
 1

A Level-wise Clustering Algorithm on Structured
Documents

Ching-Yao Wang, Ying-Chieh Lei, Pei-Chi Cheng and Shian-Shyong Tseng*

National Chiao-Tung University, Taiwan
{cywang, gis90529, gis91516, sstseng}@cis.nctu.edu.tw

* Corresponding author

Abstract
Document clustering is the process of

applying clustering technique for document
management [4][5]. Similar documents are
grouped together so that both managing and
searching the documents is efficient. However,
since traditional document clustering algorithms
do not take the structure information of
documents into consideration, the clustering
results can not reflect the characteristics of the
documents fully. As the result, we represent each
document as a tree structure and propose a
level-wise clustering algorithm to solve this
issue. The clustering process applies the level
property of the tree and run level by level by the
concept generalization operation. In order to
store the clustering results and search interesting
clusters efficiently, a multistage graph called
Level-wise Document Clustering Graph
(LDC-Graph) is proposed. Based on LDC-Graph,
three search strategies are provided to meet the
different requirements for uses. Finally, the
experimental results show that the similarity
search is efficient and the accuracy of the search
is acceptable
Keywords: document clustering, structured
document, clustering, tree structure

1. Introduction
Since more and more digital documents

interchange on Internet, how to manage these
documents becomes a very important issue. In
recent years, many document clustering methods
have been thus proposed to manage massive
documents [9][14][18]. In general, these
algorithms only represent each document by a
flat feature vector consisting of significant
keywords, and do not take the inherent structure
behind the document into consideration. This
way seems rather simple and efficient, but may
cause the following two drawbacks:
(1). Inaccuracy: Traditional document clustering

algorithms use a finite set of features to

represent documents. However, it is difficult
to select representative features [8].

(2). Inflexibility: When users are only interested
in parts of a document, traditional document
clustering algorithms can not return these
ones, since they treat whole document as a
unit.

In order to overcome the drawbacks, in this

paper we will propose a document clustering
algorithm by taking the structure information of
documents into consideration. With the structure
information, each document can be decomposed
of several logical components and represented as
a tree-like structure, where the upper component
represents a higher concept that covering all the
concepts beneath it. Figure 1 exemplifies a
document made up of several components, such
as title, abstract, chapters, sections, and
paragraphs.

Document

Paragraph

ChapterAbstractTitle

Section

Paragraph

Section

Paragraph Paragraph

Chapter

Section

Paragraph
Figure 1: An example of structured document

We first represent each document as a tree

structure of feature vector in XML (eXtend
Markup Language) [22] instead of a flat feature
vector. Then a novel algorithm called level-wise
clustering algorithm is proposed to cluster all
nodes in the document trees by a level-wise
approach. The key idea is to subdivide the
document trees into several clustering
populations according to the number of levels in
the tree structure. The clustering process will
start from the bottom document level to the top
document level with the same similarity measure.
Moreover, for concept generalization, the

 2

clustering information of lower document level
will simultaneously reflect to the higher
document level. To store the clustering results
and search interesting clusters efficiently, a
multistage graph called Level-wise Document
Clustering Graph (LDC-Graph) is proposed.
After clustering, three search strategies based on
the multistage graph are proposed so that user
can get not only general search results but also
specific search results.

2. Background and Related Work
2.1 Document Clustering

Document clustering manages massive
documents by grouping similar documents into
the same cluster. It has been extensively used for
efficiently finding the nearest neighbors of
documents and browsing a collection of
documents in many areas, such as text mining,
information retrieval, etc. [2][13][10][15]. The
most common steps of document clustering are
shown in Figure 2.

Encoding

Searching

Labeling

Clustering

Figure 2: The flowchart of document clustering

In the encoding phase, the common

approach is to represent each document by a
finite set of keywords [12][16]. The selected
keywords are treated as descriptive features and
represented by a vector. This way is so-called
vector space model method [3], and the popular
weighting scheme for the vectors is based on the
term frequency (TF) or the term frequency
combined with the inverse document frequency
(TF-IDF) [1][4]. A document can be thus
represented as)*,...,*,*(2211 nnidf idftfidftfidftfd = ,
where

itf is the frequency of the i-th term in the
document, and

iidf is the inverse document
frequency of the i-th term in the document and it
can be calculated by)log(dfn where n is the
number of documents and df is the number of
documents that contains the term.

