptualization),其中具體經驗代表學習者習慣以個人的感受獲得實際經驗,抽象概 念則是指學習者喜好透過有系統的邏輯思考進行學習;橫軸則是資訊處理的構面,由左 至右是主動實驗(active experimentation)到省思觀察(reflective observation),其中主動實驗 代表學習者偏好透過實作進行學習,而省思觀察則代表學習者善於從不同觀點進行分析 判斷。這兩個構面區分出四種學習風格,分別是適應型(Accommodator)、聚合型 (Converger)、同化型(Assimilator)和分散型(Diverger),其中適應型的學習者偏好動手做 勇於嘗試,透過直覺獲得具體的實際經驗,聚合型的學習者善於解決問題,結合測試與 演繹進行決策獲得解答,同化型的學習者偏好觀察搭配思考,以進行系統性的歸納推理, 分散型的學習者則富有想像力,透過觀察找出通則輔助學習。本研究將應用上述四種學 習風格,針對修課學生進行分類,以瞭解不同學習風格學生的學習成效。

3. 研究問題

為探討於微積分(一)課程使用學習單輔助 GeoGebra 進行教學所帶來的效益,以及 不同學習風格學生的學習表現,本研究的研究問題臚列如下:

- I. 使用學習單輔助 GeoGebra 進行教學,是否能增進學生的學習成效?
- II. 使用學習單輔助 GeoGebra 進行教學時,不同學習風格學生的學習成效是否會產生 差異?
- 4. 研究設計與方法

欲回答上述研究問題,本研究採準實驗研究法,研究設計如圖2。自變項為教學法 與學生的學習風格,其中實驗組是教師先於課堂運用 GeoGebra 示範教學,再由學生課 後搭配學習單操作 GeoGebra,完成學習單的填寫隨作業一併繳交,對照組則僅由教師 在課堂運用 GeoGebra 示範教學,學生課後可自行操作 GeoGebra,但沒有提供學習單進 行輔助;學習風格變項則是透過 Kolb 學習風格量表,將學生依結果分為適應型、聚合 型、同化型與分散型。進行教學實驗前先蒐集學生 110 學年度學測數學科成績當作前測 分數視為共變數,教學實驗後則計算期中與期末考試題中與 GeoGebra 操作單元相關的 總得分作為後測分數。課程結束前再實施問卷調查蒐集學生回饋資料,包含李克特量表 (Likert scale)的量化資料與開放性問題的質性資料。

圖 2 研究設計圖

資料處理主要是利用變異數分析(ANOVA),探討以學測數學科成績為前測視為共變 數的前提之下,教學法與學習風格對期中與期末考 GeoGebra 試題得分的影響。本研究 亦將問卷調查中的李克特量表藉由分數進行轉換,並將開放性問題的質性回饋資料進行 歸類,以瞭解實驗組學生的態度展現。

5. 教學暨研究成果

(1) 教學過程與成果

本研究的研究對象為某私立大學資電或理工學院提供 110 學年度學測數學科成績, 並修習微積分(一)課程完整參與期中考和期末考的大一學生,實驗組包含三個班級共 137 位學生,對照組則為一個班級共 52 位學生。

教師在教學實驗前先選取適切單元,依據多媒體設計原則(Mayer, 2001)編寫 GeoGebra 程式。以「定積分」單元為例,圖 3 為對應的操作介面,畫面被分割為四個區 塊,A 區展示本單元的重要概念,使學生操作時可以適時進行對照,B 區則利用按鈕讓 學生得以選擇不同的函數條件,C 區是透過選取、拖曳和點選的方式,提供學生自由設 定細節的機會,也同步呈現即時的數據變化,左側 D 區則藉由動態幾何的展示,即時給 予視覺上的系列變化,將抽象概念具體化以提升學生的學習成效。

4

圖 3 「定積分」單元的 GeoGebra 網頁操作介面

透過上述編寫 GeoGebra 的歷程,本研究共完成「極限」、「導數及其應用」和「積 分及其應用」三個主題共八個單元的 GeoGebra 教材(表 1),並透過教師教學網站『微積 總 棟 員 』 當 中 的 頁 面 「 玩 玩 微 積 分 GeoGebra 」 進 行 整 合 (<u>https://sites.google.com/site/calculusteaching/home/calculus/GGB</u>),藉由系統化的選單頁 面提供連結管道,增進學生運用本教材的便利性。

