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Abstract—High performance Internet routers require an 

efficient IP lookup algorithm to forward millions of packets per 
second. Various data structures based on binary trie are 
normally used in software-based IP router design, including 
network processor-based routers. Binary trie based lookup 
algorithms have not only simple and easy IP address search 
process but also the routing entry update process. In this paper, 
we propose a new IP lookup algorithm based on binomial 
spanning tree. The proposed algorithm has the same advantages 
of simple search and update processes as the binary trie-based 
algorithms. However, the performance of the proposed algorithm 
is better than the schemes based on binary tries, such as path-
compression and level-compression.  

Keywords — Binary trie, binomial spanning tree, and IP lookup. 

I. INTRODUCTION 
The increase of the Internet traffic continues in an 

unprecedented rate mostly due to the advent of the 
World Wide Web (WWW) [5]. Backbone routers with 
link speed of gigabits per second (e.g., OC-192, 10 
Gigabits and OC-768, 40 Gigabits) are thus commonly 
deployed. Among all the fundamental functions of the 
routers, IP address lookup is the most critical one. Fast 
lookup algorithms make packet forwarding rate of the 
routers keep up with the link speed and router bandwidth. 
These backbone routers have to forward millions of 
packets per second at each port. In this paper, we focus 
on the choice of data structure and its adaptation to the 
typical routing tables with a large number of routing 
prefixes. We evaluate the performance of the proposed 
algorithm and other existing ones using a software 
implementation. 

The routing table in a router that is used to lookup an 
IP address stores an array of entries, each consisting of a 
network address that is the prefix of a group of IP 
addresses and the corresponding next port number to the 
network. When a router receives a packet, it must 
determine the next port number through which the 
packet must be forwarded. The longest prefix in the 
routing table that matches the destination IP address of 
the packet is the best match prefix (BMP). Sequential 
search for the BMP has a time complexity of O(N) 
which is not scalable.  

A large variety of routing lookup algorithms was 

classified and their worst-case complexities of lookup 
latency, update time, and storage usage were compared 
in [1]. Among them, a category of algorithms is based on 
a trie/tree structure. The binary trie is in fact a binary 
search tree using the bit value (0 or 1) to guide the 
search moving toward the left or the right part of the tree. 
The binary tree structure is usually implemented using 
linked list data structure. Each trie node has the left and 
right pointers pointing to its left and right sub-tree, 
respectively. A space efficient array implementation of 
trie-based algorithms is also possible [12].  

Among all the IP lookup algorithms proposed in the 
literature, only the binary range search proposed in [3, 4] 
can store the lookup data structure in a sequential array. 
Instead of trying to store the complete prefixes, the 
binary range search encodes the prefixes by the start and 
end addresses of the ranges covered by them. All the 
start and end addresses of ranges are sorted and stored in 
a sequential array. The binary search method can then be 
applied using the array index. Obviously, a subtle design 
(e.g., “>” and “=” ports) must be employed to make the 
binary search on the sequential array work. The primary 
idea of the binary range search is to pre-compute the port 
number when the target IP is equal to one of the start and 
end addresses of ranges or locates between two 
consecutive addresses. 

Based upon this primitive trie structure, a set of 
prefix compression and transformation techniques are 
used to either make the whole data structure small 
enough to fit in a cache [9], or to transform the set of 
original prefixes to a different one in order to speed up 
the tree traversal procedure [10]. The hardware based 
lookup algorithms using multi-bit trie proposed in [11] is 
in fact a variation of the prefix transformation techniques. 
The extreme case is a 32-bit extended trie which trades a 
memory consumption of 32 Gbytes and inefficient prefix 
updates for only one memory lookup latency. We can 
classify the 32-bit extended trie as a perfect hashing 
approach which is obviously not minimal. Since finding 
a minimal perfect hashing table for the whole set of 
prefixes is difficult, a binary search on prefix lengths is 
proposed in [7]. In this scheme, a binary search scheme 
is conducted on a set of hash tables, where prefixes with 
same length are organized in one hash table. In [8], the 
authors use CPU caching hardware to perform routing 
table caching and lookup directly by carefully mapping 
IP addresses to virtual addresses.  