In the clustering phase, similar documents
are then grouped together according to a
similarity function and the cosine function is the
most commonly used in the vector space model.

It can by calculated by the following formula:

21

21
21),cosine(

dd
ddddSimilarity •

== ,

where d1 and d2 are the vectors of two
documents, • is the vector dot product, and

1d and
2d are the lengths of the vector d1 and

d2, respectively. If the cosine value is larger than
the user-specified similarity threshold, two
documents are considered as similar to each
other.

In the labeling phase, the generated clusters
are labeled according to a criterion function. The
common labeling method is to treat the most
frequent keywords or the cluster centers in the
cluster as the label. The cluster center can be
computed by averaging all data vectors in the
cluster.

In the searching phase, according to a
user-specified vector and a similarity threshold
in the query, similarity search will find the
interesting clusters by a similarity function.
Moreover, the clustering performance is usually
evaluated by comparing the searching results
with the correct answers.

2.2 BIRCH

BIRCH (Balance Iterative Reducing and
Clustering using Hierarchies) is a hierarchical
clustering algorithm introduced in [20]. The
authors employed the concepts of Clustering
Feature and CF tree to implement the clustering.
Clustering feature in BIRCH is a triple
summarizing the information about a cluster. CF
tree is a balance tree with two parameters,
branching factor B and threshold T, to store the
clustering features. Each non-leaf node in CF
tree will contain at most B entries recording the
cluster feature of subclusters and pointing to
these subclusters. When new data objects are
inserted, the closest cluster is searched from the
root of CF tree descending to the leaf nodes by
the similarity function and threshold T.

3. Level-wise Clustering Algorithm
In order to take structure information of

documents into consideration, each document
can be decomposed of several logical
components and represented by a depth-fixed
tree structure called a document tree according
to a prior-known document structure. Based on
the representation, we then propose a novel
algorithm called level-wise clustering algorithm
to cluster the nodes in the document trees by a
level-wise approach. The key idea is to
subdivide the document trees into several
clustering populations according to the number
of levels in the tree structure. The clustering
process will start from the bottom document

 3

level to the top document level with the same
similarity measure. Moreover, for concept
generalization, the clustering information of
lower document level will simultaneously reflect
to the higher document level by roll-up
operation. After level-wise clustering, each level
will have its own clusters and the results will be
stored in a Level-wise Document Clustering
Graph (LDC-Graph). For detail, we will follow
the sequential steps, document encoding phase,
clustering phase and concept generalization
phase, to describe the proposed level-wise
clustering algorithm.

Algorithm 1: Level-wise Clustering
Algorithm

Denotation:
D: is the depth of the document tree.
L0~LD-1: denote the document levels of document tree descending
from the top level of document tree.
S0~SD-1: denote the stages of LDC-Graph
Input: N document trees with the same depth D, similarity
threshold T0~TD-1 for clustering the document nodes in the
document level L0~LD-1 respectively.
Output: LDC-Graph which holds the clustering results of every
document level.
Step 1: Group the document nodes in the document trees with the

same document levels.
Step 2: For i=LD-1down to L0 do

Step 2.1: Run single-level clustering algorithm for
document nodes in document level i with the
threshold Ti.

Step 2.2: Store the clustering result in the stage Si of
LDC-Graph.

Step 2.3: If i<>L0 then
 Run roll-up operation to set the value of

document nodes in the document level Li-1

Algorithm 2: Single-level Clustering

Algorithm
Input: N document nodes in the same document level, similarity
threshold T for clustering.
Output: The set of LDC-Nodes for representing the clusters of N
document nodes.
Step 1: Extract a document node from N document nodes and
place it into a cluster of its own. The cluster is represented by the
LDC-Node.
Step 2: For each document node, find the most similar cluster by

the similarity measure.
Step 3: If the similarity measure> T then

Place the document node into the LDC-Node of
most similar cluster and the LDC-Node is updated.