表1 微積分(一)課程的 GeoGebra 教材列表

主題	單元	網址
極限	函數的極限(The Limit of a Function)	https://www.geogebra.org/m/jrffzje6
	夾擠定理(The Squeeze Theorem)	https://www.geogebra.org/m/a2gwtxfb
	切線(The Tangent Line)	https://www.geogebra.org/m/dzcwabh8
送典 17 廿 広 11	法線(The Normal Line)	https://www.geogebra.org/m/gyuvu5cf
导數反兵應用	線性估計(Linear Approximations)	https://www.geogebra.org/m/szbzj7rp
	微分量(Differentials)	https://www.geogebra.org/m/qsc2dyq9
巷公卫甘库田	定積分(The Definite Integral)	https://www.geogebra.org/m/p9kysqfp
植分皮具應用	曲線所圍區域的面積(The Area between Curves)	https://www.geogebra.org/m/ge4pg4hh

為瞭解學習單輔助學生操作 GeoGebra 的成效,本研究設計對應的學習單供實驗組 學生使用。圖 5 為學生於「定積分」單元繳交的 GeoGebra 學習單,學習單設計原理呼 應 GeoGebra 單元教材,上方提供快速連結方便學生直接點選使用,接續是展示定義或 定理以強調單元重點,然後分別設定不同條件情境,利用截圖與系統化的表格引導學生 操作 GeoGebra 以填入對應的數據,藉此帶領學生觀察 GeoGebra 所呈現一系列的動態 幾何變化,達到認識本單元重要概念的預期目標。

圖 4 學生於「定積分」單元繳交的 GeoGebra 學習單

本研究的教學實驗期程共分三個階段:實施教學實驗前,教師先利用 Kolb 風格量 表分析學生的學習風格,並蒐集學測數學科成績。進行教學實驗時,教師於實驗組與對 照組皆先利用課程講義講解重要概念,並在課堂操作 GeoGebra 進行教學示範,不過於 實驗組則更進一步提供對應的學習單,要求學生課後依照學習單的引導自行操作 GeoGebra,完成表格填寫隨作業一併繳交。教學實驗後,則運用期中與期末考試成績, 以及問卷調查蒐集學生回饋的量化與質性資料。

(2) 學生學習回饋

本研究先依學生的學習風格類型、學測數學科成績,以及期中與期末考中與 GeoGebra 試題相關的得分進行統計分析,表 2 為對應的結果。當中不論是實驗組或對 照組都以聚合型和同化型的學生人數較多,反應本研究的研究對象為資電或理工學院的 學生,普遍習慣運用抽象思考的屬性。

5.99

4.83

7.77

4.99

24.89

29.27

25.04

26.75

4日 巳r[的习口か	人中在	學測數學	科成績	期中考與期末	考 GeoGebra 得分
《且刀"	字首風俗	八安	平均級分	標準差	平均得分	標準差
實驗組	適應型	12	8.25	1.82	29.92	4.70
	聚合型	43	8.28	2.05	27.72	7.08
	同化型	69	8.29	1.90	26.32	7.58
	分散型	13	7.31	1.80	24.46	9.13

8.56

8.20

8.17

6.75

9

15

24

4

表2 不同學習風格之學生學習表現統計結果

適應型 聚合型

同化型 分散型

對照組

1.59

1.74

1.79

1.50

為瞭解教學法與學生學習風格這兩個自變項對學生學習表現的影響,本研究採用變 異數分析(表 3),結果顯示學測數學科成績對於 GeoGebra 得分的變異有顯註意義(F = 6.174, p < .005),不過以學測數學科成績為共變項的前提之下,不論是教學法或學習風 格對於 GeoGebra 得分都不會產生顯著差異。

表3變異數分析結果

變異來源	平方和	自由度	平均平方和	F 值	<i>p</i> 值
教學法	16.047	1	16.047	0.320	0.572
學習風格	236.358	3	78.786	1.573	0.198
學測數學科成績	309.206	1	309.206	6.174	0.014
交互作用	392.976	7	56.139	1.121	0.352
誤差	8814.725	176	50.084	-	-