 

In this paper, we shall propose a new IP lookup 
algorithm that uses a binomial spanning tree. The 
spanning tree is constructed from a hypercube structure 
of dimension n onto which the n-bit prefixes of the 
routing table are mapped, where n is 32 for IPv4 or 128 
for IPv6.  

Formally, a hypercube or an n-cube consists of 2
n
 

nodes, can be topologically represented as an n-
dimensional cube in which a node is located on each of 
the 2

n
 vertices of the cube. Each of the 2

n
 nodes in an n-

cube has a unique n-bit binary address, and two nodes 
are adjacent and connected by a link if and only if their 
addresses differ in exactly one bit. Subcubes of an n-
cube are denoted by ternary strings in {0, 1, *}, where * 
is the Don't Care bits which can be replaced by either 0's 
or 1's. For example, 00** is a subcube of dimension 2 in 
a 4-cube which contains 4 nodes with addresses 0, 1, 2, 
and 3.  

A special tree structure called the binomial spanning 
tree can be constructed from a hypercube. The fan-out of 
a node in the binomial spanning tree can be in the range 
of 0 … n in an n-cube. A four dimensional hypercube 
and the corresponding binomial spanning tree are 
depicted in Figure 1. In the figure, some of nodes are 
also shown with their corresponding 4-bit addresses. 

The proposed IP lookup algorithm based on the 
binomial spanning tree has the similar characteristics to 
that based on the binary tries. In other words, both of the 
algorithms based on binomial spanning trees and binary 
tries have the advantages of simple and easy searching 
mechanism, tree construction, and updates. The basic 
searching method for the proposed lookup algorithm is 
also in a bit-by-bit fashion starting from the most 
significant bit and following the pointers in the nodes. 
The worst-case number of memory references with the 
basic binomial spanning tree is less than n since we can 
easily pick a root node which has the maximum 
hamming distance of less than n from all other nodes 
with valid prefixes. We will then develop some 
techniques to further reduce the number of nodes and the 
tree depth in the binomial spanning tree using level and 
path compression and the special properties of the 
hypercube [10, 12]. 

The rest of the paper is as follows. Notations, 

terminology, definitions are introduced in Section 2. In 
Section 3, we describe the data structure of the proposed 
IP lookup algorithm using binomial spanning tree. 
Section 4 describes a software implementation that we 
use to conduct the experiments for lookup performance 
comparisons. Finally, a concluding remark is given in 
the last section. 

II. PRELIMINARIES 
The notations and terminology used in this paper 

are first given as follows. 
In an n-cube, node i has binary address, (in-1 in-1…i0). 

The set of node addresses is N = {0, 1, …, 2n–1 }, and 
the set of dimensions is D = {0, 1, …, n – 1}. The 
bitwise Exclusive-OR operation is denoted as ^ (used in 
C language). | S | denotes the cardinality of a set S.  

Definition 1: A binary n-cube is a graph G = (V, E) 
such that V = N and E = {(i,j) | i ^ j = 2m, for all i and j 
belong to N }. An edge (i,j) connects nodes i and j 
through dimension m.  

Definition 2: The Hamming distance between nodes 
i and j is Hamming(i, j) = ∑ m=0

n-1 (im^ jm). 
Definition 3: A binomial spanning tree (n-BST) 

with root node s = (sn-1 sn-2…s0) is defined [2] as follows.  
The set of the root’s children is {(sn-1sn-2…sm…s0)} 

for m = n – 1, …, 0. The set of children of another node i 
with the address (in-1 in-2…im…i0) is {(in-1 in-2…im…i0)} for 
m = p – 1, …, 0, where c = i^s  and ck = ik^sk  for k = 
0 …n – 1, and cp-1 = … = c0 = 0 and cp = 1. In other 
words, p is the position of the least significant set bit. 
The sub-BST containing nodes in the p-cube 0..01p* is 
connected to the root node along dimension p.  