 Else
 Place the document node into a LDC-Node of its own.
Step 4: Return the set of the LDC-Nodes.

3.1 Document Encoding Phase: Document

Tree and Similarity Measure
All documents are represented as document

trees for document representation. A document
tree is a tree structure where the depth of the tree
is the same. Each node in the document tree is
called document node which contains a vector
consisting of the features of its corresponding
component in the document. The level where a

document node belongs is called document level.
The document levels are labeled as L0, L1, …,
LD-1 from the top level to bottom level, where D
is the depth of a tree and the node in Li-1 is the
parent node of Li. Notice that in a document tree
only the value of vectors of leaf nodes need to be
assigned values by feature extracting since the
values of the vectors in the internal nodes can be
generated from the sub-tree it holds. The detail
will be described in the concept generalization
phase.
Example 1: Given a book shown in the left part
of Figure 3, we take TF-IDF as weighting
schema for feature extracting. The corresponding
document tree is shown in the right part of
Figure 3.

Chapter 1

Chapter 2

Chapter 3

Book
Section 1

Section 2

Content Table

Section 1
Section 2
Section 3

Section 1
Section 2
Section 3

Book
(V01,Link01)

Chapter 1
(V11,Link11)

Chapter 2
(V12,Link12)

Chapter 3
(V13,Link13)

Section 1
(<3,3,2>,Link21)

Section 2
(<3,2,2>,Link22)

Section 1
(<2,3,2>,Link23)

Section 2
(<4,4,2>,Link24)

Section 3
(<2,3,4>,Link25)

Section 2
(<1,2,3>,Link27)

Section 3
(<2,1,4>,Link28)

Section 1
(<3,2,5>,Link26)

Figure 3: An example of a document tree

For clustering purpose, the cosine function,
the most common similarity measure for
document clustering [14][19], can be used to
measure the similarity between two document
nodes is defined as follow:

BA

BA
BA VV

VVVVSimilarity •
==),cosine(,

where VA and VB are the vectors of document
nodes A and B, respectively. The larger the value
is the more similar two vectors are.

3.2 Clustering Phase: Level-wise Document

Clustering Graph (LDC-Graph)
The clustering process will start from the

bottom document level to the top document level
with the same similarity measure. After
level-wise clustering, each level will have its
own clusters and the results will be stored in a
Level-wise Document Clustering Graph
(LDC-Graph).
Definition 1: Level-wise Document Clustering
Graph (LDC-Graph)

LDC-Graph is a multistage graph
comprising of several stages. The vertex
represents a cluster, denoted as an LDC-Node =
(CF, DDL), where CF (Cluster Feature) is used
to store the summarized information of a cluster
and DDL (Drill-Down List) is a list containing
several entries. Each of which is represented as
the form (CFi, Pointeri), where Pointeri is the
i-th pointer connecting to the i-th related
LDC-Node and CFi is the CF of the subcluster
connected by this pointer.

 4

Definition 2: Cluster Feature (CF)
Cluster Feature (CF) of a cluster is defined

as a triple: CF = (N, VS , CS), where N is the
number of nodes in the cluster, VS is the sum
of feature vectors for the N nodes, i.e. ∑=

N

i iV
1

v ,

and CS is the cluster center or the average of the
vector sum, i.e. |/||/|

1
NVSNVN

i i =∑ =

v . When

combining two clusters CF1 = (N1, 1VS , CS1)
and CF2 =(N2, 2VS , CS2) into one new cluster,
the new cluster feature CFnew can be calculated
by (N1+N2, 1VS + 2VS , |(1VS + 2VS)/(N1+N2)|).

Example 2: Assume there are two document
trees DT1 and DT2. After level-wise clustering,
the results are shown in Figure 4(a). Then, the
corresponding LDC-Graph is shown in Figure
4(b). The DDL of LDC-node C01 will contain
three entries which point to the LDC-node C11,
C12 and C13, respectively.