本研究更進一步探討實驗組內不同學習風格學生對學習成效的影響,變異數分析結 果為表 4,說明以學測數學科成績為共變項的前提之下,學習風格對於 GeoGebra 得分 並不會造成顯著差異。

表4 實驗組內學習風格之變異數分析結果(n=137)

變異來源	平方和	自由度	平均平方和	F值	<i>p</i> 值
學習風格	238.785	3	79.595	1.556	.203
學測數學科成績	328.919	1	328.919	6.431	.012
交互作用	329.461	3	109.820	2.147	.097
誤差	6597.404	129	51.143		

最後則是分別探究各個學習風格類型的學生,在不同教學法之下對學習成效的影響。 表 5、表 6、表 7 和表 8 分別為適應型、聚合型、同化型和分散型等學習風格所對應的 變異數分析結果,結果顯示以學測數學科成績為共變項的前提之下,僅有對於適應型的 學生類型,不同教學法會對 GeoGebra 得分的差異達到顯著意義(F = 4.577, p < .05),而 在其他三個類型的學生則沒有產生顯著影響。

表5 「適應型」學生類型中教學組別之變異數分析結果(n=21)

變異來源	平方和	自由度	平均平方和	F 值	<i>p</i> 值
教學法	130.004	1	130.004	4.577	.047
學測數學科成績	22.702	1	22.702	0.799	.384
交互作用	24.227	1	24.227	0.853	.369
誤差	482.876	17	28.404		

表6「聚合型」學生類型中教學組別之變異數分析結果(n=58)

變異來源	平方和	自由度	平均平方和	F 值	<i>p</i> 值
教學法	26.571	1	26.571	0.591	.445
學測數學科成績	3.986	1	3.986	0.089	.767
交互作用	0.180	1	0.180	0.004	.949
誤差	2427.419	54	44.952		

表7「同化型」學生類型中教學組別之變異數分析結果(n=93)

變異來源	平方和	自由度	平均平方和	F 值	<i>p</i> 值
教學法	29.045	1	29.045	0.515	.475
學測數學科成績	251.944	1	251.944	4.468	.037
交互作用	23.223	1	23.223	0.412	.523
誤差	5018.776	89	56.391		

表8「分散型」學生類型中教學組別之變異數分析結果(n=17)

變異來源	平方和	自由度	平均平方和	F 值	<i>p</i> 值
教學法	16.019	1	16.019	0.318	.582
學測數學科成績	260.550	1	260.550	5.174	.041
交互作用	160.742	1	160.742	3.192	.097
誤差	654.688	13	50.361		

至於問卷調查中的李克特量表,則是依四個向度將選項非常同意、同意、中立、不 同意和非常不同意分別轉換為5分、4分、3分、2分和1分進行統計,結果如表9,四 個向度的內部一致性 Cronbach's α 係數依序為.903、.905、.899和.840。向度一主要是瞭 解教師在課堂上操作 GeoGebra 進行教學示範的成效,向度二為學生自行操作 GeoGebra 所帶來的效益,向度三是 GeoGebra 操作介面(圖 3)為學生所帶來的影響,向度四則是學 生使用學習單的成效。可以發現不論是教師在課堂上操作 GeoGebra 的教學示範,或是 學生自行操作 GeoGebra 的體驗,以及學習單的輔助都能增進學生的概念理解,也能提 升學生學習的意願,而向度三的統計結果則顯示運用多媒體設計原則編寫 GeoGebra 教 材,能有效增進學生操作 GeoGebra 的效益。