n3.n2.n1.n0/l/p: the length format of prefixes. It 
represents a prefix of length n associated with a next port 
number p, where n3.n2.n1.n0 is dotted notation of a 32-
bit IP address using 4 octal numbers. The notation 
n3.n2.n1.n0/l will be used when no confusion is incurred. 

bn-1…bi*…*/p: the ternary format of prefixes. It 
represents a prefix of length n-i associated with a next 
port number p and bj = 0 or 1 for n-1 ≥ j ≥ i. When we 
use tn-1…t1t0 as the ternary format of a prefix, where ti = 
0, 1, or * (don’t care), we must follow the rule that if tk 
is * then tj must also be * for all j < k. For simplicity, a 
single don’t care bit is used to denote a series of don’t 
care bits. Thus, the prefix 1* denotes 1**** in a 5-bit 
address space. 

Prefix Enclosure. Consider two prefixes in their 
ternary format: A = bn-1…bi* and B = bn-1…bj* and 
assume j > i. Therefore, A is enclosed by B. 

Disjoint prefixes. Two prefixes A and B are said to 
be disjoint if none of them is enclosed by the other. 

III. PROPOSED DATA STRUCTURE 
Using the binomial spanning tree as the basic 

structure to store the routing table is not as simple as we 
first thought. Each vertex of an n-cube is associated with 
an n-bit binary address which can be directly mapped to 
a node in the binomial spanning tree. Storing routing 
table in the binomial spanning tree will be 
straightforward when all the prefixes of the routing table 
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Figure 1: A 4-cube and its corresponding binomial 
spanning tree. 



 

are of length 32. However, the prefixes of the routing 
table are in the range of 1 to 32. We need to devise a 
method to store a prefix of any length in a node of the 
binomial spanning tree such that performing an IP 
lookup will have a correct result. What we do is to 
convert the prefix bn-1…b0/len/p to bn-1…bn-len0…0/len/p 
and store it in the node with address bn-1…bn-len0…0.  

The above conversion leads to a problem that a 
node may be mapped from more than one prefixes. For 
example, the node with an address bn-1…b0 can store any 
one of the prefixes {bn-1…bn-k+11n-k0…0*x…*0/len | len = 
n – 1 – x and x = –1… n – k – 1}, called the set of 
conflicting prefixes in a node. This conflict situation can 
be solved by two approaches. The first approach uses an 
additional prefix array to record the conflicting prefixes. 
The node will contain a pointer to this prefix array. 
When a lookup ends in a node of the binomial spanning 
tree containing a non-empty conflicting prefix array, an 
additional process must be performed to search the 
prefix array for the proper match. Since this kind of 
enclosure situation is rare, the LC trie uses this approach 
[12]. 

The second approach expands the conflicting 
prefixes of shorter lengths to ones of longer lengths in 
such a way that all the expanded prefixes are disjoint. 
Disjoint prefixes are mapped onto different nodes of the 
binomial spanning tree. For example, two conflicting 
prefixes 0*/p and 000*/q in the 4-bit address space are 
initially mapped to the same node with address 0000. 
The converted set of prefixes are 01**/p, 001*/p, and 
000*/q that are mapped to three distinct nodes with 
addresses, 0100, 0010, and 0000. One might think that 
this approach is the same as the approach that is 
designed to remove the enclosure situations. The 
following example explains it is not. Consider two 
prefixes, 0*/p and 01*/q in a 4-bit address space. The 
former prefix encloses the latter. It can be seen that these 
two prefixes are not conflicting because they are mapped 
onto two distinct nodes with addresses 0000 and 0100. 
This is the approach we adopt in this paper.  

Figure 2 shows the binary tree and the 
corresponding binomial spanning tree for a small routing 
table. We can see that the depth of the binomial 
spanning tree is one less than the binary trie and the 
number of links is two less than that of the binary trie. 
The number of links is proportional to the required 
memory space because the links are usually 
implemented as pointers. 

