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Abstract 
The literature on irreversible investment fails to explore the relationship between the 

present value of alternative strategies and appropriate risk-adjusted interest rates. We attempt 
to fill this gap by showing that, to avoid arbitrage opportunities, the real option’s rate must be 
higher than the rate of the immediate strategy. Further, we explain how irreversibility 
influences the risk-return combination of competing strategies acting as a pure risk factor. 
Key words: irreversibility; real option; risk-adjusted rate 
JEL classification: G12; D92; E22 

1. Introduction 

In traditional project evaluation, the net present value (NPV) of an investment 
plan is computed by discounting profits at some interest rate, and the project is 
accepted if its current value exceeds the direct cost. There are, however, a number of 
problems arising from this criterion. In fact, only when returns are certain is there 
common agreement that the riskless interest rate should be employed to compute the 
NPV. When returns are uncertain, matters are more complex, and it is natural to adjust 
expected profit estimates by discounting at an appropriate risk-adjusted interest rate. 
But several questions remain. For example, does this criterion assure a correct 
decision when investment is at least partially irreversible? And, since an irreversible 
project gives the owner a set of real options, what are the appropriate interest rates? 

Most investment projects share three important characteristics: the investment 
may be partially or completely irreversible, the stream of future profits may be 
uncertain, and an investor may find it advantageous to defer action to get information 
about the future. These three features interact to determine the value of any 
investment strategy, and the criterion for asset pricing must be capable of addressing 
these considerations. 

We show that the no-arbitrage principle must be satisfied to figure out the 
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appropriate interest rates of an irreversible project. Our analysis has two main results. 
First, the interest rate of the real option is always higher than the rate of the immediate 
investment. Second, irreversibility affects the risk-return combination of the 
competing strategies as a pure risk factor. 

This problem has received scant attention in the literature. Our analysis starts 
from empirical evidence discussed by Carnazza and Travaglini (2001). They asked a 
sample of 4000 Italian manufacturing firms to quantify the minimum interest rate 
necessary to implement a new project, under the alternative assumptions of reversible 
or irreversible investment. Their survey reveals that irreversibility increases 
substantially the expected rate necessary to carry out irreversible projects. Table 1 
illustrates this result: with irreversibility, the distribution of answers (expressed in 
percentage value) is skewed towards the highest rates, implying the existence of a 
trade-off between irreversibility and interest rates. 

Table 1. The Minimum Interest Rate Required by Firms to Implement a New Reversibile or 
Irreversibile Investment Project. 

Interest 

rate 
1 to 5% 5 to 10% 10 to 15% 15 to 20% 20% and up 

Type of 

project 
Revers Irrevers Revers Irrevers Revers Irrevers Revers Irrevers Revers Irrevers 

Total firms 19 17 40 22 21 20 13 23 7 18 

Traditional 23 17 38 27 19 26 13 17 7 13 

High tech 1 3 55 7 22 14 21 23 1 53 

Specialized 

supplier 
15 12 31 16 33 24 14 20 7 28 

Scale 

intensive 
20 20 43 21 18 12 12 34 7 13 

Notes: Numbers are percentages of the total answers; Pavitt taxonomy is used to classify firms by sector. 

Unfortunately, the standard literature on investment with irreversibility and 
uncertainty fails to explore this topic in depth. As an example of the standard way of 
studying this relationship, let us consider investment models. McDonald and Siegel 
(1986) employ a simulation to estimate the expected rate of return at which it is 
optimal to pay a sunk cost to get an irreversible investment. They find that the 
expected rate of return rises from %4  of the stock to %16  of the real option. Later, 
Dixit (1992) shows that if the expected interest rate from a reversible project were 

%5 , the rate for the corresponding irreversible project would be at least %9 . 
On theoretical grounds, Baldwin and Trigeorgis (1993), and more recently 

Trigeorgis (1997), observe that the use of a single risk-adjusted interest rate can lead 
to significant errors in the evaluation of competing irreversible strategies since 
asymmetric claims on an asset do not generally have the same discount rate as the 
asset itself. They conclude that finding the appropriate interest rate via the standard 
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NPV technique may be difficult in situations involving real options. 
Further, the certainty equivalent technique—often employed in its refined 

version of the risk neutral evaluation—introduces two difficulties in the presence of 
irreversibility. It remains doubtful why it may be optimal to postpone an irreversible 
investment when its risk is fully diversifiable. Indeed, if a project can be treated as a 
riskless asset, the decision to postpone the commitment can only produce a loss of 
profit at the current time without advantages to the firm. Hence, whether or not it is 
optimal to defer the project, future returns (and the corresponding interest rate) must 
be higher than those gained by investing immediately, and the single interest rate will 
not, in general, evaluate the competing strategies correctly. 