白庄				選項			亚屿
回度 (填答人數)	問題	非常 同意	同意	中立	不同意	非常 不同意	平均 分數
白庄	老師在課堂上操作 GeoGebra 進行示範教 學,能提升我學習對應單元的意願。	46	61	15	1	1	4.21
问度一: 課堂示範	老師在課堂上操作 GeoGebra 進行示範教 學,能讓我立即理解對應的概念。	55	59	9	0	1	4.35
(124)()	我希望課堂上有更多單元能搭配 GeoGebra的操作進行示範教學。	49	46	27	0	$\begin{array}{c ccc} & & & & & & & & & & & & & & & & & &$	4.13
向度二: 動手操作 (122 人)	透過親自操作 GeoGebra, 能讓我更理解對 應的概念。	48	65	9	0	0	4.32
	透過親自操作 GeoGebra,能提升我學習對 應單元的意願。	41	56	23	1	1	4.11
(122)()	我希望有更多單元能讓我進行 GeoGebra 的操作。	40	選項 非常 司意 同意 中立 不同意 非常 不同意 46 61 15 1 1 55 59 9 0 1 49 46 27 0 2 48 65 9 0 0 41 56 23 1 1 56 60 4 1 0 54 57 10 0 0 52 60 8 1 0 63 51 7 0 0	4.03			
	GeoGebra 介面 A 區的重點整理, 能讓我 快速瞭解對應的主題。	56	60	4	1	0	4.41
向度三: 公面設計	透過選取 GeoGebra 介面 B 區的設定條件, 能讓我從不同情境認識本單元的概念。	54	57	10	0	0	4.36
(121人)	透過即時觀察 GeoGebra 介面 C 區的數據 變化,能讓我更加理解本單元的概念。	52	60	8	1	0	4.35
	透過即時觀察 GeoGebra 介面 D 區的圖像 變化,能讓我更加理解本單元的概念。	63	51	7	0	0	4.46

表9 問卷調查中李克特量表之分析結果

向度四: 學習單使用 (101 人)	藉由 GeoGebra 學習單的引導,能讓我快速熟悉 GeoGebra 的操作方式。	46	51	4	0	0	4.42
	GeoGebra 學習單能提升我操作 GeoGebra 的意願。	37	56	7	1	0	4.28
(101 人)	我希望更多的單元能提供 GeoGebra 學習 單輔助學習。	37	48	15	1	0	4.20

最後將問卷調查中放開性問題所蒐集的質性資料同樣依上述四個向度進行歸類,結 果如表 10。透過學生的回饋資料,可以發現不論是教師在課堂進行示範或是學生在課 後自行操作 GeoGebra,都能有效增進學生對概念的理解,而依據多媒體設計原則所設 計的操作介面與學習單的使用,則能引導學生快速熟悉 GeoGebra 的操作方式,並進行 有系統的觀察,更一步提升學生操作 GeoGebra 的效益;另一方面,有學生點出由於已 於高中學過本學期所教的部分概念,所以對於 GeoGebra 輔助教學的感受沒有特別深刻, 也許在下學期的課程能有更深入的體驗,也有學生針對 GeoGebra 的操作介面提出建議, 可作為後續進行改善的具體方向。