The insertion procedure in the syntax of C 
programming language for the proposed lookup 

algorithms is given in Figure 3. This insertion procedure 
is the building block of the tree construction and update 
processes. Formally, the insertion procedure is called 
every time when a prefix is added in the routing table. 
The last three parameters of the insertion procedure, ip, 
len, and port, represent the prefix being added. If the 
hamming distance between the root and the node 
mapped to the inserted prefix is h, there are h nodes in 
the binomial spanning tree that will be traversed or 
created if necessary in the insertion process, excluding 
the nodes that will be created by the conflicting node 
resolution process. Lines 1-9 show the core codes that 
create the necessary nodes along the path from the root 
to the final node of the prefix. The input IP is first 
Exclusive-ORed with the root address. The position of 
the most significant set bit is then computed by using the 
‘bsr’ (bit scan reverse) instruction of the Intel processor 
family starting from Intel 80386. When coming to the 
final node where the input prefix is supposed to locate, 
we check if a conflicting prefix already exists and 
perform the appropriate conflict resolution operations. 
Referred to the line 10 in Figure 3, we assume that if the 
final node having a port number greater than 0 indicates 
a conflicting prefix was already assigned to this final 
node. If no conflicting prefix exists in this final node, we 
update its len and port fields.  

Figure 4 shows the procedure for solving the 
conflicting situation. The prefix assigned to this node is 
the one with the longest length. The prefix with a shorter 
length is split into two prefixes that are in turn inserted 
recursively into the same node.  

Finally, we show the lookup procedure in Figure 5. 
The lookup process works in a bit-by-bit fashion as in 
the insertion procedure. Each time a node is looked-up 
when traversing the binomial spanning tree, the 
matching process is performed. If the input IP matches 
the prefix stored in the traversed node, the node port 
number is recorded as default port and the lookup 
process continues. The final matched node is the best 

void insertion(node32 *root32, unsigned root_ip, 
             unsigned ip,unsigned len,unsigned port) 
{ 
1   unsigned x = root_ip ^ ip, i; 
2   while (x != 0){ 
3      i =BSR(x);//Pentium’s bsr instruction(bit scan reverse) 
4      if (root32->ptr[i] == NULL)  
5           root32->ptr[i] = create_node32(); 
6      root32 = root32->ptr[i]; 
7      x = x ^ (1<<i); 
8      root_ip = root_ip ^ (1<<i); 
9   }/*end while */ 
10 if (root32->port > 0) { 
11       conflict_resolve(root32, root_ip, ip, len, port); 
12 } else { 
13        root32->len = len; 
14        root32->port = port; 
15 } 
} 

Figure 3: The insertion procedure for the proposed  
binomial spanning tree. 
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matched prefix whose port number is returned.  
Otherwise, the default port is returned. 
A. Node Representation: 

As you may have noticed that the data structure of 
the node in Figures 3-5 contains fixed number of 
pointers depending on where the node locates. The root 
node has n pointers since it may have at most n children 
in an n-BST. In general, there are 2k nodes with n – k – 1 
pointers, for k = 0 to n – 1. A lot of pointer space will be 
wasted because some of the prefixes may not exist and 
thus most of pointers are NULLs. We propose to use a 
bitmap to record which pointers are not NULLs. Take a 
node with 8 pointers as an example. If only pointers at 
bits 3 and 5 are not NULL, we use 00101000 as the 
bitmap and an array of two pointers. When we check if 
the pointer at bit i is NULL or not, we check if the ith bit 
in the bitmap is set or not. If the ith bit of the bitmap is 
zero, the corresponding pointer is NULL. If not, we 
compute how many set bits that precedes the ith bit 
(inclusive) to locate and follow the pointer to the next-
level node. 
B. Optimizations: 

There are a number of optimization techniques 
proposed in the literature for the binary trie. Path 
compression, level compression, and k-level 
segmentation are examples of the optimization 
techniques. We will show that these techniques can also 
be applied to the proposed IP lookup algorithms using 
binomial spanning tree. 

Path compression of the binomial tree is 
straightforward. The non-prefix node with only one child 
can be removed by the path compression technique. 
Figure 2 (c) shows node 100 can be compressed into 
node 100 which stores prefix b.  