A

A0 A1

B

B0 B1

Cluster C12 Cluster C13Cluster C11

Cluster C01

Document Level L 0

Document Level L1

DT1 DT2

Figure 4(a): The clusters for two document trees

DT1 and DT2.

A

A0 A1

B

B0 B1

LDC-node C12LDC-node C11 LDC-node C13

LDC-node C01

Stage:S0

Stage:S1

Figure 4(b): The corresponding LDC-Graph for

Figure 4(a)

Example 3: Assume the cluster C is represented
by the LDC-Node NC = (CFC, DLLC), where CFC
= (4, <8, 8, 16>, 4.899) and DLLC = <(CF1,
Pointer1), (CF2, Pointer2)>. When a new
document node A with the vector V = <7, 2, 4>
is inserted to the cluster C and its child nodes are
belonging to the clusters 3 and 4 respectively,
then the updated CFC = (5, <15, 10, 20>, 5.385)
and DLLC = <(CF1, Pointer1), (CF2, Pointer2),
(CF3, Pointer3), (CF4, Pointer4)>.

3.3 Concept Generalization Phase: Roll-up

Operation
The concept generalization phase is used to

generate the values of document nodes in the
upper document level from the clustering results
of document nodes in the lower document level.
It will make the value of document nodes in the
upper level more objective and representative by

generalizing the detailed information in the
lower level. Therefore, we define a roll-up
operation for the non-leaf document nodes by
averaging the cluster centers of the clusters
which the lower document nodes belong to.
Example 4: Assume a document node A
contains three child nodes A1, A2 and A3, where
A1 and A2 belong to cluster CA and A3 belongs to
cluster CB. If the cluster center of CA is <3, 3, 2>
and the cluster center of CB is <3, 2, 4>, then
after running roll-up operation the vector of the
document node A will be: Average (<3, 3, 2>, <3,
3, 2>, <3, 2, 4>) = <3, 8/3, 8/3>

4. Similarity Search by LDC-Graph
Similarity search for document clustering is

to find the interesting clusters for fulfilling user
requirements. An interesting cluster is defined as
a cluster which has higher similarity value than
the user-specified threshold in the query. By the
LDC-Graph, the similarity search opposite to the
clustering process starts from the top stage (top
document level) to the bottom stage (bottom
document level). Since the clusters in the upper
stage contain more general information than the
clusters in the lower stage, the search from the
top stage finds the general clustering result first
and gets the specific clustering result when
descending to the lower stage. The key operation
for descending search is called drill-down
operation. That is, the drill-down operation can
return a set of LDC-Nodes in the next lower
stage which are pointed by the present DDL. In
the following, we propose three search strategies
including single stage search, top-down search
and heuristic search.

4.1 Single Stage Search Strategy

The single stage search strategy is used to
find interesting clusters in a specific level. The
algorithm of single stage search strategy is

described as follows.

Algorithm 3: Similarity Search
Algorithm for Single Stage of the

LDC-Graph
Denotation:
ClusterSet: a set of LDC-Nodes.
Input: The query vector Q whose dimension is the same as
the vector of each document node, the desired destination
stage SDES and search threshold S.
Output: The set of similar clusters.
Step 1: ClusterSet=φ
Step 2: For each LDC-Node N in the stage SDES of an
LDC-Graph.
 Step 2.1: Compute the similarity LDC-Node N with
query Q.
 Step 2.2: If the similarity ≥ S then
 ClusterSet=ClusterSet ∪ N
Step 3: Return ClusterSet.

 5

4.2 Top-down Search Strategy
The top-down search strategy is used to find

interesting clusters by the drill-down operation.
If the cluster is considered as similar one with
the query, the drill-down operation will be
executed to get the specific clusters of the next
lower stage. With executing the drill-down
operation repeatedly, users can get the similar
clusters in the specified stage they want. The
algorithm of top-down search strategy is
described as follows.