In the next section we explore a simple framework to explain why it is necessary 
to use different interest rates when the project is irreversible. Section 3 generalizes 
this finding, showing how to calculate the value of competing strategies when 
investment is a commitment. Section 4 analyses the risk structure of interest rates 
focusing on the risk premium. Section 5 concludes. 

2. A Basic Example 

This example provides a good baseline case which we extend below. Note that 
this example differs from others with irreversibility in an important detail (see for 
example Dixit and Pindyck, 1994): using the arbitrage principle, we derive the 
appropriate risk-adjusted interest rates of the alternative strategies. 

Consider a firm with the monopoly right to start or defer a project. If the 
commitment is made at the current time, the firm loses the opportunity to resell the 
project in the future and the chance of deferring the investment decision to some 
future date. In other words, the investment is irreversible. The firm maximizes the 
NPV of the project by choosing the most profitable investment schedule. It can invest 
either at the current time or in the next time period. Let us assume that the investment 
spending ( I ) is a sunk cost of 70 units, and that the project is risky with returns 
governed by a binomial process. This is indicated with 1.0=δ , the dividend rate paid 
on the stock. 

Figure 1. The Binomial Process of V  (Stock) and F  (Real Option) 

The value of the stock at period t  is the present value of all dividends from that 

 

V=? 

Vb=150

Vw=70 

F=?

Fb=max[150-70-15;0]=65 

Fw=max[70-70-7;0]=0 

q=0.7 q=0.7

1-q=0.3 
1-q=0.3
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time on. At the end of period t, the value of the project may be 150=bV  with 
probability 7.0=q  or 70=wV  with probability 3.01 =− q ; see Figure 1. Of course, 
the firm does not know the current value V  of the project. 

The firm can decide to initiate the project immediately or to postpone the 
commitment until after the state of nature is known, forfeiting the current dividend; 
see Figure 1. This decision introduces an asymmetry in the pay-offs of the NPV: the 
deferred strategy has a payoff of 65=bF  in the best state and 0=wF  in the worst 
state. As before, the present value F  of this strategy is unknown at the current time. 

2.1 The Value of the Stock 

The firm chooses one of the two investment plans by comparing the NPVs. To 
begin with, let’s assume that the stock strategy can be modelled as a twin security 
traded on the capital market. This security is a risky asset with a current price of 

10=P . In the next period it will be worth 15=bP  in the best state, with probability 
7.0=q  or worth only 7=wP  in the worst state. The price will then remain at this 

new level forever. Then, assume that a riskless security with interest rate equal to 
%8=r  is exchanged on the market. Given these two assets what are the appropriate 

risk-adjusted interest rates of the alternative strategies? 
Note that returns on P  are proportional to returns on the stock strategy, and that 

the payoffs are governed by the same binomial distribution. We can therefore argue 
that they are equivalent in risk. Thus, we can use the interest rate of the underlying 
asset to calculate the NPV of the immediate investment strategy. The required rate μ  
for the underlying asset is given by the expression:  

( ) ( )
( )

0.7 15 0.3 7
10

1 μ
+

=
+

,  

Implying that 26.0=μ  is the rate at which the firm will discount the expected payoff 
from the stock. Employing this risk-adjusted rate, we obtain the present value V : 

( ) ( ) 100
26.1

703.01507.0
1

)1()(
=

+
=

+
−+

=
μ

wb VqVqV ,  

and the corresponding net present value W : 

3010070 =+−=+−= VIW .  

As said above, the ability to postpone the commitment alters the payoffs of the 
strategy, changing the risk attached to the project. Thus, it follows that the rate μ  
would be inappropriate to evaluate the deferred strategy. However, let us apply the 
rate μ  to the real option. We obtain: 

1.36
26.1

65)7.0(
1

)1()(
==

+
−+

=
μ

wb FqFqF .  
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Hence WF >  and the firm finds it optimal to postpone the investment. 