表 10 學生回饋資料列舉

1. 對理解概念幫助很大,有圖形確實可以幫助理解。	
2. 一些微小的變化可以清晰看到。	
向度一: 3. 有點多餘,在課堂上放兩張圖其實就能解釋一整個過程。	
課堂示範 4. 能更快速理解單元概念,也透過數字的變化來理解之間的關係。	
5. 圖像化可以幫助理解,但這學期的觀念以前就會了,相信下學期會更有感。	
6. 雖然 GeoGebra 使用方便,但我仍較喜歡手繪。	
1. 透過操作圖形,可以輔助學習,讓學習變得有趣,也能加深對圖形理解的印象	象。
2. 相當完善,可是在最後幾次的定積分的 GeoGebra 有點怪怪,每次按條件1的	時候,上下和
以及黎曼和的數值都不同。	
3. 非常方便,連小數值都算得出來。	
向度二: 4. 很方便,可以直接透過 GeoGebra,了解上課時所學到的公式所對應的圖形,	而也可以藉由
動手操作 此來檢查自己的計算及作圖有沒有錯,但美中不足的部分是在移動圖上的點	時,有時數字
太小就很難移動到想要的位置(小數點比較多的值)。	
5. 老師很用心,不過可能因為是作業,所以就想快快的拉到答案,如果是當作的	解題工具的話
會很願意使用,像是 Desmos 可看出函數圖形。	
6. 很容易操作,讓觀念圖像化,能夠快理解每個單元的概念,學微積分的過程	多一點樂趣。
1. 左邊的動態圖形能讓我清楚看到不同設定下的變化,很有趣也對學習很有幫助	助。
2. D 區數值只能滑鼠拉選使用,希望能增加用打字的更改數值。	
3. 用手機操作 GeoGebra 的話畫面太小,所以我通常都用電腦操作,可是有時	侯在拉點的時
候,會不小心拉出去到別的地方,第一次使用雖然不太熟悉,但很快就能上	手,是個好工
介面設計 4. 力便埋解,透過好坑的程式,增加操作的興趣,希望操作的數據可供復製貼。 初期時時時月、何四至6月17年,含時時代的無地。	上,个然舄學
習車的時候,偶爾曾眼殘,辛舌老帥給的設計。 	
6. 另一八週到原來 GeoGebra 可以做的像 ABCD 區的樣士, 之則用只定伏继有, 和名佣士和士的六哩, 圣政囚後名佣買二中司囚使用	力怪式的圓条
和多個力怪式的父點, 布圣以俊多個単兀也可以使用。	
1. 一開始有个腫尤患者学習単做,可以很快理解現任任做什麼。	
4. 禄伐扼史术八时〕胜改单儿,业很伏然心深旧刀八。 向府町·	
四反四· J. 题曰个异夕,也凿间平时,可以住应时间的元风,可以繼續她们。 題羽留庙田 A. 促曲白己庙田,雖然更再主動一曲,但直的具一份動力。	
字白平区用 + 促区日山区用, 毗尔女史工则一空, 但具则定一切到力。 5 跳然塌作 GeoGebra 具为了舆羽留, 但两空仫佬族审演沿面了砌造屈留一了砌	的内容・面目
5. 雖然保持OCOCOLA 定向了学百半个担似无攸能唯具嚴孜史」胜迫他半儿」胜 讓微積分的內次百豐宣。	山川沿谷、川山土

(3) 教師教學反思

根據上述研究結果,可以發現運用多媒體設計原則所編寫的 GeoGebra 程式,不論 應用在課堂上由教師進行示範教學,或是在課後由學生自行操作觀察,都能增進學生理 解特定概念,提升微積分(一)的學習成效;不過若額外搭配學習單輔助教學,除了對適 應型的學生有達到正向的顯著差異,對資電或理工領域的大部分學生而言,展現在微積 分(一)的學習成效上並沒有產生顯著意義,因此在教學時間與資源有限的客觀條件之下, 針對學習單進行重點式的精簡,就成為教學改善以提升教學效率的可行辦法。

6. 建議與省思

綜合以上結論,本研究提出下列具體建議,可作為持續進行教學精進,以及未來 研究方向的參考依據:

- I. 可在課堂上運用 GeoGebra 進行示範教學,促進學生對概念的理解,並挑選少數重要特定單元提供學習單,以增進學生操作 GeoGebra 的動機與效益。
- II. 可進一步探討 GeoGebra 搭配學習單融入微積分(二)課程的教學成效,或是瞭解於 商管學院的微積分課程,應用 GeoGebra 搭配學習單進行輔助教學時,修課學生所 展現出的學習表現,藉以觀察此教學法對進階課程或不同背景學生所帶來的效益, 以及提出對應的改善作為。

二. 参考文獻

左台益(2012)。動態幾何系統的概念工具。中等教育,63(4),6-15。

- Fischbein, E. (1993). The theory of figural concepts. *Educational Studies in Mathematics*, 24, 139-162.
- Kolb, D. A. (1984). *Experiential Learning: Experience as the source of learning and development*. New Jersey: Prentice Hall.
- Mayer, R. E. (2001). Multimedia Learning. New York, NY: Cambridge University Press.
- Talmon, V., & Yerushalmy, M. (2004). Understanding dynamic behavior: parent-child relations in dynamic geometry environments. *Educational Studies in Mathematics*, 57, 91-119.