Employing level compression technique in the 
binomial spanning tree is similar to finding a subcube 
that contains the node at which the level compression is 
applied. For example, assume there are 14 prefixes that 
are stored in a binomial spanning tree shown in Figure 6. 
There exists a 3-cube that contains the root node 0 
(prefix 0). The data structure of the root node as shown 
in Figure 6 contains a modified bitmap, 11***, to 
indicate that there are nine pointers stored in the node. 
There are seven pointers pointing the 7 nodes in a 3-cube, 

00***, (nodes 1, 2, 3, 4, 5, 6, and 7) and another two 
pointes pointing to nodes 8 and 16 along dimensions 3 
and 4, respectively. If the incoming IP is 01001, the 
second pointer (with prefix 8) is first selected because 
the most significant set bit of IP is in dimension 3. After 
it reaches at node 8 with address 01000, the same 
process continues. If the incoming IP is 00101, the 
seventh pointer will be followed.  

The k-level segmentation is mostly used in the 
hardware-based IP lookup algorithms [1]. For our 
binomial spanning tree, we also use the k-level 
segmentation array of 2k pointers, each pointing to the 
corresponding sub-binomial spanning tree of dimension 
n – k. Therefore, when an incoming IP arrives, the most 
significant k bits are used to locate the corresponding 
sub spanning tree. Then the usual lookup process can be 
performed in the sub-spanning tree to find the best 
matched prefix. 

Besides the path compression, level compression, 
and k-level segmentation, intelligent selection of root 
node and dual roots, a pair of diagonally opposite nodes 
in the n-cube, can be used to further reduce the depth of 
the binomial spanning tree. Consider the example shown 
in Figure 2 (c). If the node c (010) is selected as root, 
then the constructed binomial tree rooted at node c has 
only depth of one. Nodes a, b, and d are all one hop from 
node c. Therefore, the tree depth can be reduced by 
carefully selecting a root for a sub-tree. 

We know that the hamming distance between the 
pair of diagonally opposite nodes A and B is n, the 
maximum, in an n-cube system. Node A is the only node 
that has a distance n from node B. For example, nodes A 
and B could be the nodes with addresses 0 and 2n – 1. 
We will use these two addresses for the dual roots as the 
default ones when we describe our idea as follows.  

void conflict_resolve (node32 *root32, unsigned root_ip, 
             unsigned ip, unsigned len, unsigned port) 
{ 
1   unsigned q, lmin, pmin, lmax, pmax; 
2   if (root32->len == len) return; 
3   (root32->len < len ? lmin=root32->len : lmax=len); 
4   root32->len = lmax; 
5   (root32->len < len ? pmin=root32->port : pmax=port);
6   root32->port = pmax; 
7   q = root_ip^(1<<(31-lmin)); 
8   insertion(root32, root_ip, q, lmin+1, pmin); 
9   insertion(root32, root_ip, root_ip, lmin+1, pmin); 
} 

Figure 4: The conflict resolution procedure for the 
proposed binomial spanning tree. 

unsigned lookup(node32 *root32, unsigned root_ip, 
             unsigned traffic_ip, unsigned default_port) 
{ 
1   unsigned x = root_ip ^ traffic_ip, i, j; 
2   while (x != 0){ 
3       if (root32->len != 0) { 
4           j = 32 - root32->len; 
5           if ((root_ip >> j) = = (traffic_ip >> j)) 
6                default_port = root32->port; 
7       } 
8       i =BSR(x);//Pentium’s bsr instruction(bit scan reverse) 
9       if (root32->ptr[i] == NULL)  return default_port; 
10     root32 = root32->ptr[i]; 
11     x = x ^ (1<<i); 
12     root_ip = root_ip ^ (1<<i); 
13   }/*end while */ 
14   j = 32 - root32->len; 
15   if ((root_ip >> j) == (traffic_ip >> j)) 
16          return root32->port; 
17   else return default_port; 
} 

Figure 5: The lookup procedure for the proposed 
binomial spanning tree. 