Algorithm 4: Top-down Search
Strategy

Denotation:
D: is the number of the stages in an LDC-Graph.
S0~SD-1: denote the stages of an LDC-Graph from the top stage
to the lowest stage.
ResultSet, DataSet: the sets of LDC-Nodes.
Input: The query vector Q whose dimension is the same as the
vector of each document node, search threshold S and the
destination stage SDES where S0≤ SDES≤ SD-1.
Output: The set of similar clusters represented by LDC-Nodes
Step 1: Let DataSet be the set of LDC-Nodes in the stage S0.
Step 2: ResultSet=φ .

For each LDC-Node N ∈ DataSet,
If the similarity measure with Q ≥ S then

ResultSet=ResultSet ∪ N.
Step 3: If the stage of the node in ResultSet< SDES then

DataSet=φ .
For each LDC-Node N ∈ ResultSet

 DataSet=DataSet ∪ LDC-Nodes returned
by drill-down operation.

 Go to Step 2.
Step 4: Return ResultSet.

4.3 Heuristic Search Strategy

Each cluster returned by the top-down
search strategy belonged to some user-specified
stage of the LDC-Graph. However, if the
clusters in the higher stage are similar enough to
the query, the clusters may be the desirable ones.
It is thus not necessary to execute the drill-down
operation. Based on this idea, we define a full
similarity measure to evaluate the degree and
propose a corresponding heuristic search strategy.
Figure 5 illustrates the concept of full similarity.

Figure 5: The concept of full similarity

Definition 3: Full Similarity

Assume that the similarity threshold for

clustering is T and the similarity threshold for
searching in the query is S, where S < T. Since
similarity function is cosine function, the
threshold can be represented as the form of the
angle. The angle of T is denoted as TT

1cos−=θ
and the angle of S is denoted as SS

1cos −=θ .
When the angle between the input and the
cluster is lower than

TS θθ − , we say the cluster
is full similar to the query. The full similarity can
be formally defined by the following formula.

()()22 11T*S

)(Similarity Full

TS

SinSinCosCos
Cos

TSTS

TS

−−+=

+=
−>

θθθθ
θθ

The algorithm of heuristic search strategy is

described as follows.
Algorithm 5: Heuristic Search Strategy
Denotation:
D: is the number of the stage in an LDC-Graph.
S0~SD-1: denotes the stage of an LDC-Graph from the top stage
to the lowest stage.
ResultSet, DataSet, FullSimilaritySet: the sets of LDC-Nodes.
Input: The query vector Q whose dimension is the same as the
vector of each document node, search threshold S and the
destination stage SDES where S0≤ SDES≤ SD-1.
Output: The set of similar clusters represented by LDC-Nodes
Step 1: Let DataSet be the set of LDC-Nodes in the stage S0

and FullSimilaritySet=φ .

Step 2: ResultSet=φ .

For each LDC-Node N ∈ DataSet,
If N is full similar with Q then

FullSimilaritySet=FullSimilaritySet ∪ N.
Else if the similarity measure with Q≥ S then

ResultSet=ResultSet ∪ N.
Step 3: If the stage of the node in ResultSet< SDES then

DataSet=φ .
For each LDC-Node N ∈ ResultSet

 DataSet=DataSet ∪ LDC-Nodes returned
by drill-down operation.

 Go to Step 2.
Step 4: Return ResultSet ∪ FullSimilaritySet.

5. Discussion
As mentioned above, there are four salient

features in our proposed level-wise clustering
algorithm:

(1). Complete: Each structured document is
represented as tree structure, so the inherent
structure can be hold and the characteristic
of structured document can be retained. This
way may reduce the loss of information and
since the document content can be
represented more completely in a limited
number of features.

(2). Representative: All features which used to
represent the document node are generated
from the base feature by concept
generalization. The concept generalization
phase makes document representation more

Query Range

 6

objective and representative, and based on
this representation manner, the clustering
result is also more representative than other
document clustering algorithms.

(3). Flexible: The level-wise clustering
algorithm executes clustering based on the
tree structure of each document. Each node
of the tree stores the features extracted from
one part of the document. Based on the
inputs and clustering structure, we can get
more flexible application than traditional
algorithm. For example, we can find the
documents with the similar hierarchical
structure.