三. 附件

※玩玩微積分 GeoGebra <u>https://sites.google.com/site/calculusteaching/home/calculus/GGB</u>

Part A. 極限 (The Limit)

函數的極限 (The Limit of a Function) <u>https://www.geogebra.org/m/jrffzje6</u> Definition The limit (極限) of the function f(x) is L: $\lim_{x \to a} f(x) = L$; $f(x) \to L$ as $x \to a$ 設定條件 1: $f(x) = -0.01x^3 + 0.01x^2 + x + 5$ and a = 22.1 2.01 4 3 x f(x)Solution: f(2) =and $\lim_{x \to 2} f(x) =$ 設定條件 2: $f(x) = \frac{x^2-4}{x-2}$ and a = 2<u>x</u> 6 4 2.1 2.01 3 f(x)Solution: f(2) =and $\lim_{x \to 2} f(x) =$ y = f(x)

※玩玩微積分 GeoGebra <u>https://sites.google.com/site/calculusteaching/home/calculus/GGB</u>

Part B. 導數 (The Derivative)

切線 (The Tangent Line) https://www	w.geogebra.org/	/m/dzcwabh8					
Definition The derivative (導數) of a f	function f at a	point a is $f'(a)$	$a) = \lim_{x \to a} \frac{f(x) - f(x)}{x - f(x)}$	$\frac{f(a)}{a} = \lim_{h \to 0} \frac{f(a+h)}{a}$	$\frac{h(a)-f(a)}{b}$.		
設定條件: $f(x) = -0.01x^3 - 0.01x^2 + x$: + 5		$x \rightarrow a$ $x - b$	$n \to 0$	n		
(1) $a = 4$							
x = 4 + h	8	6	5	4.5	4.1	_	
$m_{\overline{PQ}} = \frac{f(x) - f(4)}{x - 4} = \frac{f(4 + h) - f(4)}{h}$							
Solution: $m_T = f'(4) = \lim_{x \to 4} \frac{f(x) - f}{x - 4}$	$\frac{f(4)}{h} = \lim_{h \to 0} \frac{f(4+h)}{h}$	$\frac{h(h)-f(4)}{h} =$					
(2) $a = 8$							
x = 8 + h	14	10	9	8.5	8.1	_	
$m_{\overline{PQ}} = \frac{f(x) - f(8)}{x - 8} = \frac{f(8 + h) - f(8)}{h}$							
Solution: $m_T = f'(8) = \lim_{x \to 8} \frac{f(x) - f(8)}{x - 8} = \lim_{h \to 0} \frac{f(8 + h) - f(8)}{h} =$							

※玩玩微積分 GeoGebra <u>https://sites.google.com/site/calculusteaching/home/calculus/GGB</u>

Part C. 導數的應用 (Applications of the Derivative)

線性估計 (Linear Approximations) <u>https://www.geogebra.org/m/szbzj7rp</u>											
Theorem If $x \approx a$, then $f(x) \approx L(x) = f(a) + f'(a)(x - a)$.											
$\frac{\partial c}{\partial t} \frac{\partial c}{\partial t} \partial $											
x	4	3	2	1.5	1.1						
f(x)						_					
L(x)											
(2) $a = 4$											
$\sqrt{x} = f(x) \approx L(x) = f(4) + f'(4)(x - 4) =$											
x	10	7	5	4.5	4.1						
f(x)						_					
L(x)											

微分量 (Differentials) <u>https://www.geogebra.org/m/qsc2dyq9</u>											
Theorem If $\Delta x \approx 0$, then $\Delta y = f(x + \Delta x) - f(x) \approx dy = f'(x) dx$.											
設定條件: $f(x) = \sqrt{x}$											
$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$											
$\Delta y = \sqrt{1 + \Delta x} - \sqrt{1} = f(1 + \Delta x) - f(1) \approx dy = f'(1) dx =$											
	Δx	3	2	1	0.5	0.1					
	Δy										
	dy										
(2) $x = 4$											
$\Delta y = \sqrt{4 + \Delta x} - \sqrt{4} = f(4 + \Delta x) - f(4) \approx dy = f'(4) dx =$											
	Δx	6	3	1	0.5	0.1					
	Δy										
	dy										

※玩玩微積分 GeoGebra <u>https://sites.google.com/site/calculusteaching/home/calculus/GGB</u>

Part D. 積分 (The Integral) & Part E. 積分的應用 (Applications of the Integral)