 

The maximum distance between either A or B and 
any other node is n/2. Therefore, we can use this 
property to build two binomial spanning trees, one 
rooted at A and the other rooted at B. The previous 
proposed insertion procedure can be employed directly 
as follows. When the binary address of a prefix using the 
address conversion scheme described above is closer to 
root A than B, we insert this prefix in the binomial 
spanning tree rooted at A. Otherwise this prefix is 
inserted into the spanning tree rooted at B. After a prefix 
has been determined to be inserted in the tree rooted at B, 
the address conversion scheme is different from the 
original scheme and will be described later. If there 
exists an address covered by a prefix that is closer to A 
than B then this prefix is inserted into the tree rooted at 
A. At the same time, it is possible that there is also an 
address that is covered by the prefix is closer to B than A. 
If it is the case then a marker prefix must also be inserted 
into the binomial tree rooted at B. For example, if the 
prefix, 3.0.0.0/8, must be inserted both into the trees 
rooted at A and B. When inserted into the tree rooted at 
node A, we use the original address conversion scheme. 
However, when inserted into the tree rooted at node B, 
we use a different conversion scheme in order to reduce 
the distance between node B and the converted address. 
What we do is converting the prefix 3.0.0.0/8 to address 
3.255.255.255 by padding ones to the don’t-care bits. If 
the prefix to be inserted is 4.0.0.0/24 then no marker 
prefix is created.  

The lookup process is similar to the insertion. When 
the incoming IP is closer to root A than B, the lookup 
process is preformed on the spanning tree rooted at A. 
Otherwise the lookup process is performed on the tree 
rooted at B.  

IV. PERFORMANCE EVALUATION 
In this section, we conduct experiments based on our 

implementation of the proposed IP lookup scheme. We 
use two routing tables for the measurements, one is a 
small table, funet, used in LC paper [12] and another one 
is a big routing table [6] which reflects the current 
situation in modern routers. The funet and oix tables 
contain 41,709 and 120,637 routing entries, respectively. 
Both tables contain the prefixes of lengths ranging from 

8 to 32.  
In addition to the proposed scheme, the binary trie 

and the Level-Compressed (LC) schemes are also 
considered for comparisons. The binary trie scheme is 
the most fundamental trie structure. The LC scheme is 
the optimized version of the binary trie scheme using 
adaptive internal subtrie expansions, first k-level 
segmentation, and pre-allocated array. The C codes for 
the LC trie are obtained from the web site published by 
the authors. In fact, we also implemented a variant of 
path compressed scheme. Since the performance of the 
path compressed scheme does not perform better than 
LC, its results are not given in this paper.  

The methodology of the conducted experiments is 
taken from the LC paper. The input traffic pattern is 
taken from the routing table. Therefore, the lookups will 
always be hits. Notice that the IP of the traffic is 
randomized before feeding into our simulator. All 
experiments will be performed with k=0, 8, or 16 level 
segmentation. The clock cycles for each experiment are 
measured by using the special instruction, rdtsc (read 
time stamp counter), provided by Intel Pentium 
processor. The clock counts obtained from different 
CPUs may have different scales. For example, the clock 
counts from Pentium IV are greater than that from 
Pentium III for the same experiments. It does not 
necessarily mean that the conducted algorithms perform 
better on Pentium III than on Pentium IV. We need to 
convert the clocks to seconds, which is an easy task. 
However, we will not perform this conversion for the 
clarity of the figures shown.  

In addition, a minor adjustment is made for better 
performance when selecting a diagonally opposite node 
of the original root. Since most of the prefixes are of 
length 24 or shorter, we only consider the first 24 bits 
when selecting the dual nodes in the schemes with k-
level segmentation. For example, consider the ith 
segment in a 8-level segmentation. The address of the 
first root is i.0.0.0 as usual. However, the address of the 
second root is chosen to be i.255.255.0 instead of 
i.255.255.255. For the proposed scheme without 
segmentation, the dual roots are 0.0.0.0 and 
255.255.255.255. 