(4). Efficient: Since the LDC-Graph structure
can effectively store the information of
clusters, we can enhance the performance
either search or clustering.

6. Experiments

All experiments are run on AMD Athlon
1.13GHz processor with 512MB DDR RAM. All
programs are implemented in Borland C++
Builder 6 under Windows XP operating system.

6.1 Synthetic Data Generation

We use synthetic data generated by a
synthetic system for evaluating the performance
of our proposed algorithms. The synthetic
generator controlled by the following four
parameters is developed: the dimension of the
vector of each document node, the depth of the
document tree, the upper bound and lower bound
branching factor for each document node, and
the number of the document trees. The value of
each entry in the vector is then randomly
assigned in the range of [0, 1]. For reality, two
transformation functions, 2)1(1)(xxf −−=

and 211)(xxf −−= , are used to amplifies and
diminishes the assigned value. Moreover, an
additional parameter called vector tendency need
to be given for deciding the number of the
entries in the vector should be amplified even if
the entries are selected randomly. Other entries
without amplifying are diminished by the
diminution function.

6.2 Experimental Design

To evaluate the performance, we will
compare the clustering quality and the searching
time of a traditional document clustering
algorithm (i.e. single level clustering algorithm)
with our proposed level-wise clustering
algorithm associated with top-down search
strategy. In the traditional document clustering
algorithm, each leaf node of document trees is
considered as the input, and the clustering result
is required without any concept generalization.
The cluster quality can be evaluated by the

F-measure [11] and can be calculated by the
following formula:

RP
RPF

+
=

**2 ,

where P and R are precision and recall,
respectively. The range of F-measure is [0,1].
The higher the F-measure is the better the
clustering result is.

6.3 Experimental Results

By synthetic data generator, 500 document
trees are generated. The related parameters is
that the dimension of the vector is 15, the depth
of the document tree is 3, the range of the
branching factor for each document node is [5,
10], and the vector tendency is 3. The clustering
thresholds for level-wise clustering algorithm
and the traditional document clustering
algorithm are both set by 0.92. After clustering,
there are 101, 104 and 2529 clusters generated
from 500, 3664 and 27456 document nodes in
the document level L0, L1 and L2, respectively.
Then, 30 queries generated randomly are used to
compare the performance of two clustering
algorithms. Figures 6 and 7 show the F-measure
and the execution time for each query with the
search threshold is set by 0.85.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

Single level clusteringLevel-wise clustering

 Figure 6: The F-measure of each query

0

100

200

300

400

500

600

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

Single level clusteringLevel-wise clustering

 7

Figure 7: The executing time when similarity
search

Since the concept generalization in the

level-wise clustering algorithm will results in
little information loss, the similarity search by
drill-down operation in the LDC-Graph will
decrease the accuracy. However, as shown in
Figure 6, the differences of the F-measures are
small in most cases. Moreover, for most cases
illustrated in Figure 7, the searching time of
level-wise clustering algorithm is far less than
the ones of the traditional document clustering
algorithm.

7. Concluding Remarks
In this paper, a level-wise clustering

algorithm on structured documents has been
proposed. The level-wise clustering algorithm
represents each document as a tree structure and
clusters the nodes of the trees according to the
level of the tree. Besides, a multistage graph and
cluster features are used to store the clustering
results. Finally, three search strategies are
proposed to utilize the multistage graph to get
the similarity search efficiently. Our
experimental results show that the level-wise
clustering algorithm speeds up the searching
time of each query without losing much
information. Moreover, with three search
strategies, users can not only get the general
search results but also get the specific search
results. In the future, experiments with real data
will be implemented to analyze the performance
and check if the proposed algorithm can really
meet the needs of different users.

8. Acknowledgment

This research was supported by MOE
Program for Promoting Academic Excellence of
Universities under the grant number
89-E-FA04-1-4 and National Science Council of
the Republic of China under Grand No.
91-2213-E-009-007-.

Reference
[1]. H, Avancini, A, Lavelli, B, Magnini, F,

Sebastiani, and R, Zanoli, “Expanding
domain-specific lexicons by term
categorization,” Proc. of ACM
Symposium on Applied Computing, pp.
793 -797, 2003.