2.2 The Value of the Real Option 

In this section we explain why the previous computation of the real option is 
incorrect. The basic idea enabling the exact pricing of options is that one can construct 
a portfolio of traded securities which replicates the future payoffs of the deferred 
strategy. We begin by constructing a portfolio of traded securities calculating the 
payoffs of the option at time 1+t . Let z  and n  denote shareholdings of the risky 
asset P  and the risk-free security, respectively. If shareholdings are to give 
equivalent returns in the best and the worst states of nature we have: 

65)08.1()15( =+ nz , 
(7) (1.08) 0.z n+ =  

 

Solving this system yields 125.8=∗z  and 662.52−=∗n . Hence, to obtain the 
same return of the option strategy on the two securities, an investor would have to 
purchase 8.125 shares in the risky asset and go short on the riskless asset. Of course, 
these same quantities of securities are in the portfolio at the initial time t . As a result, 
the NPV of the option strategy is given by:  

( )( ) ( ) ,z P n F∗ ∗+ =  
F≡=−+ 588.28)662.52()10)(125.8( . 

 

In short, the value 28.588F =  is smaller than it would have been if we had 
employed the rate μ . Further, note that it is even smaller than the value of the 
immediate strategy 30=W , implying that the best choice is to invest immediately. 
This result reverses the previous choice. 

Now, using the no-arbitrage argument we can see that the appropriate rate γ  of 
the option must be higher than μ . Since 28.588F =  and knowing its values at 1+t , 
we can calculate the corresponding risk-adjusted interest rate γ : 

( ) (1 )
,

1
b wq F q F

F
γ

+ −⎡ ⎤
= ⎢ ⎥+⎣ ⎦

 

59.0
1

65)7.0(588.28 =⇒⎥
⎦

⎤
⎢
⎣

⎡
+

= γ
γ

. 
 

Thus, this procedure yields two different interest rates: 26.0=μ  for the stock, 
and 59.0=γ  for the option. To complete our argument, note that the risk-neutral 
probability yields the same value for F . The importance of this synthetic probability 
is that expectations calculated with them equal the NPV of F  once discounted by the 
riskless rate r . We denote this probability q̂ . To obtain a value for q̂ , assume the 
firm is risk neutral. In this scenario, all that the firm requires is the riskless rate on the 
stock strategy. Hence:  
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( ) wb VqVqVr )ˆ1(ˆ1 −+=+ , 
( ) ( ) 70)ˆ1(150ˆ10008.01 qq −+=+ . 

 

Solving, we obtain 475.0ˆ =q . Using this to compute the current value F , we get:  

( ) ( )
( )r

FqFqF wb

+
−+

=
1

ˆ1ˆ
, 

( ) ( )0.475 65
ˆ 28.588,

1 1.08
bF

F q
r

⎡ ⎤= = =⎢ ⎥+⎣ ⎦
 

 

which confirms our previous result. This does not mean, of course, that the 
appropriate rate of interest for the deferred strategy is the riskless rate r . 

This example provides a simple illustration of the difficulty of applying 
traditional calculations of NPV when assessing real options. Unless the rate of interest 
is adjusted upwards to reflect the change in risk due to the firm’s investment decisions, 
the traditional approach over-estimates the value of real options and can induce the 
firm to choose an investment plan which does not maximize the NPV. This is an 
important implication for the asset pricing of competing irreversible projects. 

But note that the absence of arbitrage does not imply that it is necessary that the 
choice of the optimal investment strategy must be reversed once plans are correctly 
priced. Actually, the main point is that no external investor would be willing to 
finance the investment plan if the interest rate offered by the firm is smaller than the 
one required by the market. Indeed, the realization of the option strategy cannot be 
made without knowledge of the appropriate cost of capital. 

If the interest rate were equal for both the strategies, the supply of financial funds 
would be infinitely elastic irrespective of the riskiness of the project. But in a risky 
environment, the stock and the option have different degrees of risk and, consequently, 
different risk-adjusted rates. Hence, the example shows how the risk-return 
combination affects the interest rate, pointing out how to extend the concept of 
risk-adjusted rate to the situation of irreversibility where opportunities do not all have 
the same risk. 

3. Pricing Competing Strategies: The General Case 

In this section we generalize the results presented above by viewing any 
investment opportunity as offering its owner two facets: expected return and risk. We 
assume that the operating profit P  given by an investment is a stochastic variable 
obeying geometric Brownian motion: 

PdzPdtdP σα += , (1) 

where α  is the constant drift, 2σ  the constant variance, and dz  is a normally 
distributed random variable, with 0)( =dzE  and dtdzE =2)( . 

Our approach the problem is to treat immediate and deferred investments as two 
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distinct assets—a stock and a real option—with values that depend on the more 
fundamental variable P . When investment is irreversible this approach makes it 
possible to benchmark alternative plans using the features of the underlying asset P . 