Figures 7 and 8 show the experiments results of clock 
cycle counts on a 2.4G Pentium IV processor with 8KB 
L1 and 256KB L2 caches with a 16-level segmentation. 
In Figure 7, we can see that there are similar number of 
peaks for the proposed scheme and the LC. However, 
the peaks of the proposed scheme move toward to the 
left end. This means the time taken for the proposed 
scheme is smaller than the other two schemes. Notice 
that there are five peaks in LC because the number of 
levels in LC is five. In Figure 8, we compare the 
proposed schemes with one root and two dual roots. We 
can see that the shapes of these two schemes are similar 
except curves on the right side. There are more hits with 
longer clock cycles in the scheme with only one root 
than that with dual roots. This improvement is because 
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lookups with longer cycles in the scheme with one root 
is transferred to tree rooted at the diagonally opposite 
root. The lookups with shorter cycles will not be affected.  

The results of the same experiments for funet routing 
table are depicted in Figures 9 and 10. The difference 
between these two routing tables is not significant. The 
proposed scheme still performs better than other 
schemes. 

We also conduct experiments on the 1G Pentium III 
CPU with 16KB L1 and 256KB L2 caches. As shown in 
Figure 11 without first k-level segmentation, the LC 
scheme has the same peaks as previous experiments on 
Pentium IV. The peaks in the curve for the proposed 
scheme are not as clear as LC scheme. Figures 12 and 13 
show the results of LC and the proposed scheme with 
dual roots with an 8-level and a 16-level segmentation. 
Figure 14 compares the performance for the proposed 
scheme with 0, 8, and 16-level segmentation. Obviously, 
the scheme with a 16-level segmentation performs the 
best. In order to summarize the performance for all the 
schemes run on Pentium IV processor, we calculate the 
average clock cycles and show the results in Table 1. 
Again, the proposed scheme with dual roots performs 
better than any other scheme. 

V. Conclusions 
In this paper, we introduced a new method based on 

the binomial spanning tree. By mapping the prefixes of 
different lengths on the vertices of an n-cube, we can 
construct the binomial spanning tree using the simple 
tree construction and update procedures. The 
fundamental binomial spanning tree can be optimized by 
using the path compression, level compression, k-level 
segmentation and the property of diagonally opposite 
nodes. We implemented the proposed scheme and other 
existing trie-based schemes and showed that the 
proposed binomial spanning tree based scheme performs 
the best. 
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Figure 9: The proposed binomial scheme with one root, 
binary trie, and LC with a 16-level segmentation 
for funet routing table on Pentium IV. 

Figure10: The proposed binomial scheme with one root 
and that with dual roots without segmentation
for funet routing table on Pentium IV. 

Figure 11: The proposed binomial scheme with one root and 
LC with an 8-level segmentation for oix routing 
table on Pentium III. 

Figure 7: The proposed binomial scheme with one root,
binary trie, and LC with a 16-level segmentation 
for oix routing table on Pentium IV. 

Figure 8: Proposed binomial scheme with one root and 
that with dual roots without segmentation for 
oix routing table on Pentium IV. 
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Figure 12: The proposed binomial scheme with dual roots 
and LC with an 8-level segmentation for oix 
routing table on Pentium III. 
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Scheme Table1(120637 
entries)  clock

Table2(41709entries)  
clock 

Binomial-x-0 1467 1165 
Binomial-x-0-dual 1362 1064 

Binomial-x-8 1287 875 
Binomial-x-8-dual 1140 845 

Binomial-x-16 827 528 
Binomial-x-16-dual 682 483 

Lc-trie-x-0 1208 587 
Lc-trie-x-8 905 578 

Lc-trie-x-16 879 557 
Binary-trie-x-0 1989 1553 
Binary-trie-x-8 1802 1357 

Binary-trie-x-16 1395 1094 

Figure 13: The proposed binomial scheme with dual roots and LC 
with a 16-level segmentation for oix routing table on 
Pentium III. 

Figure14: The proposed binomial scheme with dual roots 
with 0-level, 8-level, and 16-level segmentations 
for oix routing table on Pentium III. 

Table 1: Average cycle counts of the proposed binomial scheme with one root 
and dual roots, the binary trie, and the LC schemes with 0-level, 8-
level, and 16-level segmentations for oix routing table on Pentium IV. 
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