[2]. C. Buckley and A. F. Lewit,
“Optimizations of inverted vector
searches,” SIGIR ’85, pp. 97-110, 1985.

[3]. D. R. Cutting, D. R. Karger, J. O.
Predersen, J. W. Tukey, “Scatter/Gather: A
cluster-based approach to browsing large
document collections,” Proc. of the

Fifteenth Interntional Conference on
Research and Development in
Information Retrieval, 318-329, 1992.

[4]. F. Debole and F. Sebastiani, “Supervised
term weighting for automated text
categorization,” Proc. of ACM
Symposium on Applied Computing, pp.
784 -788, 2003.

[5]. R. Freeman and H. Yin, “Self-organising
maps for tree view based hierarchical
document clustering,” Proc. Int. Joint
Conf. Neural Networks, vol. 2, pp.
1906-1911, 2002.

[6]. W. Fu, B. Wu, Q. He, Z. Shi, Info-tech
and Info-net, “Text document clustering
and the space of concept on text
document automatically generated,” Proc.
ICII 2001 - Beijing. 2001 Int. Conf. on,
Vol. 3, pp.107 -112, 2001.

[7]. S. Iiritano, M. Ruffolo, “Managing the
knowledge contained in electronic
documents: a clustering method for text
mining,” Database and Expert Systems
Applications, Proc. 12th Int. Workshop on,
pp. 454 -458, 2001.

[8]. G. Karypis and E. H. Sam, “Fast
supervised dimensionality reduction
algorithm with applications to document
categorization & retrieval ,” Proc. of the
ninth international conference on
Information and knowledge management,
pp. 12 -19, 2000.

[9]. R. Kondadadi, R. Kozma, “A modified
fuzzy ART for soft document clustering,”
Neural Networks, Proc. of the 2002 Int.
Joint Conf. on, Vo. 3 , pp. 2545 -2549,
2002.

[10]. G. Kowalski, Information Retrieval
Systems-Theory and Implementation,
Kluwer Academic Publishers, 1997.

[11]. B. Larsen and C. Aone, “Fast and
effective text mining using linear-time
document clustering,” Proc. of the fifth
ACM SIGKDD international conference
on Knowledge discovery and data mining,
pp. 16-22, 1999.

[12]. Y.K. Lee, S.J. Yoo, K. Yoon, B. Berra,
“Index structures for structured
documents,” Proc. Digital Library, pp.
91-99, 1996.

[13]. X. Long and T. Suel, “Optimized query
execution in large search engines with
global page ordering,” Proc. of the 29th
VLDB Conference, 2003

[14]. F. Sebastiani, “Machine learning in
automated text categorization,” ACM
Computing Surveys, Vol. 34, No. 1, pp.
1-47, 2002.

[15]. S. Shankar and G. Karyp, “A feature
weight adjustment algorithm for

 8

document categorization,” Sixth ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining,
2000.

[16]. D.W. Shin, H.C. Jane, H.L. Jin, “BUS: An
effective indexing and retrieval scheme in
structured documents,” Proc. of Digital
Libraries, pp. 235-243, 1998.

[17]. M. Steinbach, G. Karypis and V. Kumar,
“A comparison of document clustering
techniques,” Sixth ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, 2000.

[18]. P. Willett., “Document clustering using an
inverted file approach,” Journal of
Information Science, pp. 2:223-231, 1990.

[19]. W.C. Wong and A. Fu, “Incremental

document clustering for web page
classification,” IEEE Int. Conf. on Info.
Society in the 21st century: emerging
technologies and new challenges (IS2000),
2000.

[20]. T. Zhang, R. Ramakrishnan, and M.
Livny., “BIRCH: an efficient data
clustering method for very large
databases,” Proc. ACM-SIGMOD Int.
Conf. Management of Data, pp. 103-114,
1996.

[21]. Y. Zhao and G. Karypis, “Evaluation of
hierarchical clustering algorithms for
document datasets,” Techical Report
#02-022.

[22]. http://www.w3.org/XML/