3.1 The Stock 

We start with the stock, writing the value of the immediate strategy as: 

( ){ }PPs
s

tt s
dsPeEPV =

−∞

∫= |)( μ , (2) 

where μ  is the appropriate rate of interest of the stock. The corresponding NPV is 
IPVPW −= )()( , where I  is the direct cost of the irreversible investment. For the 

moment we assume μ  is given. 
It is necessary to show that the stock )(PV  has both the same expected growth 

rate and the instantaneous variance of P . To see this, we use dynamic programming 
to rewrite equation (2). Dynamic programming breaks a whole sequence of decisions 
into just two components: the value of the operating profit P  over the interval 
( dttt +, ) and the expected value beyond dtt +  which encapsulates the consequences 
of all subsequent decisions from that time on: 

[ ]dtedPPVEPdtPV μ−++= )()( .  

Applying Ito’s lemma to relate changes in V  to those in P  we obtain the expression: 

( ) )(1
2
1)( 22 PVdtdtPVPVPdtPV PPP μσα −+⎥⎦

⎤
⎢⎣
⎡ ++= ,  

where PV  and PPV  are the first and the second derivatives of V  with respect to P , 
respectively. This equation can be rewritten as: 

( ) ( )PV

PVPV

PV
P PPP

22

2
1σα

μ
+

+= . (3) 

This is an arbitrage equation: in equilibrium the expected return μ  is equal to 
the instantaneous rate of dividend )(PVP  plus the expected cash appreciation rate 

)(])21([ 22 PVPVPV PPP σα + . Thus μ  is the actual rate of return for the immediate 
investment. From (3) we obtain the stochastic partial differential equation: 

0
2
1 22 =+−+ PVPVPV PPP μασ , (4) 

which has the general solution )()( 21

21 δPVAVAPV dd ++= , where 11 >d  and 
02 <d  are the roots of the characteristic equation, and where 1A  and 2A  remain to be 

determined. Given that 0)0( =V , we must impose that 01 =A , and 02 =A  to avoid 
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speculative bubbles. Hence, the solution of this problem is: 

( )
δ
PPV = , (5) 

which is the expected present value of the profit obtained by investing at the current 
time. Further, note that from (5) the dividend rate is given by )(PVP=δ  and that 
substituting this into (3) the expected cash appreciation rate reduces to α , so that 

αδμ += . Finally, a basic consequence is that the change in V  can be written as: 

( )

[ ]

2

2 2

1
2

1 1 .
2

p pp

pp

dV V dp V dp

Pdt Pdz V P dtα σ σ
δ

= +

= + +
  

Using (5) to solve the previous expression we find that the dynamic of )(PV  is:  

VdzVdtdV σα +=   

This means that P  and V  are perfectly correlated and equivalent in risk. 

3.2 The Real Option 

Let us now turn to the deferred strategy with )(PF  representing the value of the 
real option. So long as nothing has been invested, the life of the investment program 
remains the same and the firm sacrifices the rewards associated with the investment. 
This is the opportunity cost of keeping the right to invest in the future. The expected 
present value of this opportunity is: 

( ) ( ) ( ){ }
( ) ( ) ( )

,

| .

t
t

t ts
t s P P

F P E V P I e

E e e P ds e I
τ

γ τ

γ τ γ τμ

τ

τ

∗

− −∗ ∗

∞− − − −−
=

⎡ ⎤= −⎣ ⎦

⎡ ⎤= −⎢ ⎥⎣ ⎦∫
 (6) 

The investment decision depends on both the time τ  and the critical value ∗P , at 
which the firm finds it optimal to undertake the irreversible project. We use γ  to 
denote the discount rate of the real option. 

Now we show that the real option is riskier than the stock. Given that the 
operating profit P  has the same dynamics as V , we can substitute )(VF  for )(PF  
and rewrite equation (6) in the form of the corresponding Bellman equation: 

( ) ( )[ ]VdFEdtVF t=γ . (7) 

The instantaneous profit P  does not appear in this expression because the real option 
yields no cash flow in the inactive region. As it stands, equation (7) can be seen as an 
application of Ito’s Lemma. The derived dynamic pattern of )(VF  is the process: 
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sFdzFdtdF += γ , (8) 

where 

( )
dtF

dFE
F

VFVF VVV

=
+

=

22

2
1σα

γ  (9) 

and 

F
VFs Vσ=  (10) 

is the corresponding risk, with )( FVFV  measuring the elasticity of F  with respect 
to V . From (9) we obtain the differential equation: 

0
2
1 22 =−+ FVFVF VVV γασ , (11) 

and to ensure convergence we must have αγ > . In addition )(VF  must satisfy the 
boundary conditions 0)0( =F , IVVF −= ∗∗ )( , and 1=∗VF , where ∗V  is the 
critical value at which the firm finds it optimal to undertake the irreversible project. 
Note that from the second boundary condition we have that )( ∗∗ += VFIV , setting 
the value of the project equal to the full cost—direct cost plus opportunity cost—of 
making the commitment. For the positive root 11 >b  this gives the solution:  

( ) bBVVF = ,  

where bb ≡1 . This expression is the value of the real option. Using this solution, we 
can solve the elasticity term in (10) to find that: 

11 >== − b
BV
VbBV

F
VF

b
b

V  (12) 

Thus, from (10) we get that σ>s ; that is, the real option is riskier than the stock. 

4. Asset Pricing and Interest Rates 

To clarify the meaning of the previous result note that in our solution we use the 
assumption that real and financial assets are exchanged in the market. So, let’s assume 
that the intertemporal CAPM is a valid description of asset returns at equilibrium. 
Applying this framework, we can explain why optimal investment decisions require 

r>> μγ . We refer to this relationship as the risk structure of interest rates. 
As noted above, the actual interest rate of the stock is μ . In a CAPM framework, 

this is the required interest rate that satisfies the no-arbitrage condition: 
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Vr λβμ += . (13) 

As usual, 2
mVmV σσβ =  is the systematic component of risk, [ ]rRE m −= )(λ  is 

its price, and m is the market portfolio. Now, since the standard deviation of the real 
option is σbs = , the covariance between the option and the market portfolio is 

VmFm bσσ = , so that the corresponding beta coefficient for the option is given by:  

VF bββ = . (14) 

This last equality is of key importance: since 1>b  the option is riskier than the stock, 
and the deferred strategy will have a higher risk premium. Of course, excluding 
arbitrage this must imply that μγ > . To prove that this result is a consequence of the 
arbitrage principle, take the CAPM equation of the real option Fr λβγ +=  and 
equations (13) and (14) to obtain: 

( )rbr −+= μγ . (15) 

Finally, using equations (9) and (12) and the condition αδμ += , we obtain the 
following evaluation equation: 

( ) 0
2
1 22 =−−+ rFVFrVF VVV δσ . (16) 

This differential equation is identical to (11) with the significant difference that now 
we adopt an explicit no-arbitrage argument to identify the relationship between 
interest rates. To show that (16) satisfies the no-arbitrage condition, equate equation 
(15) to the actual expected rate of the option bBVVF =)( . Ito’s lemma gives: 

( ) dzbdtbbb
F

dF σσα +⎥⎦
⎤

⎢⎣
⎡ −+= 21

2
1 , (17) 

with expected value equal to 2)1()21()( σα −+= bbbdtFdFE . Equating this 
expression to equation (15) we get the characteristic equation: 

( ) ( )rbrbbb −+=−+ μσα 21
2
1 , (18) 

which has the solution: 

2

2

22
2

2
1

2
1

σσ
δ

σ
δ rrrb +⎟

⎠
⎞

⎜
⎝
⎛ −

−
+

−
+= . (19) 

But, this expression is the positive root 11 >b  of equation (16) which ensures that:  

r>> μγ .  
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Hence, in a portfolio approach the risk-adjusted rate of the real option incorporates a 
risk premium which is higher than that of the stock. 

5. Concluding Remarks 

Irreversibility plays a particularly important role for investment decisions. The 
firm must look ahead to plan its current choice taking into account irreversibility and 
uncertainty on future profits. If the firm has the opportunity to postpone an 
irreversible project, the appropriate interest rate of any single strategy must capture 
the characteristics of the corresponding investment plan, and the current value of any 
strategy requires an appropriate rate, reflecting not only the cost of uncertainty but 
also the market value of irreversibility. 

Some of the results presented in this paper contrast with the traditional wisdom 
of economic modeling. In fact, it is common to investigate the exchange of fixed 
quantities of risk for a given return, and firms frequently evaluate alternative 
irreversible strategies for the same project using a single interest rate. The key point of 
our analysis is that irreversibility introduces peculiar elements into investment 
decisions, leading to the result that it is necessary to compute the risk structure of the 
interest rates to correctly evaluate competing irreversible investment opportunities. 

This result is based on the general property that an investment is correctly priced 
only if its market value does not allow opportunities for arbitrage. When this 
condition is violated, it is likely that incorrect decisions are made. Hence, a given 
interest rate will not, in general, evaluate alternative strategies of a single irreversible 
project correctly. 
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